
4/14/15 CS161 Spring 2015 1 1 

FFS Recovery: Soft Updates 

•  Learning Objectives 
•  Explain how to enforce write-ordering without synchronous 

writes. 
•  Identify and discuss tradeoffs between synchronous updates 

and soft updates. 

•  Topics 
•  Recap 
•  Deriving soft updates 
•  Soft updates challenges and solutions 



Recap FFS 

•  Synchronous writes to ensure that things can be 
made consistent. 

•  FSCK to check and repair on-disk state to make 
things consistent. 

•  Two fundamental problems: 
•  Synchronous updates make FFS slow 
•  Running fsck on a large file system, before you can do 

anything else makes recovery unacceptably slow. 

•  What can you do? 
•  Recall why we performed synchronous writes and see if we 

can get around them. 

4/14/15 CS161 Spring 2015 2 



Improving FFS 

•  Why did we perform synchronous writes? 

4/14/15 CS161 Spring 2015 3 



Improving FFS 

•  Why did we perform synchronous writes? 
•  To ensure certain ordering constraints. 

•  What alternatives are there to these ordering 
constraints? 

4/14/15 CS161 Spring 2015 4 



Improving FFS 

•  Why did we perform synchronous writes? 
•  To ensure certain ordering constraints. 

•  What alternatives are there to these ordering 
constraints? 
•  Journaling 
•  Enforce the ordering in the kernel (buffer cache). 

4/14/15 CS161 Spring 2015 5 



Approach 3: Soft Updates 
•  What are the synchronous updates really doing? 
•  Enforcing: 

•  Never point to a structure before it has been initialized. 
•  Never reuse a resource before invalidating all previous references to it. 
•  Never reset the last pointer to a live resource before a new pointer has 

been set. 
•  Principles: 

•  Prioritize latency over durability: buffer writes and ensure recoverability 
rather than pushing writes to disk synchronously. 

•  Applications should never wait for a disk write unless they explicitly ask 
to do so. 

•  Propagate data to disk using the minimum number of I/Os possible. 
•  Minimize memory requirements. 
•  Avoid constraining cache write-back and disk ordering (enable 

intelligent disk scheduling). 

Soft Updates, Ganger 1994, Ganger, McKusick et al 2000 

4/14/15 CS161 Spring 2015 6 



The Original Soft Updates 
•  Maintain dependency information between blocks in the 

buffer cache. 
•  Make sure that blocks are flushed to disk in an order that 

preserves those dependencies. 

4/14/15 CS161 Spring 2015 7 

Inode 8 

Inode 9 

Inode 10 

Inode 11 

Inode 12 

Inode 13 

Inode 14 

Inode 15 

Inode Block 

Create file bar 

., #52 

.., #75 

Directory Block 

foo, #10 

bar, #11 

Create ordering dependency 



The Problem 
•  Maintain dependency information between blocks in the 

buffer cache. 
•  Make sure that blocks are flushed to disk in an order that 

preserves those dependencies. 

4/14/15 CS161 Spring 2015 8 

Inode 8 

Inode 9 

Inode 10 

Inode 11 

Inode 12 

Inode 13 

Inode 14 

Inode 15 

Inode Block 

Create file bar 

., #52 

.., #75 

Directory Block 

bar, #11 

foo, #10 

Create ordering dependency 

Remove file foo 

Create ordering dependency Which block do you write first? 



The Solution 
•  Maintain fine-grain dependency information 

•  Maintain dependencies on a per pointer or per-field basis. 
•  In addition, keep “before” and “after” versions, so that you can 

undo an update before writing a block and then redo the update 
to preserve it in-memory. 

4/14/15 CS161 Spring 2015 9 

Inode 8 

Inode 9 

Inode 10 

Inode 11 

Inode 12 

Inode 13 

Inode 14 

Inode 15 

Inode Block 1. Create file bar ., #52 

.., #75 

Directory Block 

foo, #10 

bar, #11 Initialize 
inode 11 

Add entry: bar, #11 
Depends on 

2. Remove file foo 
Remove entry: foo, #10 

Nullify inode #10 
Depends on 



The Solution: Writing the Inode Block 
•  Maintain fine-grain dependency information 

•  Maintain dependencies on a per pointer or per-field basis. 
•  In addition, keep “before” and “after” versions, so that you can undo 

an update before writing a block and then redo the update to 
preserve it in-memory. 

4/14/15 CS161 Spring 2015 10 

Inode 8 

Inode 9 

Inode 10 

Inode 11 

Inode 12 

Inode 13 

Inode 14 

Inode 15 

Inode Block 
., #52 

.., #75 

Directory Block 

foo, #10 

bar, #11 Add entry: bar, #11 
Depends on 

Initialize 
inode 11 

Remove entry: foo, #10 

Nullify inode #10 
Depends on 

1.  Check block for dependencies. 
2.  No dependency on inode #11 
3.  Dependency for inode #10 
4.  Undo update on inode #10 
5.  Write block 
6.  Redo update on inode #10 



The Solution: Writing Directory Block 
•  Maintain fine-grain dependency information 

•  Maintain dependencies on a per pointer or per-field basis. 
•  In addition, keep “before” and “after” versions, so that you can 

undo an update before writing a block and then redo the update 
to preserve it in-memory. 

4/14/15 CS161 Spring 2015 11 

Inode 8 

Inode 9 

Inode 10 

Inode 11 

Inode 12 

Inode 13 

Inode 14 

Inode 15 

Inode Block 
., #52 

.., #75 

Directory Block 

foo, #10 

bar, #11 Initialize 
inode 11 

Add entry: bar, #11 
Depends on 

Remove entry: foo, #10 

Nullify inode #10 
Depends on 

1.  Check block for dependencies. 
2.  No dependency on remove 
3.  Dependency on add 
4.  Undo add of bar, #11 
5.  Write block 
6.  Redo add of bar, #11 



Soft Updates: Summary 

•  Fine-grain dependency tracking allows any block to 
be written at any time. 

•  Blocks involved in cycles may be written multiple 
times. 

•  Dirty blocks not in cycles written once. 
•  Post-crash on-disk state is always consistent, except 

possibly for bitmaps. 
•  Order bitmap operations so bitmaps are always 

conservative: may think a block is allocated that isn’t, but 
never thinks a block is free when it isn’t. 

•  Bitmaps can be reclaimed in the background. 
•  No long fsck before mounting file system. 

4/14/15 CS161 Spring 2015 12 


