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Abstract—When designing changes to a software product line
(SPL), developers are faced with uncertainty about deciding
among multiple possible SPL designs. Since each SPL design
encodes a set of related products, dealing with multiple designs
means that developers must reason about sets of sets of products.
The additional degree of multiplicity is not well described by
existing product line abstractions. In this paper, we propose an
approach for dealing with design uncertainty within SPLs using
a novel composition of variability modelling with an abstraction
for capturing and managing design uncertainty. This allows
developers to accurately describe the decisions involved in making
changes to an SPL during the design stage and provides them
with a framework for SPL design space exploration by analyzing
and enforcing SPL properties.

I. INTRODUCTION

The increasing complexity of large software-intensive sys-
tem development has lead to the adoption of Software Product
Line Engineering (SPLE). SPLE aims to support developers
in managing the variability within sets of software product
variants that are similar but different [1], [2], [3]. In SPLE,
developers typically explicate variation points (a.k.a. features)
and relationships between them in a feature model. A selection
of features from this model guides the derivation of a specific
product of a Software Product Line (SPL). Within the SPLE
framework, the SPL representation is the primary development
artifact used for tasks such as automated analysis [4], config-
uration [5], transformation [6], and others [7].

SPLE allows organizations to make long-term commitments
to the maintenance of families of related products. However,
when designing changes to an SPL, engineers need to express
and reason about short-term design choices, which form a de-
sign space. Such choices are a source of design uncertainty [8]
and can result from dealing with different design alterna-
tives [9], making decisions about architecture [10], resolving
inconsistencies [11], or resolving conflicting stakeholder re-
quirements [12]. The resulting combination of variability and
design uncertainty involves reasoning about a set of possible
SPLs, each of which is, by itself, a set of software products,
as shown in Figure 1.

The space of possibilities induced by design uncertainty is
driven by goals different from those of variability manage-
ment. Variability management is concerned with supporting
different variants of software that serve multiple customers
or market segments [1]; uncertainty in design space manage-
ment is concerned with exploring and assessing alternatives
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Fig. 1: Sets of sets of products.

to ultimately make informed design decisions [13]. Design
uncertainty is an aspect of the development process itself; it
is transient and must be reduced and eventually eliminated
as knowledge is gathered and decisions are made. Thus, the
ultimate goal of resolving design uncertainty is to produce
one desired artifact. On the other hand, variability is an
aspect of the artifacts simultaneously managed through the
entire development process; it is to be preserved and carefully
engineered to represent the desired range of product variants.
Thus, product lines aim to produce and simultaneously manage
multiple desired artifacts.

Any technique for managing either variability or design
uncertainty in isolation should provide ways of encoding and
managing sets of artifacts. Therefore, techniques for represent-
ing, reasoning with and manipulating these sets naturally have
a lot in common. Yet, simply reusing variability abstractions is
not enough since the goals for creating each set are quite dif-
ferent and thus lead to distinct methodological considerations.
We focus on property-guided SPL design space exploration.
In this context, for example, a developer might want to ensure
that some property can be guaranteed to be satisfied by at least
one product of every possible product line design, or study the
effect of a design decision across all possible products in the
SPL design space. If a property is found to be violated due
to a design decision, the property can be enforced by simply
pruning the design space. If however the violation is caused
by a variation point, a more in depth investigation might be
needed to salvage a faulty (but desirable) variant.

In this paper, we look at the problem of expressing and
reasoning about design uncertainty within SPLs, and support-



ing the SPL design space exploration process. Our goal is to
understand the synergy and complementary usage of variabil-
ity and design uncertainty and to demonstrate how they can
be meaningfully leveraged together. To do this, we combine
variability abstractions with partial modelling, a technique for
managing design uncertainty within a software model [14],
[15]. A partial model explicates decision points and represents
the set of possible models that could be obtained by making
decisions and resolving design uncertainty. In turn, partial
models can be used as a primary development artifact for
tasks such as automated reasoning [15], transformation [16]
and refinement [17].

We identify the categories of properties that can be specified
and checked in SPLs with design uncertainty, as well as
strategies for resolving possible violations of these properties.
We show that property violations are better understood when
variability and design uncertainty are viewed separately. Addi-
tionally, we demonstrate that the conceptual separation allows
us to guide developers to explore the space of SPL designs
by planning appropriate responses to property violations. We
thereby highlight the difference and the synergy between SPLE
and partial modelling, and allow system development that
leverages their combination.

We make the following contributions: 1) We define Software
Product Lines with Design Choices (SPLDCs), which com-
bine SPLs with partial models, thus showing how variability
and design uncertainty can be conceptually distinguished and
modelled. 2) We introduce four categories of SPLDC prop-
erties that allow quantification over the space of designs and
variants. 3) We describe how to use SPLDCs to explore the
SPL design space using strategies for responding to SPLDC
property violations. These contributions allow us to outline
open research questions and directions for future work.

The remainder of the paper is organized as follows. We dis-
cuss related work in Section II. In Section III, we define nota-
tions for expressing SPLs and models with design uncertainly,
and demonstrate the combination of the two by presenting a
concrete example of a set of SPL alternatives. In Section IV,
we identify four categories of properties that can be defined
about SPLs with design uncertainty, and, in Section V, show
how responding to violations of these properties can be used
to guide the SPL design exploration process. We discuss the
next steps towards effectively supporting SPLDCs and outline
the main challenges in Section VI, and conclude the paper in
Section VII.

II. RELATED WORK

The research question about how to reason in the presence
of both variability and uncertainty has recently been posed
by Metzger and Pohl [18]. Our approach is a step in that
direction, focusing specifically on design-time uncertainty, i.e.,
the uncertainty encountered in the case where a designer
does not have enough information to choose from a set of
design alternatives [15]. We additionally assume (a) that the
SPL designers are aware of the relevant unresolved design

decisions, and (b) that they have elicited a set of possible SPL
designs for each decision.

The similarity between automated techniques for handling
variability and design spaces has been pointed out before. For
example, Neema et al. [19] noted that “design space modeling
is essentially creating product line model architectures”. Mjeda
et al. [20] compared SPLE with domains that deal with the
management of sets of artifacts: Multiple Criteria Decision
Analysis (MCDA), Multi-Objective Optimisation (MOO), and
Design Space Exploration (DSE). Despite the fact that they
defined DSE narrowly as a problem of identifying how to
deploy embedded software on hardware controllers, they were
able to identify correspondences in artifacts and tasks between
the different fields. This confirms our claim that design space
management and variability management share many similari-
ties; we propose to further take advantage of these similarities
to provide methodological support for design in SPLE.

Related is the problem of deciding the right binding time for
a particular variability point [21]. Bosch et al. [22] pointed out
that variability points may appear at various times during the
development of an SPL. In one extreme, binding can take place
at runtime, e.g., in the field of dynamically adaptive systems
(DASs) [23], which are often understood as dynamic product
lines [24]. In DASs, run-time decisions help the system adapt
to changes in the environment in which it operates. In the
other extreme, binding can take place at design time. The need
to model the difference between the two extremes has also
been acknowledged in the DAS community, where Ramirez
et al. [8] have identified several sources of design-time un-
certainty for DASs for which no mitigation strategy currently
exists. A conceptual distinction between product variants and
design alternatives supports more precise exploration of the
space of SPL designs (see Section V).

In published literature, the distinction between variability
and design uncertainty is rarely made, with a notable ex-
ception of the work by Lytra et al. [25], where decisions
about variability and architectural design are conceptually
differentiated and used synergistically. Lytra et al. further
discuss related work in SPL engineering to demonstrate that
the two concerns are not treated separately. The main focus
of their work is on modelling the two spaces and making
explicit their interdependencies by mapping variability choices
to architectural alternatives. Our approach is complementary,
as we aim to guide the SPL design process by analyzing the
properties of the design space and using the analysis results
to develop strategies for exploring it.

III. MODELING SPL ALTERNATIVES

In this section we review existing approaches for repre-
senting SPLs (Section III-A) and then introduce SPLDCs
(Section III-B) and their logical representation (Section III-C).

A. Modelling SPLs

Figure 2 shows an simple example product line of washing
machine controllers [26] expressed as a UML state machine.
Ignore the dashed lines for the time being. The feature model
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Fig. 2: Example washing machine controller product line with uncer-
tainty W . Decision points are shown using dashed lines.

shown at the top specifies that the basic Wash feature can
be optionally augmented with three additional features: Heat
supports heating water in case there access only to the cold
water supply, Delay allows setting a future time to start the
wash, and Dry adds the capability to also function as a dryer.
The domain model shown at the bottom is a state machine that
describes the progression of a washing cycle: after locking and
initialization, the machine waits until the water is heated or
until the specified delay time has elapsed, or skips directly
to the main washing phase; this is followed by an optional
drying phase or skips directly to unlocking and finalization.
Various elements of the domain model are annotated with
presence conditions [27] indicated in bold. These are formulas
that specify what configurations of features enable a particular
element. For example, the guard heatEnabled on the transi-
tion between states Locking and Waiting is only present in
configurations that have the Heat feature.

B. Modelling SPLs with design uncertainty

Partial models [15] allow developers to express their design
uncertainty about any element of the model, supplementing
it with a “May Formula” that captures dependencies between
the individual choices. We call the combination of SPLs and
partial models “Software Product Lines with Design Choices”
(SPLDCs). For our scenario, design uncertainty can apply to
any part of an SPL definition – a domain model, a feature
model, or presence conditions. In the example that follows,
we illustrate design uncertainty in the first two.

The washing machine SPLDC has two decision points
capturing designer uncertainty, indicated in Figure 2 using
dashed lines. The decision Mutex: Should the features Heat
and Delay be mutually exclusive? is modeled by annotating
the Excludes constraint arrow in the feature model with a

propositional variable encoding whether the arrow should be
included in the model. Answering “no” to the decision Mutex
thus corresponds to setting the propositional annotation of
Excludes to False, and thus removing it from the model.
Similarly, the decision point Guard: Should the single incom-
ing transition to the state Drying be guarded by a check that
the drum is not spinning? is modeled by annotating the guard
noSpin in the domain model. In our example, the two decision
points are independent of each other and, therefore, the May
Formula is trivially true.

Since both Mutex and Guard are binary decisions that are
mutually independent, the resulting design spaceW consists of
four possible product lines, each of which in turn represents
a set of possible products. Each product line in W can be
derived by making a set of concrete decisions about Mutex
and Guard. For example, a product line Wd1 can be derived
using the decision set d1 = {Y,N}, where Mutex is answered
Yes (i.e., the Excludes arrow is included in the feature model)
and Guard is answered No (i.e., the guard noSpin is absent
from the incoming transition of the state Dry). The product
line Wd1 can be configured to produce six individual washing
machines; moreover, neither of the three products that have
Dry have the noSpin guard.

C. Semantics of SPLDCs

Czarnecki and Pietroszek [28] showed how to encode an
SPL representation with propositional presence conditions and
the feature diagram into a propositional formula so that its
valuations correspond to the valid configurations of the product
line. Famelis et. al. [15] showed how to encode a model with
design uncertainty (i.e., a partial model) into a propositional
formula whose valuations correspond to the possible mod-
els produced by different combinations of design decisions.
Putting the two encodings together allows us to encode the
entire SPLDC into a single propositional formula Φ that
contains decision variables, feature variables and additional
variables to encode the domain model. A particular value
assignment to the decision variables identifies a product line
in the design space, and a further assignment to the feature
variables identifies a product within the product line. Formula
Φ evaluates to true only when a valid assignment to the
decision variables and feature variables is given.

For example, the following fragment of ΦWM for the wash-
ing machine example encodes the feature model along with
decision point Mutex:

. . . fWash ∧ (dMutex ⇒ (fHeat Y fDelay)) . . .

Here, fx and dy are the propositional variables corresponding
to feature variables and decision points, respectively. The
fragment encodes that Heat and Delay are mutually exclusive
when Mutex is true.

IV. PROPERTIES OF SPLS WITH DESIGN UNCERTAINTY

In this section, we aim to describe the properties of
SPLDCs. Such properties may represent product line require-
ments, engineering constraints, “what-if” scenarios, etc.



TABLE I: Categories of SPLDC-level properties and possible responses to their violations.

All Products Some Products
Necessary for product line Possible for product line Necessary for product line Possible for product line

Pn

Name CNA(R) CPA(R) CNS(R) CPS(R)

Description Property R must hold in every
product of every product line

Property R must hold in every
product of at least one product line

Property R must hold in at least one
product of every product line

Property R must hold in at least one
product of at least one product line

Formalization ∀d · ΦD ⇒
(
∀f · Φ⇒ R

)
∃d · ΦD ∧

(
∀f · Φ⇒ R

)
∀d · ΦD ⇒

(
∃f · Φ ∧R

)
∃d · ΦD ∧

(
∃f · Φ ∧R

)
Response
strategies

Reduce design uncertainty, reduce
variability, relax constraint, or

change constraint to any other type

Expand design uncertainty, reduce
variability, relax constraint, or

change constraint type to CPS(R)

Reduce design uncertainty, expand
variability, relax constraint, or

change constraint type to CPS(R)

Expand design uncertainty, expand
variability, or relax constraint

A. Product line properties

Given an SPL, we can define product-level and feature-level
properties. Feature-level properties involve reasoning about
the feature model itself, e.g., “every mandatory feature is
decomposed to optional features”. We do not consider such
properties in this paper. Product-level properties are properties
which can hold or fail in an individual product. In the washing
machine example, consider:
R1: State Unlocking must always be reachable.
R2: Action TempCheck() is called before entering Drying.

Clearly, property R1 must hold in every washing machine
variant because a washing machine that may never unlock is
unacceptable. On the other hand, assume that the manufacturer
wants to be able to market an “eco” washing machine that
smartly adjusts the drying temperature, and property R2 is
required for such a variant. Thus, our product line should
contain only some product satisfying R2.

B. SPLDC-level properties

When reasoning about SPLDCs, we would like to either
consider whether the property holds for the entire design
space, i.e., such a property is “required”, or we would like to
ensure that it is “possible” to satisfy the property in a portion
of the space because we are not yet certain whether we need
it and would like to keep our options open. For example,
the property R1 is required for all product lines, regardless
of how decision Guard is resolved. On the other hand, if
the marketing department is still undecided whether the eco
washing machine is required, the developers want to ensure
that they do not commit to a design decision that would make
property R2 impossible to satisfy.

Given a product-level property R, i.e., a property defined
on a single product, we define four categories of SPLDC-level
properties: CNA(R) (“necessary all”), CPA(R) (“possible
all”), CNS(R) (“necessary some”), and CPS(R) (“possible
some”). We summarize them in Table I. For example, since
we are certain that property R1 should hold in each product
of each product line, it is a necessary all products property,
CNA(R1), i.e., all products of all product lines must satisfy

R1. On the other hand, if marketing is still undecided if
an eco washing machine is required, we express it with a
possible some products property, CPS(R2), requiring that there
be some product lines containing an R2 product. We illustrate
the meaning of each SPLDC-level property category in the
first row of Table I, using black boxes to indicate product line
designs and individual products that satisfy the property.

C. Expressing SPLDC-level properties

Given an SPLDC whose design space is encoded as a propo-
sitional formula Φ and a product-level property expressed as
a propositional formula R, we can capture the four categories
of SPLDC-level properties in first-order logic, quantified over
decision points and features. Let d̄ be the set of propositional
decision variables, each corresponding to a decision point in
the product line with uncertainty. For the washing machine
example, we have d̄WM = {dMutex, dGuard}. Let f̄ be the
set of propositional feature variables, each corresponding
to a feature in the product line with design uncertainty.
For the washing machine example, we have f̄WM = {fWash,
fHeat, fDelay, fDry}.

The formula Φ only evaluates to true for certain com-
binations of decision and feature variables. Let ΦD be the
dependency constraint on just the decision variables that is
derived from Φ by quantifying out [29] all variables except
for decision variables. This allows us to separate quantification
over decision and feature variables. Each combination of
values assigned to the decision variables is a set of decisions
in the design space that define a single SPL design. Each
subsequent combination of feature variables defines a product
of that SPL design. In the washing machine example, we get
ΦWM

D by quantifying out the variables d̄WM from ΦWM, defined
in Section III-C. The decision points Mutex and Guard are
independent to each other, so ΦWM

D reduces to the formula true.
Each of the four categories is encoded as a quantifica-

tion first over the decision variables (i.e., individual product
lines) in the design space and then over individual products
(quantified over feature combinations). This is shown in the
Formalization row of Table I. For example, the property R2

can be expressed by saying that a state on every path to state



Drying must have an entry action TempCheck. We define
the helper propositional variable entry(x,y) that is true when
y is an entry action of a state x. Thus, we can encode
the property R2 as: R2 := entry(Locking, TempCheck) ∨
entry(Washing, TempCheck). Then, using the template for
CPS from the fourth column of Table I with d̄WM and f̄WM as
defined above, we write: CPS(R2) = ∃dMutex, dGuard · ΦWM

D ∧
(∀fWash, fHeat, fDelay, fDry · ΦWM ∧ R2).

V. RESPONDING TO PROPERTY VIOLATIONS

We can use the encoding of an SPLDC to automatically
check its properties. If this check fails, we can plan appropriate
responses. We consider the following response strategies:
(a) relaxing the product-level property, (b) changing the cate-
gory of the SPLDC-level property, (c) decreasing the degree
of design uncertainty (i.e., pruning the SPL design space),
(d) increasing the degree of design uncertainty (i.e., expanding
the SPL design space), (e) decreasing the degree of variability
(i.e., removing configuration options), and (f) increasing the
degree of variability (i.e., adding configuration options). Not
all response strategies are applicable in every scenario. We
summarize the possibilities for each SPLDC-level property in
the bottom row of Table I. We discuss and illustrate property-
related strategies in Section V-A and strategies that adjust the
degree of variability or design uncertainty in Section V-B. In
Section V-C we describe what feedback should be generated
from the verification of SPLDC properties to help users select
the appropriate strategy.

A. Adjusting the property

Relaxation of the product-level property is appropriate if
we can determine that we have expressed too strong of a
constraint. For example, we may decide that R2 should instead
be just that TempCheck() is invoked, regardless of whether
this happens prior to entering Drying. Since this is a trivial
solution, we do not discuss it further.

Changing the category of the SPLDC-level property is
reasonable if we can determine that it over-constrains the
design space. Thus, we can reconsider the purpose of the
constraint and change its category to a less restrictive one. For
example, assume we are checking CNA(R2). This constraint
is violated since when Heat is not selected, no state has
entry action TempCheck. We could relax it to CNS(R2) –
still require that all product lines have an “eco” product but
not require that all products in a product line be “eco”. This
constraint is given by:

∀dMutex, dGuard∃fWash, fHeat, fDelay, fDry · ΦWM ∧ R2

Recall that ΦWM
D reduces to true. The property CNS(R2) is

satisfied since the state Washing contains the entry action
TempCheck when feature Heat is selected, and this feature
can always be selected in a product line regardless of what
decisions are made for Mutex and Guard.

B. Adjusting variability or design uncertainty

If we are confident about the product-level property and
its SPLDC-level category, then it is appropriate to respond
to a violation by adjusting the degree of design uncertainty
and/or variability. In the case of CNA(R2), we can respond
by reducing variability, such as by changing the feature Heat
from optional to mandatory. Assume we chose this interven-
tion but also added a new constraint R3 requiring that a product
with the Delay feature should exist in every product line (i.e.,
that Delay is not a dead feature). Now CNA(R3) is violated
because if Mutex = true and Heat is always selected (due
to being mandatory), the feature Delay is always excluded.
In this case, it would be appropriate to respond by reducing
design uncertainty by making a decision about Mutex, that
the two features should not be mutually exclusive. In other
cases, instead of reducing design uncertainty or variability, the
appropriate response is to expand them. For example, consider
a constraint CPA(R4) requiring that the next state of Washing
is always Unlocking. Such a constraint inadvertently poses
a question whether Dry should exist or not (regardless of its
optionality). Thus an appropriate response is to expand design
uncertainty by annotating Dry in the feature model with a new
decision point DryExists.

C. Generating feedback

In the cases where selecting among the available response
options is difficult, it is necessary to provide developers
with more nuanced feedback. For this, we leverage the clear
separation between design uncertainty and variability and the
fact that existing reasoning techniques [15], [7] rely on the
generation of witnesses to prove or disprove properties. Thus,
when a violation is discovered, instead of a Boolean answer,
we produce a tuple 〈u, v〉, where u, v ∈ {T : “true for all”, F :
“true for none”, S: “true for some”} represent the separate
answer for design uncertainty and variability, respectively. This
allows us to focus our response. For example, the violation
of CNA(R2) produces the answer 〈F, S〉, indicating that all
product lines in the design space have some product that vio-
lates the property. Thus, we can determine that from the many
response strategies for the SPLDC-level property category
CNA in Table I, in this case we can either reduce variability or
change the constraint type to CNS . Such a precise feedback
is made possible by the separate quantification over design
uncertainty and variability.

There is a tradeoff between such nuanced feedback and cost.
Generating counterexamples for each dimension is equivalent
to existentially quantifying Φ over d and f and then checking
for satisfiability, and so is computationally expensive.

VI. TOWARDS SPLDC SUPPORT

In this section, we describe steps towards creating effective
support for working with SPLDCs, and identify the most
important challenges that are to be addressed by future work.



A. Modelling SPLDCs

The creation of SPLDCs requires tooling capabilities for ex-
pressing both variability and design uncertainty. Users should
be able to model variability using standard feature-based SPL
abstractions and methodologies as described in Section III-A,
as well as be able to model design uncertainty by identi-
fying decision points and expressing their dependencies, as
described in Section III-B.

Variability modelling can be done using any of the several
tools for modelling and managing feature-based SPLs [30].
However, to also support modelling design uncertainty, the
tools should support plugging in the necessary abstractions
and notations for design uncertainty. Two tools in particular
offer the most promise: Clafer [31] and PEoPL [32]. Clafer is a
textual lightweight structural modeling language that natively
supports variability abstractions, while also providing general-
purpose specification and reasoning capabilities. These can
be leveraged to define the infrastructure for modelling and
reasoning about SPLDCs using the formal representations of
SPLDCs and SPLDC properties in Section III and Section IV.
PEoPL is a projectional [33] integrated development envi-
ronment (IDE) for SPLE, based on the Jetbrains MPS plat-
form [34]. MPS is a language workbench that allows plugging-
in modules that define purpose specific modelling languages
and their associated analysis techniques [35]. Enabling SPLDC
support for PEoPL would therefore require the definition of
an MPS design uncertainty language module, along with the
relevant SPLDC reasoning techniques.

An alternative approach is to enhance MU-MMINT, an
Eclipse-based IDE for managing design uncertainty in soft-
ware models [36], with SPL capabilities. MU-MMINT sup-
ports the creation, analysis, refinement, and transformation of
partial models. It is based on the MMINT interactive model
management workbench [37], and thus can be extended with
any modelling language defined using the Eclipse Modelling
Framework (EMF) [38]. Therefore, adding SPLDC capabil-
ities to MU-MMINT would entail integrating MMINT with
Eclipse-based SPLE toolkits, such as FeaturePlugin [39] or
FeatureIDE [40].

In all these cases, the main challenge is the technological
integration of the different tools and the creation of intuitive
work environments that allow users to seamlessly express
design uncertainty during the course of their work.

B. Reasoning about SPLDC-level properties

In order to analyze the properties of an SPLDC, users should
be able to (a) define product-level properties, (b) use them to
create SPLDC-level properties by using the categories outlined
in Table I, (c) verify the properties of the SPLDC, and (d) get
feedback from the verification.

In this paper, we do not prescribe any single analysis tech-
nique. Users should be able to reason about any product-level
properties for which there exists an SPL analysis technique [7],
e.g., well-formedness checking [41], model checking [42],
non-functional analysis [43], etc. Therefore, we do not make
any assumptions about the language in which product-level

Fig. 3: Feedback for the check of CNA(R2) generated by Alloy.
Products violating R2 are indicated as red circles.

properties should be written since the choice of language
depends on the desired analysis. In the washing machine exam-
ple, R1 is a reachability property and thus might be expressed
in a language such as PROMELA [44]. In Section IV-C, we
argued that R2 can also be encoded structurally, and therefore
might be expressed in a language such as OCL [45]. Properties
can also be expressed and checked in more general-purpose
languages such as Alloy [46] or Clafer [31]. Given a desired
analysis technique and language, SPLDC-level properties can
be encoded using the templates in Table I.

The main challenge is in adapting the various analysis tech-
niques so that they provide separate verification feedback for
variability and design uncertainty, as described in Section V-C.
To better illustrate the required tool support for such feed-
back, we created a prototype proof-of-concept implementation
using Alloy [46]. Our prototype allows encoding the SPL
design space, checking SPLDC-level properties and generating
feedback. We used it to represent the design space of the
washing machine example. We hard-coded the evaluation of
the product-level properties R1-R4 for each product in the
space. Finally, we used the SPLDC-level property categories in
Table I to explore the washing machine SPLDC design space.

For example, Figure 3 shows the feedback generated for the
check of SPLDC-level property CNA(R2). The design space
consists of four SPL designs, each represented by a yellow
hexagon. Each SPL design is linked to its products via the
has arrows. White rectangles represent products for which
the product-level property R2 holds and red circles those for
which it does not.

Our implementation provides feedback about why the check
CNA(R2) fails by indicating the labels $NA b’ and $NA a on
the elements SPL1 and product 7, respectively. These are
automatically generated by Alloy to indicate that SPL1 and
product 7 are witnesses for the violation of CNA(R2) for
variability and design uncertainty, respectively. This is possible
because Alloy allows us to express and analyze any first-order



logical theory in a bounded scope. However, this cannot be
generalized to real SPLs where the number of features and the
number of possible variants can be very large. The challenge
is therefore to adapt SPL analysis techniques to be able to
treat design uncertainty separately. This includes finding the
right balance between expressiveness and analytical power.

C. Planning responses
Assuming that appropriate feedback can be generated for

property violations, users should be supported with guidance
for selecting among the response strategies listed in Table I.
The main challenge is in developing comprehensive method-
ological support for selecting responses to property violations.
This includes: assessing whether the category of a SPLDC-
level property is too restrictive, identifying appropriate relax-
ations for product-level properties, and providing guidance
for reasonable edits to an SPLDC to adjust the degree of
variability or design uncertainty.

For example, using the feedback generated from our proto-
type Alloy implementation for the violation of the property
CNA(R2) that is shown in Figure 3, the user can identify
that pruning the design space by removing the design SPL1

is not sufficient since the offending product (product 7)
can also be derived from the design SPL3. In fact, each
product line design contains a product that violates R2. Thus,
reducing variability (i.e., removing configuration options) is
a better way to respond to the violation. In this case, an
important challenge is to support the evolution of SPLDCs by
recommending specific edits to the feature model that ensure
that unwanted configurations are excluded. However, simply
deleting products from the SPLDC may not be acceptable, and
developers may choose to fix them instead. One challenge is
therefore to help users to assess the configurations resulting in
products that violate a property of interest. Another challenge
is to support users with recommendations about how to repair
the problematic products of the SPLDC.

Another important challenge is to provide guidance to users
in the case where the appropriate response to a property
violation is to either add configuration options (thus increasing
the degree of variability), or to expand the design space by
increasing design uncertainty. This could be accomplished by
helping users identify candidate SPL designs or products for
which small changes are required to satisfy a SPLDC property.

VII. SUMMARY

Software Product Line Engineering allows the long-term
maintenance of set of related software systems by modelling
their commonalities and variabilities. However, during the
design of changes to an SPL, developers are faced with short-
term design uncertainty about managing a design space of
possible SPL designs. Since each SPL design encodes a set
of related products, dealing with multiple designs means that
developers must reason about sets of sets of products. This
combination of variability and design uncertainty is not well
supported by existing SPL engineering techniques.

We have proposed an approach for combining SPLs with
partial models, a formalism for representing design uncer-
tainty. The resulting artifacts are called Software Product Lines

with Design Choices (SPLDCs). The integration of variability
and design uncertainty in a common formalism helps de-
velopers to conceptually differentiate between the kinds of
decisions that are relevant during the design and configuration
stages of the SPL lifecycle. This enables developers to create
better descriptions of the design space of SPLs, to reason
about its properties and to get feedback that is useful for
exploring it. We have described the various properties that
can be expressed about SPLDCs by quantifying separately
over features and decision points, resulting in four SPLDC
property categories. We have shown how to logically encode
such properties and we described what feedback should be
produced by tools supporting SPLDC analysis. Based on this
feedback, we outlined possible response strategies in the case
of property violation. These strategies provide a framework
within which to explore the design space of SPLs that is
encoded by SPLDCs.

We have outlined the next steps in developing support for
working with SPLDCs and identified the major challenges. To
effectively support the creation and management of SPLDCs,
we must augment existing SPLE tools with techniques for
design uncertainty. To realize SPLDC analysis techniques, we
must adapt SPL reasoning techniques so that they can handle
design uncertainty, while providing informative feedback to
the user. Finally, to support users in responding to property
violations, we must develop comprehensive methodological
support for choosing between response strategies and guiding
the evolution of SPLDCs.
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