
2/3/15 CS161 Spring 2015 1 1 

Synchronization Primitives!

•  Topics 
•  Locks, spinlocks 
•  Semaphores 
•  Condition Variables 
•  Monitors 

•  Learning Objectives: 
•  Given a problem, select a suitable synchronization primitive 
•  Identify poor choices of synchronization primitives 
•  Explain how synchronizing applications is similar to/different 

from synchronizing inside an operating system. 



Review: Locks 
•  Obtain a resource for exclusive use. 

•  Acquire/Lock: Get the resource 
•  Release/Unlock: Give up the resource 

•  Use case 
•  Need to arbitrate exclusive access to a resource. 
•  If resource is unavailable, want to wait for the resource. 
•  Same agent acquires/releases access to the resource 

2/3/15 CS161 Spring 2015 2 



Spinlock 
•  A very simple locking mechanism. 
•  Busy wait for resource to become available. 

•  Atomically test if a resource is available and get it. 
•  If it’s not available, try again 

•  Requirements: 
•  Requires some kind of hardware support (disabling 

interrupts or atomic instructions such as TAS, CAS) 
•  Assumptions: 

•  True concurrency 
•  Exclusive access 
•  Short duration 

2/3/15 CS161 Spring 2015 3 



Semaphore 
•  Counting and locking mechanism (shared counter). 

•  A semaphore has a value that is always greater than or 
equal to 0. 

•  You “acquire” a semaphore using an operation named P (for 
proberen which means “to test” in Dutch). 

•  You “release” a semaphore using an operation named V (for 
verhogen, which means “increase” in Dutch). 

•  Semantics  
•  V: Increment counter 
•  P: Wait for counter to go positive and decrement 

•  Requirements: 
•  P and V must be critical sections 

2/3/15 CS161 Spring 2015 4 



Semaphore Usage 
•  Binary semaphore: similar to a lock: 

•  Initialize the semaphore to 1. 
•  The semaphore will only have the value 0 or 1. 
•  Can be acquired/released by different parties. 
•  P: locks resource 
•  V: releases resource 
•  Use when waiting is unlikely 

•  Counting semaphore: somewhat unique: 
•  Schedule N fungible (interchangeable) resources. 
•  Initialize the semaphore to N. 
•  P: uses resource 
•  V: frees reource 
•  Allows up to N simultaneous users 

2/3/15 CS161 Spring 2015 5 



Condition Variables (CV) 
•  A construct designed to let you run only when some condition 

about the world is true. 
•  Always paired with a lock (makes operations critical sections). 
•  API 

•  cv_create (cv_destroy): Create (Destroy) a condition variable 
•  cv_wait: block until the condition becomes true 
•  cv_broadcast: wake all threads waiting on this condition variable 
•  cv_signal: wake a single thread waiting on this condition variable 

•  Use case: 
•  Want to run when a condition is true 
•  Not necessarily exclusive access 
•  Condition is typically simple 
•  Need to lock/wait atomically 

2/3/15 CS161 Spring 2015 6 



CV Usage Pattern 
•  Usage: 

•  Acquire lock 
•  Check condition 
•  If you need to wait on condition, call cv_wait. 
•  Once condition is true, decide if you want to cv_signal or 
cv_broadcast information to others. 

•  Release lock. 
•  Semantics: 

•  Hoare semantics: If you wait on a condition, when you wake up 
you are guaranteed that the condition is true. 

•  Mesa semantics: No guarantees when you wake; someone 
else may have beaten you to the punch.  

•  OS161 uses Mesa semantics; you must code accordingly. 

2/3/15 CS161 Spring 2015 7 



Monitors 
•  Higher order construct for synchronization. 
•  Provides API-level synchronization so programmers 

don’t need to worry about them. 
•  Typically built into languages or libraries: 

•  Java synchronized classes 
•  C# classes that derive from Monitor 
•  Ruby classes extended with MonitorMixin 

•  Use case: 
•  Provide synchronized access to a data structure via its API. 
•  Well defined API 
•  Absolutely no manipulation or visibility outside of API 

 2/3/15 CS161 Spring 2015 8 



Kernel Synchronization Similarities 

•  Can use all the same primitives 
•  Same principles: critical sections, deadlocks, etc. 
•  Deadlocks are easier to debug than race conditions 
•  Same requirements: 

•  Only one thread in a critical section. 
•  Must make forward progress. 
•  Activity outside a critical section cannot block the critical section. 
•  Critical sections are short. 

•  Desirable properties: 
•  Fair: if several processes are waiting, let each in eventually. 
•  Efficient: don’t use substantial amounts of resources when waiting. 

E.g., no busy waiting. 
•  Simple: should be easy to use. E.g., just bracket the critical sections. 

2/3/15 CS161 Spring 2015 9 



Kernel Synchronization Differences 

•  Somewhat similar to synchronizing with a server. 
•  Differences from synchronizing with normal user 

code: 
1.  Must synchronize with hardware. 
2.  Performing operations on behalf of someone else, so you 

don’t control what you do (e.g., you don’t necessarily know 
all the resources a particular thread is going to want). 

3.  Must avoid deadlocks (finding deadlocks and killing things 
isn’t really OK). 

2/3/15 CS161 Spring 2015 10 


