
4/7/15 CS161 Spring 2015 1 1 

File Systems: Recovery 

•  Learning Objectives 
•  Identify ways that a file system can be corrupt after a crash. 
•  Articulate approaches a file system can take to limit the 

kinds of failures that can occur. 
•  Describe different approaches to recovering a file system 

after a crash. 
•  Evaluate the tradeoffs between the different approaches. 

•  Topics 
•  Identify ways a file system can be corrupt. 
•  Figure out some approaches to avoiding corruption. 
•  Things you can do in the system while it’s running. 
•  Things you do after a crash. 



What kinds of bad things could happen? 

•  Individual data structures could be corrupted: 
•  The superblock or cylinder group headers 
•  Bitmaps could get trashed 
•  Individual inodes could be in an invalid state 
•  A directory could become corrupted 

•  Inconsistencies between data structures: 
•  Directory entries that don’t point to valid files 
•  Files without directory entries 
•  Files containing disk blocks to which they have not written data. 
•  Files not containing disk blocks to which they have written data. 
•  Data blocks not attached to any file 
•  Disk blocks allocated but still in free list 
•  Disk blocks unallocated but NOT in free list 

4/7/15 CS161 Spring 2015 2 



What kinds of bad things could happen? 

•  Individual data structures could be corrupted: 
•  The superblock or cylinder group headers 
•  Bitmaps could get trashed 
•  Individual inodes could be in an invalid state 
•  A directory could become corrupted 

•  Inconsistencies between data structures: 
•  Directory entries that don’t point to valid files 
•  Files without directory entries 
•  Files containing disk blocks to which they have not written data. 
•  Files not containing disk blocks to which they have written data. 
•  Disk blocks allocated but still in free list 
•  Disk blocks unallocated but NOT in free list 

4/7/15 CS161 Spring 2015 3 



Remedies (1) 

•  Individual data structures could be corrupted: 
•  The superblock or cylinder group headers 
•  Bitmaps could get trashed 
•  Individual inodes could be in an invalid state 
•  A directory could become corrupted 

•  Inconsistencies between data structures: 
•  Directory entries that don’t point to valid files 
•  Files without directory entries 
•  Files containing disk blocks to which they have not written data. 
•  Files not containing disk blocks to which they have written data. 
•  Disk blocks allocated but still in free list 
•  Disk blocks unallocated but NOT in free list 

4/7/15 CS161 Spring 2015 4 

Avoid writing it. 
Keep multiple 
copies of it. 



Remedies (2) 

•  Individual data structures could be corrupted: 
•  The superblock or cylinder group headers 
•  Bitmaps could get trashed 
•  Individual inodes could be in an invalid state 
•  A directory could become corrupted 

•  Inconsistencies between data structures: 
•  Directory entries that don’t point to valid files 
•  Files without directory entries 
•  Files containing disk blocks to which they have not written data. 
•  Files not containing disk blocks to which they have written data. 
•  Disk blocks allocated but still in free list 
•  Disk blocks unallocated but NOT in free list 

4/7/15 CS161 Spring 2015 5 

Rebuild them from 
inodes after a 
crash. 



Remedies (3) 

•  Individual data structures could be corrupted: 
•  The superblock or cylinder group headers 
•  Bitmaps could get trashed 
•  Individual inodes could be in an invalid state 
•  A directory could become corrupted 

•  Inconsistencies between data structures: 
•  Directory entries that don’t point to valid files 
•  Files without directory entries 
•  Files containing disk blocks to which they have not written data. 
•  Files not containing disk blocks to which they have written data. 
•  Disk blocks allocated but still in free list 
•  Disk blocks unallocated but NOT in free list 

4/7/15 CS161 Spring 2015 6 

Never let 
invalid inode 
get to disk. 



Remedies (4) 

•  Individual data structures could be corrupted: 
•  The superblock or cylinder group headers 
•  Bitmaps could get trashed 
•  Individual inodes could be in an invalid state 
•  A directory could become corrupted 

•  Inconsistencies between data structures: 
•  Directory entries that don’t point to valid files 
•  Files without directory entries 
•  Files containing disk blocks to which they have not written data. 
•  Files not containing disk blocks to which they have written data. 
•  Disk blocks allocated but still in free list 
•  Disk blocks unallocated but NOT in free list 

4/7/15 CS161 Spring 2015 7 

Reconstruct 
the directory. 



Remedies (5) 

•  Individual data structures could be corrupted: 
•  The superblock or cylinder group headers 
•  Bitmaps could get trashed 
•  Individual inodes could be in an invalid state 
•  A directory could become corrupted 

•  Inconsistencies between data structures: 
•  Directory entries that don’t point to valid files 
•  Files without directory entries 
•  Files containing disk blocks to which they have not written data. 
•  Files not containing disk blocks to which they have written data. 
•  Disk blocks allocated but still in free list 
•  Disk blocks unallocated but NOT in free list 

4/7/15 CS161 Spring 2015 8 

Write directory 
entry AFTER 
you create the 
file. 



Remedies (6) 

•  Individual data structures could be corrupted: 
•  The superblock or cylinder group headers 
•  Bitmaps could get trashed 
•  Individual inodes could be in an invalid state 
•  A directory could become corrupted 

•  Inconsistencies between data structures: 
•  Directory entries that don’t point to valid files 
•  Files without directory entries 
•  Files containing disk blocks to which they have not written data. 
•  Files not containing disk blocks to which they have written data. 
•  Disk blocks allocated but still in free list 
•  Disk blocks unallocated but NOT in free list 

4/7/15 CS161 Spring 2015 9 

Read all the inodes; 
traverse directory tree; 
find all disconnected 
files. 



Remedies (7) 

•  Individual data structures could be corrupted: 
•  The superblock or cylinder group headers 
•  Bitmaps could get trashed 
•  Individual inodes could be in an invalid state 
•  A directory could become corrupted 

•  Inconsistencies between data structures: 
•  Directory entries that don’t point to valid files 
•  Files without directory entries 
•  Files containing disk blocks to which they have not written data. 
•  Files not containing disk blocks to which they have written data. 
•  Disk blocks allocated but still in free list 
•  Disk blocks unallocated but NOT in free list 

4/7/15 CS161 Spring 2015 10 

Write new disk blocks 
before letting updated 
inodes get to disk. 



Remedies (8) 

•  Individual data structures could be corrupted: 
•  The superblock or cylinder group headers 
•  Bitmaps could get trashed 
•  Individual inodes could be in an invalid state 
•  A directory could become corrupted 

•  Inconsistencies between data structures: 
•  Directory entries that don’t point to valid files 
•  Files without directory entries 
•  Files containing disk blocks to which they have not written data. 
•  Files not containing disk blocks to which they have written data. 
•  Disk blocks allocated but still in free list 
•  Disk blocks unallocated but NOT in free list 

4/7/15 CS161 Spring 2015 11 

Maybe this is OK: we 
allow some recent 
writes to be lost? 



Remedies (9) 

•  Individual data structures could be corrupted: 
•  The superblock or cylinder group headers 
•  Bitmaps could get trashed 
•  Individual inodes could be in an invalid state 
•  A directory could become corrupted 

•  Inconsistencies between data structures: 
•  Directory entries that don’t point to valid files 
•  Files without directory entries 
•  Files containing disk blocks to which they have not written data. 
•  Files not containing disk blocks to which they have written data. 
•  Disk blocks allocated but still in free list 
•  Disk blocks unallocated but NOT in free list 

4/7/15 CS161 Spring 2015 12 

You’ll find these 
when you rebuild 
the bitmaps after a 
crash. 



Remedies (10) 

•  Individual data structures could be corrupted: 
•  The superblock or cylinder group headers 
•  Bitmaps could get trashed 
•  Individual inodes could be in an invalid state 
•  A directory could become corrupted 

•  Inconsistencies between data structures: 
•  Directory entries that don’t point to valid files 
•  Files without directory entries 
•  Files containing disk blocks to which they have not written data. 
•  Files not containing disk blocks to which they have written data. 
•  Disk blocks allocated but still in free list 
•  Disk blocks unallocated but NOT in free list 

4/7/15 CS161 Spring 2015 13 

You’ll find these 
when you rebuild 
the bitmaps after a 
crash. 



Recovery Principles 

•  Do what is necessary on the live file system to ensure 
that after a failure, you can fix any inconsistencies 
that could happen. 

•  Have a recovery process that can fix up any 
remaining problems in the file system upon startup. 

•  Two key things we do: 
•  Enforce ordering on when we write things to disk. 
•  Use what we know about those orderings to fix/rebuild things 

at startup. 

4/7/15 CS161 Spring 2015 14 



Which are ordering constraints? 

•  Individual data structures could be corrupted: 
•  The superblock or cylinder group headers 
•  Bitmaps could get trashed 
•  Individual inodes could be in an invalid state 

•  Inconsistencies between data structures: 
•  Directory entries that don’t point to valid files 
•  Files without directory entries 
•  Files containing disk blocks to which they have not written data. 
•  Files not containing disk blocks to which they have written data. 
•  Data blocks not attached to any file 
•  Disk blocks allocated but still in free list 
•  Disk blocks unallocated but NOT in free list 

4/7/15 CS161 Spring 2015 15 

Ordering 
constraint 



Three Approaches to Enforcing 
Ordering Constraints 

•  Synchronously write things in order. 
•  Maintain dependencies in-memory and when it’s 

necessary to write things, make sure they get written 
in order (called soft updates). 

•  Keep a log of all the things you do so that after a 
crash you can read through the log and figure out 
precisely what you have to do. 

4/7/15 CS161 Spring 2015 16 



Approach 1: Synchronous Writes 

•  Goal is to ensure that you never write a pointer to 
something that has not been properly written/initialized: 
•  Entries in directories reference valid inodes. 
•  A block cannot belong to multiple files 
•  Inodes are valid 

4/7/15 CS161 Spring 2015 17 



Approach 1: Synchronous Writes 
•  Goal is to ensure that you never write a pointer to 

something that has not been properly written/initialized: 
•  Entries in directories reference valid inodes. 
•  A block cannot belong to multiple files 
•  Inodes are valid 

•  Entries in directories reference valid inodes: 
•  On create: synchronously write inode to disk before updating 

directory entry. 
•  On delete: synchronously write the directory with the name 

removed before deallocating the inode. 
•  A block cannot belong to multiple files: 

•  On unlink/truncate: synchronously write the deallocated (or 
truncated) inode to disk before its blocks are freed. 

•  Inodes are valid: 
•  Fill in all inode fields before synchronous write (above). 

4/7/15 CS161 Spring 2015 18 



Directories, Files, and Inodes (oh my) 

4/7/15 CS161 Spring 2015 19 

Inode block Directory contents 

Delete Foo 
Create Bar 
Allocate block to Bar 

Foo, 10 

bitm
ap 

1 

0 

0 

0 

0 

1 

1 

1 

1 

Bar, 11 



Now, what happens after a crash? 

•  The behavior of the file system ensures that it’s 
possible to get to a consistent state after a crash, but 
it does not ensure that you are always in a consistent 
state. 

•  So, how do we make sure that the file system is in a 
consistent state after a crash? 

•  Well, first we have to define what consistent means… 

4/7/15 CS161 Spring 2015 20 



FFS Consistency 

•  What does consistent mean in FFS? 

4/7/15 CS161 Spring 2015 21 



FFS Consistency 

•  What does consistent mean in FFS? 
•  Superblocks and cylinder groups have accurate counts. 
•  Every directory entry references a valid inode. 
•  Every valid inode appears in a number of directory entries 

equal to its link count. 
•  Blocks allocated to valid inodes are marked inuse in bitmaps. 
•  A block belongs to only one file/directory. 
•  The first two entries in every directory are . and .. 
•  What makes an inode valid? 

•  Its length and number of blocks are consistent with the blocks allocated to 
it. 

•  All block pointers are valid in the given file system. 
•  If an inode references a directory, its size is a multiple of DIRBLKSIZ. 
•  Its inode number is correct. 

4/7/15 CS161 Spring 2015 22 



FSCK: The File System Checker 

•  The FFS fsck program fixes the following errors: 
•  Unreferenced inodes 
•  Improper link counts 
•  Missing blocks in free map 
•  Incorrect superblock counts 
•  First two entries in a directory are not . and .. 

4/7/15 CS161 Spring 2015 23 



FSCK Detail (1) 

•  FSCK analyzes the file system, reports 
inconsistencies and optionally fixes them: 
•  Read superblock (indicates number of cylinder groups, file 

system block size, etc). 
1.  Read cylinder group summary and every inode. 

a.  Verify type (directory, file, etc). 
b.  Verify size (does not exceed maximum file/directory size). 
c.  Verify that blocks in file are set correctly in bit maps. 
d.  Verify link count non zero. 
e.  Verify size and block count. 
f.  Verify fragment summary in cylinder. 

2.  Verify directory hierarchy (BFS entire directory tree) 
a.  Verify directory link counts. 
b.  Verify directories contain . and .. and have valid references. 
c.  Verify directory is appropriately sized. 

4/7/15 CS161 Spring 2015 24 



FSCK Detail (2) 

3.  Iterate over all inodes (checking for proper connectivity) 
a.  Verify that every directory we ever found has a valid parent. 

4.  Check block allocations & reference counts 
a.  Verify proper block and fragment accounting and consistency with 

bitmaps. 
b.  Verify that all the link counts are correct. 

5.  Check cylinder group meta-data 
6.  Check quotas 

4/7/15 CS161 Spring 2015 25 


