
File Systems: Free Space & Naming

•  Learning Objective
•  Evaluate trade-offs between different free space

representations and management techniques.
•  Explain some alternative ways to implement a directory

(naming) structure in a file system.
•  Critique different designs, evaluating their trade-offs.

•  Topics:
•  Finish up evaluation of free space management strategies.
•  Naming exercise.
•  In-depth study of directory implementation

3/31/15 CS161 Spring 2015 1

Exercise 2: Free Space Management

•  Assume you allocate in fixed size blocks:
•  How do you keep track of free space?
•  How do you select which blocks to allocate to a particular

file?

•  Assume that you allocate variable size extents:

•  How do you select the extent size?
•  How do you manage free space?
•  Where do you allocate extents?

3/26/15 CS161 Spring 2015 2

Free Space Management (1)

•  There is often a tradeoff between the amount of
(allocation) meta data you keep and the quality of
allocation.

•  Fixed size blocks:
•  Free list: link all the free pages together in a list (placing the

pointer on the actual page).
•  Metadata: One pointer (excellent).
•  Ease of allocation: Pull first block off the list (excellent).
•  Ability to produce good (e.g., contiguous) allocations? Poor.

•  Bitmaps
•  Metadata: One bit per block (good)
•  Ease of allocation: Find a free bit (good)
•  Ability to produce good allocations? (good)

•  How do these apply to a small number of block sizes?

3/31/15 CS161 Spring 2015 3

Buddy Allocation

•  One way to support multiple block sizes is to make all
the sizes be a power-of-two multiple of a basic block
size.

•  Rather than assign disk blocks to different sized file
system blocks haphazardly, create blocks of size 2N

by splitting a block of size 2N+1

3/31/15 CS161 Spring 2015 4

1. Disk is collection of maximum size blocks

Buddy Allocation

•  One way to support multiple block sizes is to make all
the sizes be a power-of-two multiple of a basic block
size.

•  Rather than assign disk blocks to different sized file
system blocks haphazardly, create blocks of size 2N

by splitting a block of size 2N+1

3/31/15 CS161 Spring 2015 5

2. Allocate a large block.

Buddy Allocation

•  One way to support multiple block sizes is to make all
the sizes be a power-of-two multiple of a basic block
size.

•  Rather than assign disk blocks to different sized file
system blocks haphazardly, create blocks of size 2N

by splitting a block of size 2N+1

3/31/15 CS161 Spring 2015 6

3. Allocate minimum-sized block.

Free Space Management (2)

•  Extents
•  On-disk malloc (free list approach)

•  Keep free extents in lists, tagged with size
•  Or, like a slab allocator, have multiple lists with different-sized blocks
•  Metadata: one or a few pointers (excellent)
•  Ease of allocation: pretty good
•  Problems? Fragmentation (both internal and external)

•  Bitmap based: probably need to track in some primitive unit
size

•  Metadata: one bit per primitive unit (good)
•  Ease of allocation: not great – need to search for contiguous chunks.

3/31/15 CS161 Spring 2015 7

Exercise 3: Naming

•  We will assume that you need to implement a
hierarchical name space (i.e., directories & files).
•  How will you represent a directory?
•  How will you find the root directory (“/”)?
•  How will you support traversing up a directory tree (cd ..)?
•  Be as specific as you can.

3/31/15 CS161 Spring 2015 8

Naïve Naming
•  One directory for the entire

disk (file system).
•  Small maximum name size.
•  Set maximum number of

files at creation time.
•  Implementation:

•  Pre-allocate space for the
directory when you create
the file system.

•  The directory is essentially a
big array of structures:

•  char name[max-file-name-
size];

•  Either an actual file
representation OR an id that
easily maps to the file
representation.

3/31/15 CS161 Spring 2015 9

•  Pros:
•  Really simple

•  Cons:
•  Difficult to organize

data
•  No two objects may

have the same name.
•  On a multi-user

system, users might
have name collisions

•  Names are limited.

Hierarchical Naming
•  Generalized tree structure

•  Directories are regular files with
a special format.

•  A bit in the file meta-data
indicates that a file is of type
directory.

•  A directory entry is simply a
mapping between names and a
file index (a collection of name/
value pairs).

•  User programs can read directories
just like they read files.

•  Only the operating system can write
directories (wouldn’t want a user to
corrupt the directory structure)

3/31/15 CS161 Spring 2015 10

/

bin

cat ls …

mach_kernel
usr

etc bin lib …

•  Pros:

•  Cons:

Hierarchical Naming
•  Generalized tree structure

•  Directories are regular files with
a special format.

•  A bit in the file meta-data
indicates that a file is of type
directory.

•  A directory entry is simply a
mapping between names and a
file index (a collection of name/
value pairs).

•  User programs can read directories
just like they read files.

•  Only the operating system can write
directories (wouldn’t want a user to
corrupt the directory structure)

3/31/15 CS161 Spring 2015 11

/

bin

cat ls …

mach_kernel
usr

etc bin lib …

•  Pros:
•  Much better organization
•  Reuses file

implementation

•  Cons:
•  Slightly more complicated

file lookup.

Traditional Directory Implementation

•  Directories are represented like files.
•  Contents of directories are structured (dirents).

•  Name
•  Inode number
•  Type

•  Directories grow in chunks of dirents that fit on a
single disk block.

•  Root directory has a designated inode.

3/31/15 CS161 Spring 2015 12

The Root Directory

•  This is the contents of the “/” directory on my machine.

3/31/15 CS161 Spring 2015 13

Name inumber Name inumber Name inumber
Applications 113 Desktop Folder 844727 Developer 844731
Documents 937803 Library 213 Marketocracy 937813
Network 84416 System 37 Updaters 937816
Users 38892 Volumes 26447 bin 24377
cdrom 937840 cores 84418 dev 296
etc 25116 home 5 mach_kernel 552433
net 3 opt 937844 private 214
sbin 4512 sw 1024168 tmp 25155
usr 40 var 25156 . 2
.. 2

Walking a Directory Path

•  For historical reasons (because original versions of
UNIX did this) we call:
•  File index structures: inodes
•  References to file index structures: inumbers

•  Given a path /C1/C2/C3 …
•  Start at the root directory (a designated directory with a

designated inumber).
1.  Let inum = root directory inumber; current component = C1
2.  Read the directory data for inum!
3.  Find the entry with the name equal to the current component!
4.  Fine the associated inumber
5.  Read the inode for that inumber

–  If it’s not a directory, this is a bad pathname
–  If it is a directory, set inum to the inumber; set current component to next part of path

and iterate back to step 2.

3/31/15 CS161 Spring 2015 14

Directory Example

3/31/15 CS161 Spring 2015 15

Assume:
•  Inode 2 is in disk

block 100

•  Inodes fit 8 to the
block

•  Block 100
contains inodes
0-7, 101 contains
8-15, etc.

•  There are 100
blocks of inodes

Exercise:
List all the blocks, in
order that you need to
read to open /usr/lib/
libc.a

The number in
these inodes is
what is found in
daddr[0]

Disk
block
number

Contents

in
od

es

s

100 200

101 202 203

102 204 205

…

D
at

a
B

lo
ck

s
200 ., 2 .., 2 bin, 8

usr, 16 boot, 35 kadb, 27

201 ., 11 .., 2 Some text

is in this file

202 ., 8 .., 2 ls, 91

csh, 105

203 ., 9 .., 16 libc.a, 55

font, 77

204 ., 16 .., 2 lib, 9

share, 52 ucb, 15 old, 66

Directory Example

3/31/15 CS161 Spring 2015 16

Assume:
•  Inode 2 is in disk

block 100

•  Inodes fit 8 to the
block

•  Block 100
contains inodes
0-7, 101 contains
8-15, etc.

•  There are 100
blocks of inodes

Exercise:
List all the blocks, in
order that you need to
read to open /usr/lib/
libc.a

The number in
these inodes is
what is found in
daddr[0]

Disk
block
number

Contents

in
od

es

s

100 200

101 202 203

102 204 205

…

D
at

a
B

lo
ck

s
200 ., 2 .., 2 bin, 8

usr, 16 boot, 35 kadb, 27

201 ., 11 .., 2 Some text

is in this file

202 ., 8 .., 2 ls, 91

csh, 105

203 ., 9 .., 16 libc.a, 55

font, 77

204 ., 16 .., 2 lib, 9

share, 52 ucb, 15 old, 66

More Directory Fun
•  In POSIX, every directory has two special entries “.” and “..”.

•  The “.” directory refers to the directory itself.
•  The “..” directory refers to the parent directory.
•  This is how the file system implements paths such as ../asst2.

•  It is possible for more than one directory entry to refer to a
single file.
•  Hard link: the same inumber appears in two different directories. The

reference count for the inumber is incremented.
•  Could you create a hard link between two directories in different file systems?
•  When you remove (unlink) a file, you decrement its reference count and remove a

name from a directory. When the reference count goes to zero, the file’s blocks
are actually freed.

•  Soft link (symbolic link): file that contains the name of another file.
•  Files of this sort are identified by a bit in their file descriptor.
•  When the OS encounters a symbolic link, it continues pathname resolution using

the pathname that appears in the file.
•  Can you create a soft link between two directories?

•  What is the minimum link count for a directory?

3/31/15 CS161 Spring 2015 17

Working Directory

•  It is cumbersome (and inefficient for the OS) to use full
pathnames every time you reference a file.

•  POSIX maintains a single “current working directory” (cwd)
for each process. The inumber of the cwd is stored in the
user structure.

•  When the OS wants to translate a name to an inumber, it
looks at the first character in the path. If that character is
“/”, the OS begins looking at the root. If it is not a path, the
OS begins looking in the current directory.

•  Some systems allow you to have more than one current
working directory. The list of directories that are in the
“current working directory set” are called a search path.

3/31/15 CS161 Spring 2015 18

