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Motivation

) Our brain consists of structurally and functionally interconnected

regions-of-interest (ROIs)

) Many literature-based studies prefer regions-of-interest (ROI) based
connectivity analysis to understand the underlying interactions

between brain regions.

) In some cases several functional sub-regions-of-interest (subROIs)
exist within one anatomically defined ROI, e.g. striatum (putamen

and caudate)
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Motivation

O Exploration of the connectivity patterns of the functional subROIs

inside striatum, could be of great importance in

0 Developing more detailed models of whole-brain connectivity

networks [1]

O understanding degenerative basal ganglia disorders such as

Parkinson’s disease, Huntington’s disease [2]

O evaluating hypotheses about healthy aging [3] and cortical-basal
ganglia circuitry in typical development [4].

[1] Biitts, science 325 (5939) (2009). [2] Barnes et al., Frontiers in systems aplace of mind

neuroscience 4 (2010).[3] Hedden et al., Nature reviews neuroscience 5 (2) (2004).
[4] Rubia et al., Human brain mapping 27 (12) (2006).
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Literature-based approaches can be roughly divided into two categories-

O Clustering based approach O Graph-theory based approach
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S Motivation

Literature-based approaches can be roughly divided into two categories-

O Clustering based approach O Graph-theory based approach

o Considers connectivity of
the ROI with other brain
regions

o Needs rigorous
preprocessing and denoising
steps to obtain spatially

continuous results.
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Motivation

Literature-based approaches can be roughly divided into two categories-

/// |

O Clustering based approach O Graph-theory based approach

o Considers connectivity within ROI
o tMRI data of spatially distant voxels

sometimes are grouped together.

o Most cases do not impose spatial
continuity , and where considered,
parameter tuning remains a

challenge
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Motivation

) To develop a data-driven graph-theoretic technique for parcellation

of functional sub-regions (subROI) from brain fMRI signals
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Functional Sub-Regions Parcellation

. . Z A simple network
) We propose a connectivity network generation nodes oy vrtices)

approach that incorporates both the inter-ROI

and intra-ROI connectivity patterns while \

edges
(or links)
N

imposing spatial continuity for subROIs

2 A community detection based approach is then
adapted to sub-divide the connectivity network

into two spatially continuous subROIs.
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Functional Sub-Regions Parcellation
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Functional Sub-Regions Parcellation
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ROI

each voxel within the ROI
is represented by a node in
a graph
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Functional Sub-Regions Parcellation
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Functional Sub-Regions Parcellation

Prior Information

fMRI » ROI
signals Connectivity Community parcellated
from Network . int

: : Detection s
brain generation subROIs
ROI

parcellation of subROIs
can be formulated as a

e C e Compiter” graph—clustermg problem UBC a place of mind
EHI: r’\L l:t‘z‘r::(ﬂ g -~
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Connectivity Network Generation

Prior Information

Connectivity Community
Network generation Detection

DLS : Dorsomedial Striatum
DMS : Dorsomedial Striatum
OF : Orbitofrontal Cortex

CG : Cingulate Gyrus

SMA : Sensorimotor Cortex Area
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~ Connectivity Network Generation

Prior Information
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%mectivity Network Generation
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Community Detection

/

Prior Information

0 Community detection method — Spatial

o . Clustering On Ratio of Eigenvectors®
onnectivity Community
Network generation Detection

) Assumes number of community, K to be

known

wa we wa (1 Outperforms other methods on

V; ¢mm) Vj S e
Connectivity between voxels ",-':_ “\
S

V]

J K' A benchmark graphs

e ROIs

Vi1V, - Can detect communities of variable sizes

Spadtial distance between

@ O Computationally efficient
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Community Detection

/ |

Prior Information

[ Calculate K leading eigenvectors of

Connectivity Community adjacency matrix, say, ni,...,nK
Network generation Detection

- Calculate Rn x (K - 1) matrix such
that R(i, k) = nk+1(1)/n1(1),

1<i<n, 1<sk<K-1

G 0 Use R for clustering by applying the

Spatial distance beiw-eenr k-means methOd.
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Results: Synthetic Dataset

Dataset Description Signal to Noise Ratio (SNR)
IA Two subROIs, no outliers SNRgqte = 6 dB
1B Two subROlIs, 100 outliers in each ROI SNRgate = 6 dB, SNR,yt1ier = -3 dB
1C Two subROlIs, 100 outliers in each ROI SNRgatqa = 6 dB, SNR,y,t15¢r = -10 dB
rx = b6im, + (1-61)l, + &
Ty = 9211, =+ (1—92)l, + €o
Tz = 93"3 + (1'—93)13 + €3
Ty = a[HAm, + (l =2 0,4)1,] + (1 — a)k,g +€a
rp = ,B[GBTL, + (1 = 03)1,] + (1 — ,6)1‘, + €B
Ly, Mg, ng, kg, mg ~ N(Ol 1)
€1,€2,€3,€4, 65 ~ N(0,0%)
01, 02, 03, 0.41 03, a, ﬂ (] U[OS, 09]
Electrical 1 [7] Kahnt et al., J.NeuroSc.2012;32(18):6240-6250. [8] Barnes et al, UBC| aplaceof mind
Engineering Front.Sys.NeuroSc.2010; 4:7-11. [9] Zhang et al.,Biomed.Sys.Proc.Contrl.2016; 27:174- w
183
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Results: Synthetic Dataset

Percentage of errors for synthetic datasets

Two subROIs
IA IB I1C

Proposed method 0% 0.32% 2.50%

k-means clustering 0%  1.50% 9.99%

Modularity detection 0% 0.002% 5.97%

bl ki i Spatially regularized regression 2.87% 3.80% 2.90%

ry = Oong + (1—05)l, + €5
rz = O3ng + (1—63)ls + €3
24 =alfams+ (1 —04)L] + (1 — a)ks + €4
xp = Blpn,+ (1 —0p)l)+ (1 —B)rs+ep . oo
b s g i o N0, E Total number of misclassified vorels
8y 89 sy syl s £ ?-)?/)O?A — -
e1, €2, €5,€4,65 ~ N(0,0%) Total number of voxels in V
01, 02,05, 04,05, @, 8 ~ U[0.5,0.9]

X 100%

Electrical and | means: Kahnt et al., J.NeuroSc.2012;32(18):6240-6250. UBCI aplaceof mind
Fneineerine  Modularity method - Barnes et al., Front.Sys.NeuroSc.2010; 4:7-11. W
Spatial regression - Zhang et al.,Biomed.Sys.Proc.Contrl.2016; 27:174-183 23



ataset

Electrical and |
Gompurter Figure : Putamen parcellation results using the proposed framework for nine healthy

Engineering
subjects. The red dots represent the dorsomedial striatum (DMS) subROI and the green
dots represent the dorsolateral striatum (DLS) subROL
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Results: fMRI Dataset
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Figure : Bar graph of DLS and DMS voxels in left-putamen region. The yellow bar

\ represents the total number of DLS voxels and green bar represents the total number of

\ DMS voxels.
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Results: MRI Dataset

Odd time points:
t=1,3,9,...

Two versions of |
fMRI

Even time points:
t=2,4,6,...
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— Results: fMRI Dataset

e To compare the clustering results we define the percentage of
similarly classified voxels as:

S S : total number of voxels that belong to the same cluster for both cases
e = — x 100% :
N N : the total number of voxels in putamen

a place of mind
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= Results: tMRI Dataset

e To compare the clustering results we define the percentage of
similarly classified voxels as:

S S : total number of voxels that belong to the same cluster for both cases
e = — x 100% )
i N : the total number of voxels in putamen

Percentage of similarly clustered voxels (€) in two downsampled fMRI datasets.

Subject | NO0O3 NO04 NO05 NO0O7 NOO8 NO1O0 NO12 NO14 NO15
Similarly clustered
voxel percentage, €

99.02% 100% 98.12% 100% 98.89% 98.45% 99.10% 99.29% 98.81%

Average € 99.08%

a place of mind
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Figure : One example of the robustness analysis. (a) Parcellation using the odd time-
points of the fMRI signals from the putamen voxels. (b) parcellation using the even
time-points of the fMRI signals from the putamen voxels. The blue dots represent the
dorsomedial striatum (DMS) subROI and the green dots represent the dorsolateral stria-
tum (DLS) subROI. The voxels that belong to different clusters in these two cases are
outlined with red color.
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Results: fMRI Dataset
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Conclusion & Future Works

/// |

* We proposed a connectivity network generation idea that takes into
account the connectivity and spatial distance between voxels in the
target ROI as well as their dissimilarity in connectivities with other

brain reference ROIs.

e A community detection algorithm based on the ratio of eigenvectors
of the associated adjacency matrix is then applied to sub-divide the

network into several functionally connected and spatially continuous

subROlIs.

a place of mind
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/ Conclusion & Future Works

e Putamen/caudate parcellation for patients with Parkinson’s disease
e Analysis of DLS/DMS ratio

» Analysis of overlapping voxels
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Thank You!
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