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dressed; therefore, address translation is not required when there is a cache hit. Virtually addressed
caches require kernel involvement to address some consistency problems. These issues are de-
scribed in Section 15.13.

13.3.4 The MIPS R3000

The MIPS R3000 is a RISC system and has been a platform for SVR4 UNIX as well as Digital
Equipment Corporation’s ULTRIX (a 4.2BSD-based system). It has an unusual MMU architecture
[Kane 88] in that there is no hardware support for page tables. The only address translations per-
formed by the hardware are those defined by the on-chip TLB.

This has far-reaching implications on the division of memory management tasks and the in-
terface between the hardware and the kernel. In the Intel x86 architecture, for instance, the structure
of the TLB entry is opaque to the kernel. The only operations allowed are invalidation of single en-
tries keyed by virtual address or of the entire TLB. In contrast, the MIPS architecture makes the
format and contents of the TLB entry public to the kernel and allows operations to read, modity, and
load specific entries.

The virtual address space itself is divided into four segments, as shown in Figure 13-11. The
kuseg, spanning the first two gigabytes, contains the user address space. The other three segments
are accessible only in kernel mode. kseg) and ksegl each map directly to the first 512 megabytes of
physical memory, thus requiring no TLB mapping. Of these, kseg0 uses the data/instruction caches,
but kseg/ does not. The top gigabyte is devoted to kseg2, which is the mapped, cacheable kernel
segment. Addresses in kseg2 can be mapped to any physical memory location.

Figure 13-12 describes the MMU registers and the format of the TLB entry. The MIPS page
size is fixed at 4 kilobytes; thus the virtual address s divided into a 20-bit virtual page number and a
[2-bit offset. The TLB contains 64 entries, and each entry is 64 bits in size. The entryhi and en-
trylo registers have the same format as the high and low 32 bits of the TLB entry, respectively, and
are used to read and write a TLB entry. The VPN (virtual page number) and PFN (physical frame
number) fields allow translation of virtual to physical page numbers. The PID field acts as a tag, as-
sociating each TLB entry with a process. This PID, which is 6 bits in size, can take the values 0
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Figure 13-11. MIPS R3000 virtual address space.
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Figure 13-12. MIPS R3000 address translation.

through 63, and is not the same as the traditional process ID. Each process that may have active
TLB entries will be assigned a 1/hpid between 0 and 63. The kernel sets the PID field in the entryhi
register to the (/bpid of the current process. The hardware compares it to the corresponding field in
the TLB entries, and rejects translations that do not match. This allows the TLB to contain entries
for the same virtual page number belonging to different processes without conflict.

The N (no-cache) bit. if set, says that the page should not go through the data or instruction
caches. The G (global) bit specifies that the P1D should be ignored for this page. If the V (vafid) bitis
clear, the entry is invalid, and if the D (dirry) bit is clear, the entry is write-protected. Note that there
is neither a referenced bit nor a modified bit.

In translating kuseg or kseg2 addresses, the virtual page number is compared with all TLB
entries simultaneously. If a match is found and the G bit is clear. the PID of the entry is compared
with the current (/bpid stored in the entryhi register. If they are equal (or if the G bit is set) and the
V bit is set, the PFN field vields the valid physical page number. If not, a TLBmiss exception is
raised. For write (store) operations, the D bit must be set. or else a TLBmod exception will be
raised.

Since the hardware provides no further facilities (such as page table support), these excep-
tions must be handled by the kernel. The kernel will look at its own mappings. and either locatc 2
valid translation or send a signal to the process. In the former case, it must load a valid TLB entry
and restart the faulting instruction. The hardware imposes no requirements on whether the kernel
mappings should be page table-based and what the page table entries should look like. In practice,
however. UNIX implementations on MIPS use page tables so as to retain the basic memory man-
agement design. The format of the entrylo register is the natural form of the PTEs. and the eight
low-order bits, which are unused by hardware, may be used by the kernel in any way.

The lack of referenced and modified bits places further demands on the kernel. The kernel
must know which pages are modified, since they must be saved before reuse. This is achieved by
write-protecting all clean pages (clearing the D bit in their TLBs), so as to force a TLBmod excep-
tion on the first write to them. The exception handler can then set the D bit in the TLB and set ap-
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propriate bits in the software PTE to mark the page as dirty. Reference information must also be
wollected indirectly, as shown in Section 13.5.3.

This architecture leads to a larger number of page faults, since every TLLB miss must be
handled by the software. The need to track page modifications and references causes even more
page faults. This is offset by the speed gained by a simpler memory architecture, which allows very
fast address translation when there is a TLR cache hit. Further, the faster CPU speed helps keep
down the cost of the page fault handling. Finally, the unmapped region kseg() is used to store the
siatic text and data of the kernel. This increases the speed of execution of kernel code, since address
banslations are not required. It also reduces contention on the TL.B, which is needed only for user
addresses and for some dynamically allocated kernel data structures,

134 4.3BSD — A Case Study

S0 far we have described the basic concepts of demand paging, and how hardware characteristics
can influence the design. To understand the issues mvolved more clearly, we use 4.3BSD memory
management as a case study. The first UNIX system to support virtual memory was 3BSD. Its
memory architecture evolved incrementally over the subsequent releases. 4.3BSD was the last Ber-
keley release based on this memory model. 4.4BSD adopted a new memory architecture based on
Mach; this is described ir. Section 15.8. [Left 89] provides a more complete treatment of 4.3BSD
memory management. In this chapter, we summarize its important features, evaluate its strengths
and drawbacks, and develop the motivation for the more sophisticated approaches described in the
following chapters.

Although the target platform for the BSD releases was the VAX-11, it has been successfully
ported to several other platforms. The hardware characteristics impact many kernel algorithms, in
particular the lower-level functions that manipulate page tables and the translation buffer. Porting
BSD memory management has not been easy, since the hardware dependencies permeate through
all parts of the system. As a resull, several BSD-based implementations emulate the VAX memory
architecture in software, including its address space layout and its page table entry format. We
avoid a detailed description of the VAX memory architecture, since the machine is now obsolete.
[nstead, we describe some of its important features as part of the BSD description.

4.3BSD uses a small number of fundamental data structures —the core map describes physi-
cal memory, the page tahles describe virtual memory, and the disk maps describe the swap areas.
There are also resource maps to manage aflocation of resources such as page tables and swap space.
Finally, some important information is stored in the proc structure and u area of each process.

13.4.1 Physical Memory

Physical memory can be viewed as a linear array of bytes ranging from 0 to n, where # is the total
amount of memory on the system. It is logically divided into pages, with the page size dependent on
the machine architecture. This memory can be divided into three sections, as shown in Fi gure 13-13.
Atthe low end is the nonpaged pool, which contains the kernel code and the portion of the kernel
data that can be allocated either statically or at boot time. Since a kernel page fault can block a proc-
ess in the kernel at an inconvenient point, most UNIX implementations require all kernel pages to



