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Abstract. Unifying similar model transformation rules into variability-
based ones can improve both the maintainability and the performance of
a model transformation system. Yet, manual identification and unifica-
tion of such similar rules is a tedious and error-prone task. In this paper,
we propose a novel merge-refactoring approach for automating this task.
The approach employs clone detection for identifying overlapping rule
portions and clustering for selecting groups of rules to be unified. Our in-
stantiation of the approach harnesses state-of-the-art clone detection and
clustering techniques and includes a specialized merge construction algo-
rithm. We formally prove correctness of the approach and demonstrate
its ability to produce high-quality outcomes in two real-life case-studies.

1 Introduction
Model transformation is a key enabling technology for Model-Driven Engineer-
ing, pervasive in all of its activities, including the translation, optimization, and
synchronization of models [1]. Algebraic graph transformation (AGT) is one of
the main paradigms in model transformation, allowing rules to be specified in a
high-level, declarative manner [2]. Recently, many complex transformations have
been implemented using AGT [3–5]. AGT is gaining further importance due to
its use as an analysis back-end for imperative transformation languages [6].

Transformation systems often contain rules that are substantially similar to
each other. Yet, until recently, various model transformation languages lacked
constructs suited to capture these similar rule variants in a compact manner [7].
The most frequently applied mechanism for creating variants was cloning: devel-
opers produced rules by copying and modifying existing ones. The drawbacks of
cloning are well-known, e.g., the need to update all clones when a bug is found
in one of the variants. Furthermore, creating a large set of mutually similar rules
also impairs the performance of transformation systems: each additional rule
increases the computational effort, possibly rendering the entire transformation
infeasible. Blouin et al. report that to be the case with as few as 250 rules [8].

Variability-based (VB) rules are an approach to address these issues [9]. In-
spired by product line engineering (PLE) principles [10, 11], a VB rule encodes a



set of rule variants in a single-copy representation, explicating common and vari-
able portions. In [9], we provide an algorithm for applying VB rules and show
that it outperforms the application of classical rules in terms of execution time.

The VB rules in [9] were created manually, a tedious and error-prone task
relying on the precise identification of (i) sets of rule variants, each to be unified
into a single VB rule; (ii) rule portions that should be merged versus portions
that should remain isolated. The choices made during these steps have a sub-
stantial impact on the quality of the produced rules.
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Fig. 1. Overview of RuleMerger

In this work, we present RuleMerger, a
novel approach for automating the merge-
refactoring of model transformation rules.
The approach includes a three-component
framework (see Fig. 1). It applies clone
detection [12] to identify overlapping por-
tions between rules and clustering [13] to
identify disjoint groups of similar rules.
During merge construction, common por-
tions are unified and variable ones are an-
notated to create VB rules. Each compo-
nent can be instantiated and customized
with respect to specific quality goals, e.g.,
to produce rules optimized for background
execution or easy editing. Since the frame-
work guarantees that all created rule sets
are semantically equivalent, we envision a
system that enables users to edit rules in
a convenient representation and to auto-
matically derive a highly efficient one.

The distinguishing factors of this approach, compared to merge-refactoring
approaches in the PLE domain [14–16], are its ability to detect overlapping
portions rather than pairs of similar elements and to create multiple output VB
rules rather than one single-copy representation of all rules. These factors allow
us to address the performance and maintainability issues related to cloning.
Contributions. This paper makes the following contributions: (1) It presents
a novel merge-refactoring approach for AGT-based model transformation rules.
(2) It formally proves the correctness of the approach, showing the equivalence of
the produced VB rules to their classical counterparts. (3) It instantiates the ap-
proach by providing a novel merge construction algorithm and harnessing state-
of-the-art clone detection and clustering techniques. (4) It empirically shows that
the approach allows producing VB rules being superior to their classical coun-
terparts in terms of execution time and the amount of contained redundancy.

The rest of this paper is structured as follows: Sec. 2 introduces a running
example. In Sec. 3, we fix preliminaries. In Sec. 4, we outline the approach and
argue for its correctness. Sec. 5 reports on our instantiation of RuleMerger. Sec. 6
presents our evaluation. In Sec. 7 and 8, we discuss related work and conclude.
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Fig. 2. Original transformation rules.

2 Running example
Consider a set of model transformation rules aimed at improving the structure of
an existing code base by using refactoring [17]. Fig. 2 shows six refactoring rules
expressed in an abstract syntax notation [2]. The rules describe several simple
ways of relocating a method between different classes. We present the rules in an
integrated form, with the left- and right-hand sides of the transformation being
represented in one graph. The left-hand side of a rule comprises all delete and
preserve objects. The right-hand side contains all preserve and create objects.

Rule A takes as input two classes, one of them sub-classing the other, and a
method. Each of these input objects is specified by its name. The rule moves the
method from a sub-class to its super-class, by deleting it from the sub-class and
adding it to the super-class. Similarly, rule B moves a method from the super-
class to one of its sub-classes. Rule C also moves a method from the super- to a
sub-class, but, in addition, creates an abstract method with the same name in
the super-class. Rules D, E and F move a method across an association. The
latter two rules also create a “wrapper” method of the same name in the source
class. Rule F uses an annotation to mark this “wrapper” method as deprecated.

Such rule sets are often created by cloning, that is, copying a seed rule and
modifying it to fit the new purpose. We consider the merge-refactoring of a rule
set created using cloning. The result is a rule set with variability-based (VB) rules
in which the common portions are unified and the differences are explicated, as
shown in Fig. 3. Specifically, rules B and C are merged, producing a new VB
rule B+C. Rules D, E, and F are merged into D+E+F. Rule A remains as is.
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Fig. 3. Variability-based rules.

Each VB rule has a set of variation
points, corresponding to the names
of the original rules: Rule B+C has
the variation points B and C. In
addition, each rule has a variability
model specifying relations between
variation points, such as their mu-
tual exclusion: B+C has the vari-
ability model xor(B,C). VB rules
are configured by binding each vari-
ation point to either true or false.
Portions of VB rules are annotated
with presence conditions. These por-
tions are removed if the presence
condition evaluates to false for the
given configuration. Element #32
and its incoming edge, both anno-
tated with C, are removed in the
configuration {C=false, B=true}.
These VB rules offer several benefits
w.r.t. maintainability: The amount
of redundancy is reduced, ensuring
consistency between variants during
changes; bugs are fixed in one place.
The total number of rules is smaller.

In this example, the user selects and configures one of theses rule at a time, to
derive one specific rule variant – a process similar to that in PLE approaches [11].
In an alternative use-case, all rules of a rule set may be applied simultaneously.
Configurations can then be determined automatically by the transformation en-
gine [9], leading to considerable performance savings: The application sites or
matches for the common portions are identified first and used as starting points
for matching the variable portions. Such cases are demonstrated in Sec. 6.

3 Preliminaries: Variability-based model transformation
We now give preliminaries, starting with simple transformation rules.

Definition 1 (Rule) A rule r = L
le←− I

ri−→ R consists of graphs L, I and R,
called left-hand side, interface graph and right-hand side, respectively, and two
injective graph morphisms, le and ri. A rule is connected iff, treating all edges
as undirected, ∀G ∈ {L,R} there is a path between each pair of nodes in G.

The rules in Fig. 2 follow this definition. Elements of I are annotated with the
action preserve, elements of L \ le(I) and R \ ri(I) with delete and create.

Given a rule, a subrule encapsulates a subset of its actions on a substructure.
To identify actions on substructures of one rule, we talk about subrule embed-
dings. For clone detection, the subrule relation must capture common actions on
common patterns in different rules – we then talk about subrule morphisms.



Definition 2 (Subrule morphism) Given a pair of rules r0 = (L0
le0←− I0

ri0−→
R0) and r1 = (L1

le1←− I1
ri1−→ R1) with injective mappings lei, rii for i ∈ {0, 1},

a subrule mapping s : r0 → r1, s = (sL, sI , sR) consists of injective mappings
sL : L0 → L1, sI : I0 → I1, and sR : R0 → R1 such that in the diagram in
Fig. 4 (1) and (2) commute. In addition, the intersection of sL(L0) and le1(I1)
in L1 as well as the intersection of sR(R0) and ri1(I1) in R1 is isomorphic to I0.
Moreover, L1 − (sL(L0)− sL(le0(I0))) is a valid graph.
Subrule mapping s is called a subrule embedding if all of its morphisms sL,
sI , and sR are inclusions. Given two subrule embeddings s : r0 → r1 and s′ :
r′0 → r′1, we have that s ⊆ s′ if there are subrule embeddings t0 : r0 → r′0 and
t1 : r1 → r′1 with s′ ◦ t0 = t1 ◦ s.

The conditions prefaced with “in addition“ ensure that a subrule always performs
the same actions on related elements as the original rule and that the larger
pattern of the original rule does not prevent a subrule to be applied.

L0 I0 R0

L1 I1 R1

r0 =

r1 =

le0 ri0

le1 ri1

sL sI sRs (1) (2)

Fig. 4. Subrule morphism.

For example, in Fig. 2, B is a subrule
of B+C since B can be injectively mapped
to B+C. The actions on the original and
mapped elements are always the same.

We capture variability in rule sets by
propositional expressions over a fixed set
of independent variation points, calling
these expressions variability conditions.

Definition 3 (Language of variability conditions) Given a set of atomic
terms V , called variation points, LV is the set of all propositional expressions
over V , called variability conditions. A variability configuration is a total func-
tion cfg : V → {true, false}. cfg satisfies a variability condition vc if vc evaluates
to true when each variation point vp in vc is substituted by cfg(vp). A variability
condition is valid if there is a variability configuration satisfying it. Given two
variability conditions X and Y , X is stronger than Y iff X =⇒ Y .

For example, in the rule D+E+F in Fig. 2, V = {D,E, F}. True, E, and
E∨F are valid variability conditions; E∧¬E is not valid. A possible configuration
might bind the variation points D to false, E to true and F to false, which would
satisfy the variability condition E ∨ F .

In a VB rule, variability is formalized by means of subrule embeddings, each
describing a single variant. The intersection of subrule embeddings is the part
of the rule where all variants overlap, i.e., the base rule. Each subrule has a
variability condition determining when this variant shall be active. Moreover, the
entire rule has a variability model. The base rule does not have any annotations.

Definition 4 (Variability-based rule) Given LV , a VB rule r̂ = (r, S, v, pc)
consists of a rule r, a set S of subrule embeddings to r, a variability condition v,
called variability model, and a function pc : S∪{idr} → LV . Function pc defines
presence conditions for subrules s.t. pc(idr) is true and ∀s ⊆ s′ : pc(s′) =⇒
pc(s). The base rule is determined by the intersection of all subrule embeddings.



Rule D+E+F in Fig. 3 is a compact representation of a VB rule over variation
pointsD, E, and F with various subrule embeddings such as {sE , sE∨F , sD∧E , ...}.
The base rule comprises all elements with the presence condition true: i.e., ob-
jects without annotations such as #33–36, and their relations. Elements #37 and
#38 have non-true presence conditions and are therefore not present in all sub-
rule embeddings. To ensure equivalence to the original three rules, the variability
model v specifies mutual exclusion between variation points: v = xor(vD, vE , vF ).

To show the correctness of our approach, we consider the flattening of a VB
rule – an operation for generating the individual “flat” rules it represents.

Definition 5 (Flattening of a VB rule) Let a VB rule r̂ = (r, S, v, pc) over
LV be given. For each variability condition c in LV , the following holds: if c∧ v
is valid, Sc ⊆ S is a set of subrule embeddings iff ∀s ∈ S : s ∈ Sc if c =⇒ pc(s).
Merging all subrule embeddings in Sc by first computing the intersections of all
pairs of embeddings and merging them along these interfaces afterwards, yields
a subrule embedding rc → r. rc is the flat rule for condition c. Flat(r̂) is the set
of all flattened rules: {rc | c ∈ LV ∧ (c ∧ v) is valid}.

For example, consider just the rule D+E+F in Fig. 3. c ∧ v becomes valid if
xor(cfg(vD), cfg(vE), cfg(vF )) is true. Hence, Flat(D+E+F) = {D,E,F}. In [9], it
is shown that the application of a VB rule is equal to the application of flattened
rules. This result is key to argue for the correctness of RuleMerger.

4 Framework
Given a rule set with similar rules, RuleMerger, outlined in Fig. 1, aims to find an
efficient representation of these rules using a set of variability-based (VB) rules.
At its core is a framework of three components called clone detection, clustering
and merge construction. We specify the input and output of each component and
show correctness of RuleMerger based on these specifications. Each component
may be instantiated in various ways, as long as its specification is implemented.

4.1 Clone Detection

Clone detection allows identifying overlapping portions between the input rules.
We use clone detection as a prerequisite for both clustering and merge con-
struction: Rules with a large overlap are clustered together. Merging overlap-
ping portions rather than individual elements allows us to preserve the essential
structural information expressed in the rules. Moreover, the execution perfor-
mance of the created VB rules can be considerably improved by restricting clone
detection to connected portions: Connected patterns can be matched much more
efficiently than multiple independent patterns [18].

Formally, given a set of rules, a clone is a largest subrule that can be embed-
ded into a subset of this rule set. To account for the optional restriction of clone
detection to connected portions, we analogously define connected clones based
on largest connected subrules. To establish a well-defined merge construction,
we define a compatibility relation, ensuring that two clones never assign the same
object contained in one rule to diverging objects contained in another one.



Definition 6 (Clone group) Given a set R = {ri|i ∈ I} of rules, a (con-
nected) clone group CGR = (rc, C) over R consists of a (connected) rule rc,
called clone, and set C = {ci|i ∈ I} of subrule mappings ci : rc → ri iff there is
no set C′ = {c′i|i ∈ I} of subrule mappings c′i : r

′
c → ri with a subrule mapping

i : rc → r′c where r′c is a (connected) rule.
Given a clone group CGR and a subset R′ ⊆ R, CGR is reduced to R′,

written Red(CGR,R′) = (rc, C′), by C′ = C \{cj |rj 6∈ R′}. Clone groups CGR =
(rc, {ck|k ∈ K}) and CGR′ = (r′c, {c′l|l ∈ L}) with R ⊆ R and K ⊂ L are
compatible if there is a subrule mapping in : rc → r′c with ∀k ∈ K : ck = c′k ◦ in.

Name Rules Size

CG1 {E, F} 10
CG2 {D, E, F} 8
CG3 {C, E, F} 7
CG4 {B, C} 6
CG5 {A, B, C, 5

D, E, F}

Table 1. Clone groups, as
reported by clone detection.

Table 1 shows the result of applying clone de-
tection to rules shown in Fig. 2. Each row denotes
a clone group, comprising a set of rules and a clone
present in each of these rules. Clones are indicated
by their size, calculated as the total number of in-
volved nodes and edges. The rows are ordered by the
size of the clone. In particular, CG2 represents ob-
jects #15-18, #20-23 and their interrelations. CG1
incorporates objects #19 and #25 and their incom-
ing relationships in addition. Clone groups CG1 and
CG2 are compatible: The clone of CG2 extends the
one of CG1. CG2 can be reduced to rule set {E,F}
by discarding the embedding into ruleD. CG2 and CG3 are not compatible: their
rule sets are not in subset relation. Each clone group in Table 1 is connected.

The output of clone detection is a set of clone groups – in the example, all
rows of Table 1. These clone groups may be pair-wise incompatible.

4.2 Clustering

As a prerequisite for merge construction, we introduce clustering, an operation
that splits a rule set into a cluster partition based on similarity between rules.
Its input are a set of rules and a set of clone groups over these rules.

Definition 7 (Cluster) Given a set R of rules and a set CG of clone groups
over R, a cluster Cl over R is a set of clone groups CGR′ ⊂ CG over each
subset R′ ⊆ R. Given a partition P of R, a cluster partition is a set Par(Cl)P
of clusters over Cl where for each P ∈ P there is a cluster ClP ∈ Par(Cl)P
comprising clone groups Red(CGR′ , P ) and CGP ′ ⊆ CGP over subsets P ′ of P .
Each cluster ClP ∈ Par(Cl)P is called a sub-cluster of Cl.

In the example, there is a cluster partition over the rule set with sub-clusters
over {A}, {B, C}, and {D, E, F}. We consider the sub-cluster over {D, E, F}:
The clone groups over this set are obtained by reducing the mappings of {CG2,
CG5} to rules D, E and F, i.e., discarding all mappings not referring to either
rule. To obtain the clone groups over subset {E, F}, we include CG1 and CG3
as well and reduce the mappings of {CG1, CG2, CG3, CG5} to E and F.

The output of clustering is one clustering partition over the rule set. Given
multiple possible partitions, the instantiation of clustering has to choose one.



4.3 Merge Construction

Merge construction takes a cluster partition over the entire rule set as input. Each
sub-cluster becomes a VB rule in the output. The available information on over-
lapping, given by clone groups, is considered to merge corresponding elements.
Merging requires that the clone groups over each sub-cluster are compatible. In-
compatible clone groups have to be discarded before merging, a non-trivial task
requiring a strategy to determine what to discard. The instantiation in Sec. 5
provides such a strategy. To maintain traceability between original and new rules,
we define a variation point for each original rule. The variability model is set
over the variation points, specifying that exactly one of them is valid at a time.

Definition 8 (Cluster merge) Given a cluster partition Par(Cl)P over a clus-
ter Cl over R, each sub-cluster ClP ∈ Par(Cl)P is merged to a variability-based
rule r̂ = (r, S, v, pc) by merging all rules in P = {rj |j ∈ J} over compatible clone
groups in ClP . The result is a rule r. S = {si : ri → r} consists of all result-
ing subrule embeddings. Variation points V are determined by the rules in P :
V = {vj |j ∈ J}. Moreover, v = Xorj∈J(vj) and pc(sj) = vj. We use the notation
Merge(ClP ) to indicate r̂ and Merge(Cl) = {Merge(ClP )|ClP ∈ Par(Cl)P}.

Rules are merged over compatible clone groups by gluing those rule elements
that are in relation via subrule mappings. This relation is extended to an equiv-
alence relation, so in particular, the transitive closure is considered as well. All
elements not in the relation are merged in disjointly.

In the example, considering all clone groups identified for the sub-cluster over
{D, E, F}, CG1–2 are compatible; since we consider the reduction to {D, E, F}
they are incompatible to CG3 and CG5. Merging the sub-cluster based on clone
groups CG1–2 yields a VB rule isomorphic to D+E+F in Fig. 3. The variability
model v is set to xor(cfg(vD), cfg(vE), cfg(vF )). In the compact representation of
VB rules shown in Fig. 3, the presence condition of an element is the disjunction
of all variation points whose corresponding subrules contain the element.

As a key well-definedness result, we obtain that merging a rule set and then
flattening it produces the original set. We provide a proof in [19].

Theorem 1 (Correctness of rule merger) For any cluster Cl over a set R
of flat rules, we have Flat(Merge(Cl)) = R.

Note that the opposite operation, first flattening a VB rule set and then
merging the resulting flat rules, may not yield the same VB rule set: In general,
there are several VB rules with the same flattening. In fact, Theorem 1 ensures
that all VB rule sets created by instantiations of RuleMerger have the same
flattening, i.e., they are semantically equivalent.

5 Instantiating RuleMerger

We now present our instantiation of the RuleMerger framework based on state-
of-the-art clone detection and clustering algorithms and a new merge construc-
tion algorithm. We describe two input parameters enabling customizations with
respect to specific quality goals. For implementation details, see [19].



Clone Detection. We considered the applicability of three techniques for
clone detection, each of them allowing to identify connected clones as per Def. 6.
First, we applied gSpan, a general-purpose graph pattern mining tool [20]. Us-
ing this tool, we experienced heap overflows even on small rule sets. Second, we
re-implemented eScan [21], which terminated with insufficient memory errors
for larger rule sets. While our implementation could be flawed, [22] reports on
a similar experience with their re-implementation of eScan. Finally, we applied
ConQAT [22], a heuristic technique which delivers fast performance at the ex-
pense of precision. It was able to analyze rule sets of 5000 elements in less than
10 seconds while reporting a large portion of relevant clones. We used ConQAT
in our experiments on realistic rule sets.

We provide a customization to increase the speed-up produced by the con-
structed rules: The performance-critical task in rule application, matching, con-
siders just the rule left-hand sides. Consequently, performance is optimized when
rules are merged based on their overlap in left-hand sides. To this end, a Boolean
parameter restrictToLhs allows to restrict the rule portions considered by clone
detection. When set to true, it only finds and reports clones for left-hand sides.

Clustering. From a large variety of approaches to cluster a set of objects
based on their similarity [13], we chose AverageLinkage, a hierarchical agglom-
erative method, due to its convenient application to our approach. It assumes a
distance function – a measure of similarity between the clustered elements. We
consider the similarity of rule pairs, defining it as the size of the rules’ largest
common clone divided by their average size. In the example, similarity of rules E
and F is calculated based on CG1, evaluating to 10

11 = 0.91. It further assumes a
customizable cutting-level threshold parameter that we describe in what follows.

Rule A

Rule B

Rule C

Rule D

Rule E

Rule F

Fig. 5. Cluster dendogram, as
reported by clustering.

The method builds a cluster hierarchy, often
visualized using a dendogram – a tree diagram ar-
ranging the input elements, as shown in Fig. 5.
Tree nodes describe proximity between rule sets.
The “lower” in the tree two nodes are connected,
the more similar are their corresponding rules. For
example, rule D is similar to E and F, but the sim-
ilarity is not as strong as that between just E and
F. The clustering result is obtained by “cutting” using the cutting-level threshold,
marked by a vertical bar in Fig. 5, and collecting the obtained subtrees.

Merge Construction. We propose a custom algorithm for merge construc-
tion. It proceeds in two steps: determining what is to be merged and how to do
the merging. The first step, called merge computation, takes as input the clus-
ter partition created by clustering (see Def. 7). To ensure a well-defined merge,
merge computation refines the given cluster partition by discarding incompatible
clone groups (Def. 6), retaining sub-clusters for which a set of compatible clone
groups is available. To this end, we apply a greedy strategy that aims to capture
a high degree of overlap. Each sub-cluster becomes a MergeRule in the output
of merge computation, a MergeSpecification. The second step, merge refac-
toring, creates VB rules according to this MergeSpecification as per Def. 8.



Fig. 6. MergeSpecification metamodel.

Fig. 6 specifies a metamodel for the
interface between merge computation and
merge refactoring. MergeSpecification,
corresponding to the overall rule set, acts
as an overarching container for a set of
MergeRules. One MergeRule identifies a
sub-cluster that is to be merged into a
VB rule. In order to preserve the graphical
layout of the contained rules, one rule is
stated as masterRule; this rule is used as
a starting point in creating the VB rule.
To retain as much layout information as
possible, it is best to select the largest in-
put rule as the masterRule. A MergeRule
specifies all elements to be unified in the created VB rule. For each element in
the resulting rule, a MergeRuleElement is defined, referring to the elements to
be represented by it. In a consistent specification, each rule element is referred
to by exactly one MergeRuleElement.

1: function ComputeMerge(cl : Cluster[ ])
2: var mergeSpecification = ∅
3: for each c ← cl do
4: var cg = c.cloneGroups
5: while cg 6= ∅ do . Create a new sub-cluster
6: var top = findTopClonegroup(cg)
7: var mergeRule = createMergeRule(top)
8: var considered = {top}
9: while hasCompatible(considered, cg) do

10: var comp = findTopCompatible(cg)
11: var temp = createMergeRule(comp)
12: Integrate(mergeRule, temp)
13: considered.add(comp)
14: end while
15: mergeSpecification.rules.add(mergeRule)
16: cg.removeMappings(mergeRule.rules)
17: cg.removeAllEmpty
18: cg.removeAll(considered)
19: end while . Done with current sub-cluster
20: end for
21: return mergeSpecification
22: end function

Fig. 7. Merge computation.

Fig. 7 sketches the
merge computation al-
gorithm. The output
MergeSpecification is
created in line 2 and
incrementally filled by
considering each clus-
ter. In each iteration of
the loop starting in line
5, a new sub-cluster is
constructed. We apply
a greedy strategy to in-
tegrate as many com-
patible clone groups as
possible, starting with
the top – the largest
available – clone group
in lines 6-8 and in-
crementally adding the
next largest compatible
ones in 9-14. For each
clone group, we tem-
porarily create a new
MergeRule, integrating its contents with the result MergeRule in line 12. When
no more compatible clone groups are found, we add the MergeRule to the result
and discard mappings that concern its rules from the remaining clone groups,
from which we remove all empty and already considered clone groups, in lines
15-18. We repeat this process until no clone groups are left to consider.



In the example, considering cluster {D, E, F} containing clone groups CG1,
CG2, CG3, and CG5, the largest one CG1 is chosen as top group in line 6. In
line 7, a MergeRule is created based on CG1, specifying the merge of the in-
volved rules E and F. One MergeRuleElement is created for each pair of clone
elements and for each non-clone element, e.g., one for {#15, #20} and one for
{#24}. In lines 9-14, CG2 is identified as the next largest compatible clone. Its
temporary merge rule, specifying the merge of rules D, E and F, is created.
The two merge rules are integrated by establishing that each rule element finally
belongs to exactly one MergeRuleElement, which involves the deletion of redun-
dant MergeRuleElements. Then, as no compatible clone groups can be found,
the MergeRule comprising the information of CG1 and CG2 is added to the re-
sulting MergeSpecification. In lines 17–18, the mappings of CG3 and CG5 for
D, E and F are removed, leaving them empty and leading to their discarding.

Based on a given MergeSpecification, the merge refactoring procedure fol-
lows Def. 8 (see [19] for a detailed description): non-master-rule elements are
moved to the master rule; non-master rules are deleted; a variability model is
set for the master rule; and a presence condition is set for each contained element.

6 Evaluation
We focus on two research questions: RQ1: How well does RuleMerger achieve
its goal of creating high-quality rule sets? RQ2: What is the impact of design
decisions made by RuleMerger on the quality of the created rules?

To answer these questions, we applied our instantiation of RuleMerger on
rule sets from two real-life model transformation scenarios, called Ocl2Ngc
and FmRecog, and one adapted from literature, called Comb. The main quality
goal in these scenarios is performance: Ocl2Ngc and Comb were considered as
benchmarks in [9] and [23]; FmRecog is an automatically derived rule set used in
the context of model differencing [24], a task that necessitates low latency. Thus,
we optimized the two input parameters described in Sec. 5 for performance. We
describe the rule sets and associated test input models in [19].

We assess the quality of the produced rules with respect to performance and
reduction in redundancy. To quantify performance, we applied the rule sets on
all input models and measured cumulative execution time on all input models.
We repeated each experiment ten times to account for variance. To quantify
redundancy reduction, we measured the relative decrease in the number of rule
elements, based on the rationale that we produce semantically equivalent, yet
syntactically compacted rules (Theorem 1). As discussed in Sec. 2, reducing
redundancy in rules is related to benefits for their maintainability.

6.1 Methods and Set-Up

To address RQ1, we investigated three subquestions: RQ1.1: How do VB rules
created by RuleMerger compare to the equivalent classical rules? RQ1.2: How
do VB rules created by RuleMerger compare to those created manually? RQ1.3:
How do the VB rules created by RuleMerger scale to large input models? For
RQ1.1, we considered all three rule sets. For RQ1.2, we considered the scenario



where a manually created rule set was available: Ocl2Ngc [9]. For RQ1.3, we
considered the Comb scenario, as it features a procedure to increase the input
model automatically (increasing the size of the input grid [23]); we measured the
impact of model size on execution time until we ran out of memory.

To address RQ2, we investigated two questions: RQ2.1 What is the impact
of clone detection? RQ2.2 What is the impact of clustering? For RQ2.1, we ran-
domly discarded 25%–100% of the reported clone groups. For RQ2.2, we replaced
the default clustering strategy by one that assigns rules to clusters randomly.
We measured the execution time of the rules created using the modified input.

As clone detection techniques, we applied ConQat [22] on Ocl2Ngc and Fm-
Recog, as it was the only tool scaling to these scenarios. We applied gSpan [20]
on the Comb rule set as it allowed us to consider all clones instead of an approxi-
mation. The input parameters were optimized independently for each scenario by
applying the technique repeatedly until the execution time was minimized. More-
over, the Henshin transformation engine features an optimization concerning the
order of nodes considered during matching. To avoid biasing the performance
of the FmRecog rule set by that optimization, we deactivated it. We ran all
experiments on a Windows 7 workstation (3.40 GHz processor; 8 GB of RAM).

6.2 Results and Discussion

Table 2 shows the size and performance characteristics for all involved rule sets.
Execution time is provided in terms of the total and median amount of time
required to apply the whole rule set on each test model, each of them paired
with the standard deviation (SD). The number of elements refers to edges and
nodes, including both left-hand and right-hand side of the involved rules.

RQ1.1 The execution time observed for Ocl2Ngc after the RuleMerger
treatment showed a decrease by the factor of 158. This substantial speed-up can
be partly explained by the merging component of RuleMerger that eliminates
the anti-pattern Left-hand side not connected (LhsNC) [18]: In the automatically
constructed VB rules, connected rules are used as base rules, while in the clas-
sic rules, we found multiple instances of LhsNC. In the FmRecog and Comb
rule sets, the speed-up was less drastic, amounting to the factors of 4.5 and 5.8,
respectively. When applying the Comb rule set on the SeveralMatches sce-

Size Execution time (sec.)

Scenario Rule Set #Rules #Elements Total Sd Median Sd

Ocl2Ngc Classic 36 3045 916.6 96.3 46.0 7.1
Manual Merge 10 1018 181.8 27.1 10.8 2.4
RuleMerger 12 2147 5.8 0.4 0.4 0.1

FmRecog Classic 53 4626 799.9 41.4 63.2 3.5
RuleMerger 12 2790 211.4 46.0 15.9 0.3

Comb Classic 6 252 1.39 0.09 0.12 0.01
NoMatch RuleMerger 1 62 0.24 0.09 0.02 0.01

Comb Classic 6 252 10.4 0.18 0.83 0.02
SeveralMatches RuleMerger 1 62 14.2 0.26 1.07 0.05

Table 2. Results for RQ1.1 and RQ1.2: Quality characteristics of the rule sets.



nario, which involves an artificial input model with many possible matches [23],
execution time increased by the factor 1.36, showing a limitation of VB rules: If
the number of base matches is very high, the initialization overhead for extending
the base matches outweighs the initial savings. This overhead may be reduced
by extending the transformation engine implementation. The amount of redun-
dancy was reduced by 29% in Ocl2Ngc, 40% in FmRecog, and 75% in Comb.

RQ1.2 In Ocl2Ngc, we found a speed-up by the factor of 36. To study this
observation further, we inspected the manually created rules, again finding sev-
eral instances of the LhsNC antipattern. This observation gives rise to an inter-
esting interpretation of the manual merging process: While the designer’s explicit
goal was to optimize the rule set for performance, they implicitly performed the
more intuitive task of optimizing for compactness. Indeed, the amount of re-
duced redundancy in the manually created rules (67%) was significantly greater
than in those created by RuleMerger (29%), highlighting an inherent trade-off
between performance- and compactness-oriented merging: Not including overlap
elements into the base rule leads to duplications in the variable portions.

Classic rules

VB rules created

by RuleMerger

Fig. 8. Results for RQ1.3: Ex-
ecution time in sec. (y) related
to length of grid (x).

RQ1.3 As shown in Fig. 8, the last supported
input model was a 480x480 grid for both rule sets.
We observed that the ratio between the execution
time of applying the classic (dark-gray bars) and
the VB rules (light-gray bars) stayed the same in
each iteration, independent of the size of the input
grid: The VB rules were always faster by the fac-
tor of 6. In terms of the total execution time, the
speed-up provided by the VB rules became more
important as the size of input models increased.

RQ2.1 As presented in Table 3, the execution
time for the FmRecog rule set increased mono-
tonically when we increased the amount of dis-
carded overlap, denoted as d. Ocl2Ngc behaved
almost monotonically as well. The slightly decreased execution time reported
for d=0.25 can be explained by the heuristic merge construction strategy. While
the merge of rules based on their largest clones might be adequate in general,
in some cases it may be preferable to discard a large clone in favor of a more
homogeneous distribution of rules. The reported execution time for d=0.75 was
higher than that for the set of classic rules. In this particular case, small clones
were used during merging, leading to small base rules, which resulted in many
detectable matches and thus in a high initialization overhead for extending these
matches. To mitigate this issue, one could define a lower threshold for clone size.

RQ2.2 As indicated in Table 4, the employed clustering strategy had a sig-
nificant impact on performance, amounting to factors of 13.7 for the Ocl2Ngc
and 3.7 for the FmRegoc rule set. Interestingly, in Ocl2Ngc, random cluster-
ing still yielded better execution times than manual clustering did (see Table 2)
– this is related to the fact that RuleMerger removed the LhsNC antipattern.
In FmRecog, randomly clustered rules were comparable to the classic ones.



d: Discarded portion

Scenario 0.0 0.25 0.5 0.75 1.0

Ocl2Ngc 5.8 5.6 251 981 917
FmRecog 211 252 604 690 800

Table 3. Results for RQ2.1: Impact of con-
sidered overlap on execution time (sec.).

Clustering strategy

Scenario AvLinkage Random

Ocl2Ngc 5.8 80
FmRecog 211 788

Table 4. Results for RQ2.2: Impact of clus-
tering strategy on execution time (sec.).

6.3 Threats to validity and limitations

Factors affecting external validity include our choice of rule sets, test models
and matching strategy, and the capability to optimize the two input parameters.
While the considered rule sets represent three heterogeneous use cases, exam-
ples to show that our approach scales to more diverse and larger scenarios are
required. To ensure that our test models were realistic, we employed the original
test or benchmark models. The performance of rule application depends on the
chosen matching strategy, in our case, mapping this task to a constraint satisfac-
tion problem [25]. We aim to consider the effect of other strategies in the future.
Parameter tuning requires the existence of realistic test models. If a rule set is
designed for productive use, it is reasonable to assume such models to exist.

With regard to construct validity, we focus on one aspect of maintainability,
the amount of redundancy. Giving a definitive answer on how to unify rules for
their optimal maintainability is outside the scope of this work. Specifically, sev-
eral unrelated rules may be unified, impairing understandability. To mitigate this
issue, we recommend to inspect the clustering result before merging. Further-
more, our approach increases the size of individual rules, a potential impediment
to readability [26]. We believe that this limitation can be mitigated by tool sup-
port. Inspired by related approaches to address the readability issues associated
with #ifdef directives [27, 28], we aim to provide editable views, representing
portions of a VB rule that correspond to user-selected configurations.

7 Related Work
Our work is related to a number of approaches that create feature-annotated rep-
resentations of products lines. In [29], an approach to merge statecharts based
on structural and behavioral commonalities is applied to models of telecommu-
nication features. In [16], an approach for merging and identifying variability in
Matlab product variants is proposed. In [14, 30], a formal merge framework is
defined and instantiated for class models and state machines. It is studied how
a number of desired qualities of the resulting model can be obtained. In [31, 32],
a technique for the reverse engineering of variability from block diagrams based
on their data-flow structures is introduced. In [15], a language-independent ap-
proach for the reverse-engineering of product lines is proposed. These approaches
operate on the basis of an element-wise comparison using names and as well as
structural and behavioral similarities. In model transformation rules, the essen-
tial information lies in isomorphic structural patterns. To our knowledge, our
approach is the first that utilizes clone detection to identify such patterns.



Our work can be considered a performance optimization for the NP-complete
problem of transformation rule matching [33]. Earlier approaches in this area are
mostly complementary to ours as they focus on the matching of single rules [34–
37]. Mészáros et al. [38] first explored the idea of considering overlapping portions
in multiple rules. Their custom technique for detecting these sub-patterns, how-
ever, did not scale up to complete rule sets. Instead, they considered just two
rules at once, enabling a moderate performance improvement of 11%. In our
approach, applying clone detection and clustering techniques gives rise to an in-
creased speed-up. In, [39] shared sub-patterns are considered dynamically during
incremental pattern matching to mitigate the memory issue of Rete networks.
Yet, the authors report on deteriorated execution times: The index tables map-
ping sub-patterns to partial matches grow so large that performance is impaired.
Multi-query optimization has also been investigated for relational databases [40].
In graph databases, only single-query optimization has been considered [41].

The maintainability effects of cloning have been studied intensively [42, 14].
In an empirical study, Kim et al. [43] identified three types of clones: short-lived
clones vanishing over the course of few revisions, “unfactorable” clones related
to language limitations, and repeatedly changing clones where a refactoring is
recommended. We second the idea that an aggressive refactoring style directed
at short-lived clones should be avoided. Instead, targeting clones of the two
latter categories, we propose to apply our approach to stable revisions of the
rule set. Specifically, clones that were previously “unfactorable” due to the lack
of suitable reuse concepts may benefit from the introduction of VB rules. An
approach complementary to clone refactoring is clone management, based on a
tool that detects and updates clones automatically [44]. This approach has a
low initial cost, but requires constant monitoring. Further works propose the
refactoring of transformation rules towards pre-defined patterns [45], modular
interfaces [46], and abstract metamodels [47]. None of these considers clones.

8 Conclusion and Future Outlook

In this work, we introduced an approach for constructing variability-based (VB)
model transformation rules automatically. Our experiments showed that the ap-
proach is effective: The created rules always had preferable quality characteristics
when compared to classical rules, unless the number of expected matches was
very high. It is apparent that using the approach, the performance of model
transformation systems as well as redundancy-related maintainability concerns
can be considerably improved, making the benefits of VB rules available while
imposing little manual effort.

In the future, we aim to provide tool support to address the readability issue
brought by the increased amount of information in each rule. Moreover, we plan
to increase the expressiveness of VB rules. Covering all important transformation
features such as application conditions and amalgamation will make VB rules
applicable to the existing variety of model transformation languages [48–50].
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