
Predicting Merge Conflicts in Collaborative
Software Development

Moein Owhadi-Kareshk
University of Alberta, AB, Canada

owhadika@ualberta.ca

Sarah Nadi
University of Alberta, AB, Canada

nadi@ualberta.ca

Julia Rubin
University of British Columbia, BC, Canada

mjulia@ece.ubc.ca

Abstract—Background. During collaborative software develop-
ment, developers often use branches to add features or fix bugs.
When merging changes from two branches, conflicts may occur
if the changes are inconsistent. Developers need to resolve these
conflicts before completing the merge, which is an error-prone
and time-consuming process. Early detection of merge conflicts,
which warns developers about resolving conflicts before they
become large and complicated, is among the ways of dealing with
this problem. Existing techniques do this by continuously pulling
and merging all combinations of branches in the background
to notify developers as soon as a conflict occurs, which is
a computationally expensive process. One potential way for
reducing this cost is to use a machine-learning based conflict
predictor that filters out the merge scenarios that are not likely
to have conflicts, i.e. safe merge scenarios.

Aims. In this paper, we assess if conflict prediction is feasible.
Method. We design a classifier for predicting merge conflicts,

based on 9 light-weight Git feature sets. To evaluate our predictor,
we perform a large-scale study on 267, 657 merge scenarios from
744 GitHub repositories in seven programming languages.

Results. Our results show that we achieve high f1-scores,
varying from 0.95 to 0.97 for different programming languages,
when predicting safe merge scenarios. The f1-score is between
0.57 and 0.68 for the conflicting merge scenarios.

Conclusions. Predicting merge conflicts is feasible in practice,
especially in the context of predicting safe merge scenarios as a
pre-filtering step for speculative merging.

Index Terms—Conflict Prediction, Git, Software Merging

I. INTRODUCTION

Modern software systems are commonly built by a large,
distributed teams of developers. Thus, improving the collab-
orative software development experience is important. Dis-
tributed Version Control Systems (VCSs), such as Git, and
social coding platforms, such as GitHub, have made such
collaborative software development easier. However, despite
its advantages, collaborative software development also gives
rise to several issues [1], [2], including merging and integration
problems [3], [4].

When two developers change the same part of the code
simultaneously, Git cannot decide which change to choose and
reports textual conflicts. In this situation, the developers need
to resolve the conflict manually, which is an error-prone and
time-consuming task that wastes resources [5], [6].

Given the cost of merge conflicts and integration problems,
many research efforts have advocated earlier resolution of

conflicts [5], [7], [8]. Previous work has shown that lack of
awareness of changes being done by other developers can
cause conflicts [9], and since infrequent merging can decrease
awareness, it increases the chance of conflicts. To address
that, proactive merge-conflict detection warns developers about
possible conflicts before they actually attempt to merge, i.e.,
before they try to push their changes or pull new changes. With
proactive conflict detection, developers get warned early about
conflicts so they can resolve them soon instead of waiting till
later when they get large and complicated.

In the literature, proactive conflict detection is typically
based on speculative merging [8], [10]–[12], where all com-
binations of available branches are pulled and merged in the
background. While a single textual merge operation is cheap,
constantly pulling and merging a large number of branch
combinations can quickly get prohibitively expensive. One
opportunity we foresee for decreasing this cost is to avoid
performing speculative merging on safe merge scenarios that
are unlikely to have conflicts. To accomplish this, we can
leverage machine learning techniques to design a classifier for
predicting merge conflicts. The question is whether such a
classifier works well in practice.

To the best of our knowledge, there have been two attempts
at predicting merge conflicts in the past [13], [14]. The first
study [13] looked for correlations between various features
and merge conflicts and found that none of the features have a
strong correlation with merge conflicts. The authors concluded
that merge conflict prediction may not be possible. However,
we argue that lacking correlation does not necessarily preclude
a successful classifier, especially since the study did not con-
sider the fact that the frequency of conflicts is low in practice
and most of the standard form of statistics and machine
learning techniques cannot handle imbalanced data well. The
second study [14] investigates the relationship between two
types of code changes, edits to the same method and edits to
dependent methods, and merge conflicts. The authors report
recall of 82.67% and precision of 57.99% based on counting
how often a merge scenario that had the given change was
conflicting. This means that this second study does not build
a prediction model that is trained on one set of data and
evaluated on unseen merge scenarios.

Since neither of the above work built a prediction model
that is suitable for imbalanced data and has been tested on
unseen data, it is still not clear if predicting merge conflicts978-1-7281-2968-6/19/$31.00 c©2019 IEEE

is feasible in practice, especially while using features that
are not computationally expensive to extract. In this paper,
we investigate if merge conflicts can be predicted using Git
features, i.e. information that can be inexpensively extracted
via Git commands. Specifically, we focus on the following two
research questions:

• RQ1: Which characteristics of merge scenarios have more
impact on conflicts?

• RQ2: Are merge conflicts predictable using only git
features?

To answer these questions, we study 744 well-engineered
repositories that are listed in the reaper dataset [15], and
that are written in 7 different programming languages (C,
C++, C#, Java, PHP, Python, and Ruby). We collect 267, 657
merge scenarios from these repositories and design a separate
classifier for the repositories in each programming language.
To design our classifiers, we use a total of nine feature
sets that can be extracted solely through Git commands. We
intentionally use only features that can be extracted from
version control history so that our prediction process can
be efficient (e.g., as opposed to features that may require
code analysis). Furthermore, we use Decision Tree [16] and
ensemble machine learning techniques, specifically Random
Forest [17], to take into account the specific characteristics of
merge data, such as being imbalanced, in our classifiers. To the
best of our knowledge, this work presents the largest merge-
conflict prediction study to date. We have almost 13 times the
number of merge scenarios used by recent work [13], and our
work is the first that is evaluated with repositories written in
several programming languages. We publish all our code and
evaluation data in an online artifact page [18].

Despite confirming the lack of significant correlation found
by previous work [13], our prediction results show that lack
of strong correlation does not necessarily mean that a machine
learning classifier would perform poorly. Our results show that
a Random Forest classifier using all our feature sets predicts
conflicting merge scenarios with a precision of 0.48 to 0.63
and a recall from 0.68 to 0.83 across the different program-
ming languages. These numbers show that the predictors are
capable of identifying conflicting merge scenarios, but that
their performance may not be that reliable in practice. On
the other hand, our results show that the same classifiers can
identify safe merges (i.e., those without a conflict) extremely
well: a precision of 0.97 to 0.98, and recall between 0.93 to
0.96 across the different programming languages. The above
results mean that while the classifiers may not be able to
precisely predict conflicts, they can predict non-conflicting
scenarios with high accuracy. This is good news for speculative
merging, because when the predictor marks a merge scenario
as safe, speculative merging can confidently avoid performing
the merge in the background for this scenario. This reduces
the number of merges that need to be done in the background,
which reduces some of the computational costs involved.

To summarize, the contributions of this paper are:

• We perform the largest merge-conflict prediction study to

date, using 267, 657 merge scenarios extracted from 744
GitHub well-engineered repositories written in different
programming languages.

• We create a set of potential predictive features for merge
conflicts based on the literature on software merging.

• We apply systematic statistical machine learning strate-
gies for handling the imbalance in software merging data.

• We design effective machine learning classifiers for tex-
tual conflicts in seven programming languages. Our clas-
sifiers can be used as a pre-filtering step in the context
of speculative merging.

II. RELATED WORK

In this section, we discuss the previous software merging
literature that is most related to our work. We first explain
different merging techniques and then describe the work that
applies and analyzes these techniques in practice. Finally, we
discuss proactive conflict detection, since it can potentially
benefit from effective merge-conflict predictors.

A. Merging Methods

We first provide a brief summary of existing merging
techniques. For a more comprehensive classification, we refer
the reader to the Mens’ survey on software merging [19].

Git is one of the most popular VCSs [20], and GitHub
is a social coding platform that hosts git-based projects.
Git uses line-based unstructured merging, triggered through
git merge, which is the most basic and popular merging
technique [21] [22]. Git is an unstructured merging tool that is
language-independent and can be employed for merging large
repositories containing a variety of text files such as code,
documentation, configuration, etc. In other words, it does not
consider the structure of the code (or any underlying tracked
file); when the same text in a file has been simultaneously
edited, Git reports a textual conflict.

On the other hand, structured merge tools [23] [24], e.g.,
FSTMerge [25], leverage information about the underlying
code structure through analyzing the corresponding Abstract
Syntax Tree (AST). Since differencing a complete AST is
expensive, semi-structured merge tools, such as JDime [26],
improve performance by producing a partial AST that expands
only until the method level, with complete method bodies in
the leaves. Structured merge is then used for the main nodes
of the tree, while unstructured merge is used for the method
bodies in the leaves.

In this paper, we focus on textual conflicts as reported
by Git, since these are the most common types of conflicts
developers face in their typical work flow. Note that when
describing our work after Section II, we often use the only
the term conflict for brevity.

B. Empirical Studies on Software Merging

Previous studies compared the above merge techniques in
practice in terms of speed, quality of resolutions, and the
complexity of reported conflicts. For example, Cavalcanti et
al. [27] focused on unstructured and semi-structured merge

tools and found that using semi-structured merge significantly
reduces the number of conflicts. The authors also found that
the output of semi-structured merge is easier to understand and
resolve. In a follow-up work, Accioly et al. [4] investigated
the structure of code changes that lead to conflicts with
semi-structured tools. The study showed that in most of the
conflicting merge scenarios, more than two developers are
involved. Moreover, this study showed that code cloning can
be a root cause of conflicts. While semi-structured merge is
faster than structured merge and more precise than unstruc-
tured merge, it is still not used in software industry due to
the effort that is needed in order to support new programming
languages. A recent large-scale empirical study by Ghiotto
et al. [28] also investigated various characteristics of textual
merge conflicts, such as their size and resolution types. The
results suggests that since merge conflicts vary greatly in terms
of their complexity and resolutions, having an automatic tool
that can resolve all types of conflicts is likely not feasible.

One approach for reducing the resolution time is selecting
the right developer to perform the merging based on their
previous performance and changes [29]. Other work looked
at specific types of changes that may affect merge conflicts.
For example, Dig et al. [30] introduced a refactoring-aware
merging technique that can resolve conflicts in the presence
of refactorings. A recent study also shows that 22% of the
analyzed Git conflicts involved refactoring operations in the
conflicting code [31].

C. Proactive Conflict Detection

There are several approaches to increase the awareness of
developers by detecting conflicts early. Awareness of changes
other team members may be making is a key factor in team
productivity and reduces the number of conflicts [9]. Syde [32]
is a tool for increasing awareness through sharing the code
changes present in other developers’ workspaces. Similarly,
Palantir [5] visually illustrates code changes and helps de-
velopers avoid conflicts by making them aware of changes
in private workspaces. Crystal [7] is a visual tool that uses
speculative analysis to help developers detect, manage, and
prevent various types of conflicts. Cassandra [12] is another
tool to minimize conflicts by optimizing task scheduling,
with the goal of minimizing simultaneous edits to the same
files. MergeHelper [33] helps developers find the root cause
of merge conflicts by providing them with the historic edit
operations that affected a given class member.

Guimarães et al. [8] propose to continuously merge, com-
pile, and test committed and uncommitted changes to detect
conflicts as early as possible. However, such an approach is
likely expensive given the large number of combinations of
branches and developer changes in large projects.

Accioly et al. [14] investigate whether the occurrence of
events such as edits to the same method and edits to directly
dependent methods can be used to predict conflicts. However,
they do not actually build a prediction model. Instead, they
count the number of times each of the above features exists
when a conflict occurs versus when the merge is successful.

Based on such counts, their results show a precision of 57.99%
and a recall of 82.67%.

Leßenich et al. [13] investigate the correlation between var-
ious code and Git features and the likelihood of conflicts. To
create a list of features they investigated, they first surveyed 41
developers. The developers mentioned seven features that can
potentially cause conflicts. However, after analyzing 21,488
merge scenarios in 163 Java repositories, the authors could not
find a correlation between these features and the likelihood of
conflicts. We speculate that one reason for not capturing such
relationships is using stepwise-regression which may not be
an effective model for non-linear data, such as that collected
from merge scenarios.

In this paper, we investigate merge-conflict prediction by
creating a list of nine feature sets that can potentially impact
conflicts. Our list is based on previous work in the areas of
software merging and code review [5], [9], [13], [34], [35]. Our
work is different from all the above in that we use statistical
machine learning to create a classifier, for each programming
language, that can predict conflicts in unseen merge scenarios.

III. BUILDING A MERGE-CONFLICT CLASSIFIER

Given a merge scenario based on two branches, our goal
is to predict whether a merge conflict will occur. In this
section, we describe how we prepare the data that is needed
for predicting merge conflicts, as well as how we train a
classifier. Figure 1 shows an overview of our methodology,
which consists of three stages, as follows:

1) Collecting Merge Scenarios (Section III-A) As a first
step, we need to collect merge scenarios. We do so by
mining the Git history of the target repositories.

2) Feature Extraction (Section III-B): In the second stage,
we extract the features that we will later use to build
the prediction model. Using the Git history, we extract
features from both branches being merged.

3) Prediction (Section III-C): In the last stage, we use
statistical machine learning techniques to build a predic-
tion model. Specifically, we use a binary classifier that
aims to separate conflicting and safe merge scenarios.
Since conflicts happen in only a few numbers of merge
scenarios, the classifier should be capable of handling
imbalanced data.

A. Collecting Merge Scenarios

In order to train a classifier, we need a large set of labeled
merge scenarios. Fortunately, merge scenarios can be identified
from a repository’s Git history. However, unfortunately, not all
information about a merge scenario (e.g., whether there was a
conflict or not) is available in Git’s data. Therefore, to identify
merge scenarios and determine whether the merge resulted in
a conflict, we use a replaying method where we re-perform
the merge at that point of history and record the outcome.

The input for this stage is a list of Git repositories to
be analyzed. After cloning all repositories, we use MER-
GANSER, an open-source toolchain we developed for ex-
tracting merge-scenario data [36], to analyze their histories.

Prediction
Section	III-C

	Collecting	Merge	Scenarios
Section	III-A

Local
Servers

Ancestor

Parent	#2

Parent	#1

Merged
Code

...

...

Feature	Extraction
Section	III-B

Merge	Scenarios

Git	Repositories

Git metadata Features

Features

Real-valued	Vector

Predictor

Classifier

Conflict Not	Conflict

Fig. 1. Methodology for Creating the Proposed Conflict Predictor

MERGANSER considers only 3-way merge scenarios and
ignores n-way merges, which are called octopus merges in
Git. In 3-way merge scenarios, the Merge Commit has two
parents (Parent #1 and Parent #2) and these parents have
a Common Ancestor. MERGANSER, thus, identifies target
merge scenarios by looking for commits with two parents. It
then replays all identified 3-way merge scenarios by checking
out Parent #1 and then using the git merge command
to merge Parent #2’s changes. We use Git merge’s default
options, which uses the recursive merge strategy [37]. To
detect conflicts after replaying, our toolchain searches for the
phrase Automatic merge failed; fix conflicts
and then commit the result in the output of the
git merge command. In our experiments, we use open-
source GitHub repositories described in Section IV.

B. Feature Extraction

To train a classifier, we need to extract potentially predictive
features from merge scenarios. Our goal is to use features
whose extraction is computationally inexpensive such that the
prediction can be used in practice. We identify these features
by surveying the literature on merge conflicts and related areas,
such as code evolution or software maintenance.

In Table I, we categorize the identified features into 9 feature
sets, along with the intuition behind them, as well as any
relevant related work that previously used this feature set
or a variation of it. The last column in the table shows the
dimension of each feature set (i.e., the number of individual
values, each corresponding to a feature, used as input to the
model) for the prediction task. The dimension of some of these
feature sets is one, which means that they are just a scalar
value. Some other feature sets have a dimension greater than
one in order to represent all the needed information; such
feature sets would be represented as a vector. For example,
feature set #4 is inspired from previous merging and code
review studies [34], [35] and indicates code churn. We include
this feature set since more code changes may increase the
chance of conflicts. It needs 5 values to represent number of
added, deleted, modified, copied, and renamed files. Feature
sets #4, #5, #7, and #8 are vectors with size 5, 2, 12, and 4,
respectively, and the other feature sets are scalars. In the end,
each merge scenario is represented by a total of 28 features.
We do not rely on language-specific features; all of our feature
sets are language-agnostic.

The feature sets shown in Table I are on different granularity
levels. Feature set #1, No. of simultaneously changed files, is
a merge-level feature set, which means that this feature set is
extracted once for a given merge scenario. All the other feature
sets are branch-level, which means that these feature sets are
extracted from each branch separately. Each feature set should
have a single value for each merge scenario. This means that
we need to combine the two values of branch-level feature
sets somehow. Since the choice of the combination operator
may impact the performance of the classifier, we empirically
determine the best combination operator to use, as we describe
in Section IV.

For all the feature sets listed in the table, we use the git
log command, with different parameters depending on the
feature set, to extract their values. Our artifact page contains
the exact git log commands we use.

C. Prediction

The aim of the prediction phase is to train a binary classifier
that is capable of predicting whether a merge scenario is safe
or conflicting after learning from the development history of a
different set of merge scenarios. Merge conflict data gathered
from Git history is highly imbalanced; specifically, the number
of merge scenarios without conflicts is much higher than merge
scenarios with conflicts. Imbalanced data prevents the standard
variation of most classification methods from working well
for the minor class (i.e., the class with fewer data points).
There are several techniques in the field of machine learning
that have been designed to overcome this problem [38],
including data resampling, tree-based models, an ensemble
learning approach, or alternative cost functions, Resampling
methods, such as Synthetic Minority Over-sampling Technique
(SMOTE) [39], are computationally expensive which is why
we opt for ensemble learning techniques that combine mul-
tiple simpler classification models, allowing them to handle

TABLE I
FEATURE SETS USED FOR TRAINING THE MERGE CONFLICT PREDICTOR

No. Feature Set References Intuition for Including this Feature Set Dimension
1 No. of simultaneously changed files in two branches [5], [13] The increase in simultaneously changed files increases

the chance of conflicts. If the value of this feature is
zero, no conflict can occur.

1

2 No. of commits between the ancestor and the last
commit in a branch

[13], [34], [35] Having more commits means more changes in a
branch, which may increase conflicts

1

3 Commit density: No. of commits in the last week of
development of a branch

[13] Lots of recent activity may increase the chance of
conflicting changes

1

4 No. added, deleted, renamed, modified, and copied
files in a branch

[13], [34], [35] More code changes may increase the chance of con-
flicts

5

5 No. added and deleted lines in a branch [13], [35] More code changes may increase the chance of con-
flicts

2

6 No. of active developers in a branch [9], [34], [35] Having more developers increases the chances of get-
ting inconsistent changes

1

7 The frequency of predefined keywords in the commit
messages in a branch. We use 12 key-words: fix,
bug, feature, improve, document, refactor, update, add,
remove, use, delete, and change.

[35] These keywords can provide a high-level overview of
the types of code changes and their purpose. Certain
types of changes may be more prone to conflicts.

12

8 The minimum, maximum, average, and median length
of commit messages in the branch

[35] The length of a commit message can be an indicator
of its quality

4

9 Duration of the developement of the branch in hours [9] The longer a branch exists for, the more likely it is
for inconsistent changes to happen in one of the other
branches

1

Total number of features: 28

imbalanced data. Specifically, we use Random Forest, which
is an ensemble tree-based classification method. We train a
separate classifier for each programming language.

IV. DATA COLLECTION PROCESS

The first step for applying our methodology from Section III
is to choose the target repositories to be analyzed. Since the
selected data may greatly impact our results, we dedicate this
section to describe the data collection process in detail. We
then present the specific methods used to answer each RQ in
Sections V and VI.

We focus on open-source repositories in this work. We, thus,
need to ensure that the selected repositories are of high quality
and reflect real-world development practices. As a proxy for
quality, we look for well-engineered repositories (i.e., real-
world engineered software projects [15]) that are also popular.
Specifically, we use the following criteria:

• Popularity: Intuitively, more active and useful reposito-
ries attract more attention, reflected in the number of
stars, issues, forks, etc. Similar to previous studies [4],
[14], we use the number of stars as a filtering criterion.

• Quality: Even though the number of stars represents
some measure of quality, not all popular repositories
are suitable for our study. For instance, there are a
number of repositories that only consist of code examples
and interview questions that are highly starred but are
not suitable for studying merge conflicts since they do
not represent a collaborative effort to build a software
system. Hence, we apply further quality measures for our
repository selection. We use reaper [15] to detect well-
engineered software repositories and avoid analyzing per-
sonal or toy repositories. Reaper uses various repository
characteristics such as community support, continuous in-
tegration, documentation, history, issues, license, and unit

testing to classify well-engineered software repositories
using a random forest classier. We use reaper’s released
dataset [40] (downloaded on September 15, 2018) and
select all repositories in that list that have been classified
as well-engineered repositories.

• Programming Language: We choose all seven program-
ming languages that the reaper dataset supports: C, C++,
C#, Java, PHP, Python, and Ruby.

Considering the three criteria mentioned above, we sort the
well-engineered repositories in each programming language
separately based on the number of stars. We then select the
top 150 repositories from each language, for a total of 1, 050
repositories as the initial list. For practical limitations with
respect to computational resources for replaying thousands
of merge scenarios from that many repositories, we only
consider repositories whose size is less than 1 GB and focus
on the latest 1, 000 merge scenarios in each repository. We
focus on active repositories and therefore eliminate any moved
or archived repositories from that initial list. Moreover, to
avoid analyzing the same merge scenario multiple times, we
only analyze the main repositories and eliminate the forked
versions. After these eliminations, we are left with a total of
744 repositories that we use for our study. The list of the
selected repositories we use in our experiments is available
on our artifact page.

After choosing the target repositories, we analyze their latest
1, 000 merge scenarios. We collect 267, 657 merge scenarios in
total. Figure 2 illustrates the distribution of merge scenarios for
repositories in different programming languages. While most
of the Java repositories have less than 200 merge scenarios,
the distribution of merges in languages such as C++, PHP, and
Python is close to uniform. It means that in these programming
languages, we can see the repositories with a different number
of merges, from zero to 1, 000 (our pre-defined threshold)

C C# C++ Java PHP Python Ruby
Programming Languages

0

200

400

600

800

1000
No

. M
er

ge
 S

ce
na

rio
s

Fig. 2. The Distribution of Merge Scenarios

with relatively the same chance. In Figure 3, we show the
distribution of conflicting merge scenarios in the same way.
While the range of the conflicting merge scenarios is different
across the languages, maximum of 150 in C to more than 400
in Java, the shape of their distribution is the same and the
median is less than 50.

We show the number of repositories, merge scenarios,
conflicting merge scenarios, and the conflict rate of each
programming language in detail in Table II. Out of 267, 657
scenarios, 21, 734 have at least one conflict in their textual
files, such as code files or documentation files. In our data,
the conflict rate across the different programming languages is
8.12%. In such imbalanced data, we need to select and train the
proper prediction models to make sure that our classifiers can
perform well for correctly predicting both safe and conflicting
merge scenarios.

V. RQ1: WHICH CHARACTERISTICS OF MERGE SCENARIOS
HAVE MORE IMPACT ON CONFLICTS?

In RQ1, we are interested in identifying which feature sets
are more important for predicting conflicts. We first describe
the analysis methods we use, given the data collected in
Section IV and then present the results.

A. Method

To answer RQ1, we analyze the 9 feature sets in Table I to
see which of them are more important. We analyze importance
in two ways. (1) We calculate Spearman’s rank-order corre-
lation [41], which is a non-parametric measure, between the
feature sets and the existence of conflicts. This is the same
correlation method used in previous work to determine the
effectiveness of various features for predicting conflicts [13].
(2) We use decision trees to analyze the importance of each
feature set, since the results of decision trees are easier to
interpret than other classifiers. A decision tree aims to find a
single feature set in each level based on which it can classify
the data in the most optimized way. For feature sets that
have more than one feature, we calculate the average of the
importance of their individual features.

C C# C++ Java PHP Python Ruby
Programming Languages

0

50

100

150

200

250

300

350

400

No
. C

on
fli

ct
in

g
M

er
ge

 S
ce

na
rio

s

Fig. 3. The Distribution of Conflicting Merge Scenarios

B. Results

1) Correlation-based analysis: We first analyze the Spear-
man’s rank-order correlation between the feature sets and
merge conflicts, as shown in Table III. We calculate the
correlation and the corresponding p-value for each feature
set separately. The p-values of Feature Sets #7 to #9, for all
languages, are greater than 0.05 showing that there is no signif-
icant correlation between the conflicts and these feature sets.
Following previous work [13] and statistics guidelines [42],
we consider correlation coefficients >= 0.6 as strong (and
highlight them in the table), 0.4 − 0.59 as medium, and
0.2− 0.39 as weak. We only consider statistically significant
correlations whose p-value < 0.05.

The first feature set has the highest correlation, between
0.52 to 0.60, for the different programming languages. How-
ever, this correlation is strong only in the case of Java and PHP.
Given that the higher the number of simultaneously edited
files, the higher the chances of conflicts, the high correlation
matches our intuition. The second feature set, which is the
number of commits that happened in each branch since they
diverged, has a weak correlation but this correlation is also
much higher than the remaining feature sets. This means
that there are only two feature sets that have at least a
weak correlation with merge conflicts. The other features are
have extremely low correlation coefficients (< 0.2) or are
insignificant (p-value >= 0.05).

While we do not use the same exact features from the
previous work by Leßenich et al. [13], we can confirm their
findings in terms of lacking correlation between Git features
of merge scenarios and conflicts. This gives us confidence
that the lack of correlations we find for most features is
correct. However, we argue that this lack of correlation does
not necessarily mean merge conflicts are not predictable, as
we show later in the results of RQ2.

Although we report the correlation and importance of fea-
ture sets for different programming languages separately, it
is important to note that we do not expect to see significant
differences between the feature sets in different programming

TABLE II
DESCRIPTIVE STATISTICS OF OUR DATASSET

Programming Languages # Repositories # Merges # Conflicting Merges Conflict Rate (%)
C 80 18,824 1,308 6.95
C++ 109 42,420 3,621 8.54
C# 110 38,945 3,153 8.1
Java 120 36,853 2,190 5.94
PHP 112 50,342 4,737 9.41
Python 106 49,583 5,533 11.16
Ruby 106 40,690 3,192 7.84
Sum 744 267,657 21,734 -
Weighted Average - - - 8.12

languages since our feature sets are language-agnostic. Our
results in Table III confirm that.

2) Decision-tree based analysis: As a different way of
measuring feature importance, we use decision trees to deter-
mine the importance of our feature set for predicting conflicts
in each programming language. The results are shown in
Table IV, where the feature importance is a value between
0 and 1. Again, we find that the number of simultaneously
changed files (Feature Set #1) is the most important feature
by far. The high impact of the number of simultaneously
changed files can be intuitively explained since more in-
parallel changes increase the likelihood of conflicts, and the
chance of conflicts is zero if there are no simultaneously
changed files. The number of commits (Feature Set #2), edited
files (Feature Set #4), and active developers (Feature Set #6)
are also slightly more important than the other ones. However,
apart from Feature Set #1, all features seem to have very
low importance for the classifier. Similar to the correlation-
based analysis, we find that the importance of feature sets is
relatively similar for all programming languages.

Our results suggest that commit message information (Fea-
ture Sets #7 and #8) is not important for detecting con-
flicts. Since commit messages contain information about the
evolution of a repository (e.g., indications of types of code
changes), we intuitively thought that they may have an impact
on conflicts. However, the feature sets related to commit
messages we currently extract are intentionally lightweight to
keep execution time low. It is, therefore, hard to conclude
if commit messages are indeed altogether useless in this
context or if different types of feature sets (e.g., taking word
embedding of the commit messages into account) may lead to
more meaningful relationships. This finding is important since
unlike the other numerical features, analyzing the commit
messages is computationally expensive due to text processing.

The No. of simultaneously changed files is the most im-
portant feature for predicting merge conflicts. The No. of
commits in each branch shows a weak correlation, but a
much lower importance level by the decision tree. Remaining
feature sets show low correlation coefficients and importance.

VI. RQ2: ARE MERGE CONFLICTS PREDICTABLE USING
ONLY GIT FEATURES?

In RQ2, our goal is to determine if merge conflicts can be
predicted using our selected feature sets. We first describe the
classifiers we compare and then present our results.

A. Method

We compare the performance of the decision tree and
random forest classifiers we built using all 9 collected feature
sets. Additionally, we also create two baselines to compare our
results against. The following summarizes the four classifiers
we compare.

• Decision Tree: A Decision Tree classifier is one of the
simplest options for a binary classification task that is
also robust to imbalanced data. We train a decision tree
with all of our 9 feature sets. Note that this is the same
classifier used to determine importance in RQ1.

• Random Forest: To investigate if a more sophisticated
classifier can make more use of the available features,
we use Random Forest.

• Baseline #1: The first baseline we compare to is a
“dummy” classifier that randomly labels the data. If the
data was balanced, the f1-score of both classes would be
around 0.5, i.e. random guess. However, since the data is
not balanced, the f1-score of this classifier would be the
same as the imbalance rate in the data for the conflicting
class, i.e., 0.0812, and would be 0.9188 for the safe class.
We expect that any other predictor should be better than
this basic baseline in order to be useful in practice.

• Baseline #2: Recall that in the results of RQ1 (Sec-
tion V-B), we found that Feature Set #1, which is the
number of simultaneously changed files in two branches,
is the most important feature for the decision tree classi-
fier. Therefore, as our second baseline, we use a decision
tree classifier that uses only Feature Set #1 from Table I.
The goal of this baseline is to have a low-cost classifier
that relies only on the most important feature. That way,
we can determine if having the other features improves
things, or is simply an added cost with no benefit.
a) Hyper-parameters: The main hyper-parameters of de-

cision trees and random forests classifiers are (1) the minimum
samples in leaves, (2) the minimum sample split, (3) the max-
imum depth, and (4) the total number of estimators (just for

TABLE III
SPEARMAN’S RANK-ORDER CORRELATION COEFFICIENTS (CC) AND THE CORRESPONDING P -VALUES (P) BETWEEN EACH FEATURE SET AND THE

EXISTENCE OF CONFLICTS, SEPARATED BY LANGUAGE. THE CORRELATIONS THAT ARE EQUAL OR GREATER THAN 0.6 WITH P -VALUES (P) LESS THAN
0.05 ARE HIGHLIGHTED.

Feature
Set

C C++ C# Java PHP Python Ruby
CC p CC p CC p CC p CC p CC p CC p

1 0.53 0.0 0.58 0.0 0.52 0.0 0.60 0.0 0.60 0.0 0.53 0.0 0.58 0.0
2 0.30 0.0 0.33 0.0 0.28 0.0 0.33 0.0 0.35 0.0 0.29 0.0 0.32 0.0
3 -0.17 0.0 -0.17 0.0 -0.07 0.0 -0.14 0.0 -0.19 0.0 -0.08 0.0 -0.01 0.0
4 -0.15 0.0 -0.14 0.0 -0.07 0.0 -0.13 0.0 -0.18 0.0 -0.08 0.0 -0.01 0.0
5 -0.14 0.0 -0.13 0.0 -0.07 0.0 -0.14 0.0 -0.19 0.0 -0.08 0.0 -0.10 0.0
6 -0.02 0.01 0.02 0.0 0.03 0.0 0.03 0.0 0.05 0.0 0.0 0.89 0.01 0.21
7 0.01 0.13 0.0 0.95 0.01 0.25 0.0 0.57 0.01 0.22 0.0 0.58 0.01 0.22
8 0.0 0.69 0.0 0.98 0.01 0.32 0.01 0.25 0.0 0.75 0.01 0.24 0.0 0.75
9 0.0 0.98 0.0 0.99 0.0 0.55 0.0 0.76 0.0 0.67 0.01 0.11 0.0 0.65

TABLE IV
FEATURE IMPORTANCE BASED ON A DECISION TREE CLASSIFIER

Feature Set C C++ C# Java PHP Python Ruby
1 0.93 0.98 0.95 0.93 0.95 0.94 0.94
2 0.01 0.01 0.0 0.02 0.01 0.01 0.01
3 0.01 0.0 0.01 0.01 0.0 0.01 0.0
4 0.01 0.0 0.01 0.02 0.01 0.01 0.01
5 0.01 0.0 0.01 0.01 0.01 0.01 0.0
6 0.01 0.01 0.01 0.01 0.01 0.02 0.02
7 0.01 0.0 0.01 0.0 0.01 0.01 0.01
8 0.01 0.0 0.01 0.01 0.01 0.0 0.01
9 0.01 0.0 0.0 0.01 0.0 0.0 0.01

random forest). Determining the proper value for the number
of estimators is important since a low number of weak clas-
sifiers may result in underfitting, while an unnecessarily high
number may result in overfitting. The other hyper-parameters
also balance the complexity of the models. Due to the im-
portance of these hyper-parameters, we use grid-search with
10-fold cross-validation to find the right hyper-parameters to
use. The candidate values for each of these hyper-parameters
are selected based on the typical values explored for this
size of data. We use {2, 5, 10, 20, 35, 50} as the choices for
the minimum samples in leaves, {2, 3, 5, 10, 20, 35, 50, 75}
for minimum sample split, {1, 3, 5, 7, 11} for the maximum
depth, and {1, 3, 10, 50, 75, 100, 200, 300} as the choices for
the number of estimators. Our results show that the best hyper-
parameter values for the minimum samples in leaves is 10, for
minimum sample split is 5, for the maximum depth is 7, and
for the number of estimators is 75.

b) Combination operators: Recall from Section III that
since some of our feature sets are extracted for each branch,
we need to use a combination operator to combine them into a
single value for the whole merge scenario. To find the suitable
combination operator to use, we train our predictors based
on each of seven common combination operators: Minimum,
Maximum, Average, Median, Norm- 1, Norm-2, and Concate-
nation operators. We then use grid search with 10-fold cross-
validation on all data points to determine the best combination
operator. We find that Norm-1 is the best combination operator
for all seven programming languages.

c) Performance measures: It is important to note that
accuracy is not a good performance measure for imbalanced
data since the potential influence of misclassification of con-
flicting merges would be much lower than safe merges. For
example, imagine that there are 100 merge scenarios with 20
of them having conflicts and 80 without conflicts. A naive
classifier that simply classifies everything as not conflicting
would achieve a misleading accuracy of 80%. Hence, instead
of accuracy, we use precision, recall, and f1-score to evaluate
the performance of the classifiers.

However, reporting the recall and precision only for the
conflicting class gives a partial view of how a detector would
perform in practice. Given that safe merge scenarios occur
much more often than conflicting ones, we also need to make
sure that we have good recall and precision for the safe class.
Therefore, we report all our performance measures for both
the conflicting (C) and safe (S) classes as follows.

For a given merge scenario, any of the binary classifiers we
compare predicts either a conflict or a not conflict (i.e., a safe
merge). After running a given classifier on all our evaluation
data using 10-fold cross-validation, we consider each class
separately as the target class and calculate precision, recall,
and f1-score according to the following definitions:

• True Positive (TP): The target class is labeled correctly.
• False Positive (FP): The non-target class is incorrectly

labeled as the target class.
• True Negative (TN): The non-target class is labeled

correctly.
• False Negative (FN): The target class is incorrectly

labeled as the non-target class.
The evaluation measures are:

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

f1-score = 2 ∗ Precision ∗Recall

Precision+Recall
(3)

For example, assume the ground truth is {C, S, S, C, S, S},
and a predictor labels the data as follows {S, S,C,C, S,C},

TABLE V
MERGE CONFLICT PREDICTION RESULTS. THE HIGHEST VALUES IN EACH CATEGORY ARE HIGHLIGHTED.

Programming
Language Classifier Safe (Not Conflicting) Conflicting

PrecisionS RecallS f1-scoreS PrecisionC RecallC f1-scoreC

C
Baseline #2 1.00 0.81 0.90 0.28 1.00 0.44
Decision Tree 0.99 0.89 0.94 0.37 0.88 0.52
Random Forest 0.98 0.96 0.97 0.56 0.72 0.63

C++
Baseline #2 1.00 0.82 0.90 0.34 0.99 0.51
Decision Tree 0.99 0.88 0.93 0.41 0.91 0.57
Random Forest 0.97 0.96 0.97 0.63 0.68 0.66

C#
Baseline #2 0.99 0.83 0.90 0.32 0.92 0.48
Decision Tree 0.99 0.85 0.92 0.35 0.90 0.51
Random Forest 0.97 0.93 0.95 0.48 0.74 0.57

Java
Baseline #2 1.00 0.85 0.92 0.36 0.99 0.53
Decision Tree 0.99 0.90 0.94 0.44 0.93 0.60
Random Forest 0.98 0.95 0.97 0.58 0.83 0.68

PHP
Baseline #2 1.00 0.83 0.91 0.38 0.99 0.55
Decision Tree 0.99 0.87 0.93 0.44 0.93 0.59
Random Forest 0.98 0.93 0.95 0.54 0.82 0.65

Python
Baseline #2 1.00 0.82 0.90 0.29 1.00 0.45
Decision Tree 1.00 0.87 0.93 0.36 0.95 0.52
Random Forest 0.98 0.94 0.96 0.49 0.74 0.59

Ruby
Baseline #2 1.00 0.84 0.91 0.33 1.00 0.50
Decision Tree 1.00 0.89 0.94 0.41 0.96 0.57
Random Forest 0.98 0.96 0.97 0.59 0.72 0.65

then recallC = 1/2 = 0.5, precisionC = 1/3 = 0.33,
recallS = 2/4 = 0.5, precisionS = 2/3 = 0.67.

B. Results

Table V shows our results for RQ2. Note that we do not
show the results of Baseline #1 since it can be calculated based
on the bias in the data and serves as a minimum threshold that
any useful predictor needs to achieve.

1) Decision Trees vs. Baseline #2: We first compare Base-
line #2, which is a simple decision tree that uses the most
important feature determined in Section V-B, to the Decision
Tree classifier that uses all features. Table V shows that the
Decision Tree classifier that uses all features achieves a higher
f1-score for both classes when compared to Baseline #2. This
suggests that despite Feature set #1 being the most important
feature, adding the other features to the classifier does improve
the results.

Additionally, both the Decision Tree classifier and Base-
line #2 exceed the performance of Baseline #1, which is a
“dummy” classifier that randomly labels the data by consider-
ing the imbalance rate. This shows that there is gained value
in designing a “real” classifier.

2) Decision Trees vs. Random Forest: Given that the Deci-
sion Tree classifier with all features outperforms Baseline #2,
we now compare the Decision Tree classifier to Random Forest
to determine if a more sophisticated classifier can achieve
better results. The results in Table V show that the Random
Forest classifier achieves the highest f1-score for both safe
and conflicting merges. This shows that using all features
along with a more advanced ensemble machine learning clas-
sifier does indeed achieve better results. Another observation
is that all the classifiers seem to perform consistently across
the different programming languages.

3) Conflicting class: We now focus on the Random Forest
classifier and discuss the results for the conflicting class in
more detail. The table shows that recallC ranges from 0.68
to 0.83 for the different programming languages. This means
that the predictor can correctly identify most of the conflicting
merge scenarios. The table shows that precisionC is in a lower
range, varying from 0.48 to 0.63. Overall, the f1-scoreC
ranges from 0.57 to 0.68 across the seven languages.

4) Safe class: In terms of not conflicting, or safe, merge
scenarios, Table V shows that Random Forest’s recallS is
between 0.93 to 0.96. This is a high recall rate and means
that the predictor is able to correctly identify most of the
automatically mergeable merge scenarios (i.e., those that will
not result in conflicts). The precision of this class is between
0.97 to 0.98 for different programming languages, meaning
that almost all of the merge scenarios that are predicted as safe
are actually safe. Overall, the f1-scoreNC ranges between
0.95 to 0.97 for the different programming languages.

We find that a Random Forest classifier based on light-weight
Git features can successfully predict conflicts for different
programming languages. However, the f1-score of the safe
class is much higher than the conflicting class.

We, finally, note that the average time for predicting the
status of a given merge scenario, including the feature ex-
traction process, is 0.1seconds±0.02seconds. This makes our
predictor fast enough to use in practice.

VII. IMPLICATIONS AND DISCUSSION

We now discuss what our prediction results may mean for
avoiding complex merge conflicts in practice.

The recall of merge conflicts is relatively high (0.68 to
0.83), which means that the classifier can identify an accept-

able portion of conflicts, if it is used as a replacement of
speculative merging altogether. Notifying developers of these
potential conflicts would allow them to merge early and avoid
the conflict becoming more complex. The downside is that
the precision of predicting conflicts is lower (0.48 to 0.63),
which means that developers may perform a merge earlier
than needed (i.e., perform a merge when there is no conflict
to resolve). In practice, this may not be a big problem since
frequent merges are encouraged to avoid conflicts in the long
term.

However, instead of completely replacing speculative merg-
ing and running the risk of false positive notifications to
developers, we advocate for using a merge-conflict predictor
as a pre-filtering step for speculative merging [7], [11] or
continuous merging [8] in developers’ work environments
(e.g., their IDE). Both recall and precision of our classifier
for safe merges are considerably high (recall between 0.93 to
0.96 and precision in the range of 0.97 to 0.98). The precision
of safe merge scenarios in the context of pre-filtering them out
from speculative merging is important, since we want to make
sure that eliminated merge scenarios are actually safe. Given
the high precision and the fact that conflict rates are typically
low (8.12%), this means that a subsequent proactive conflict
detection tool will accurately eliminate a large number of safe
merge scenarios from its analysis, thus potentially saving costs.

VIII. THREATS TO VALIDITY

In this section, we discuss some of the potential threats to
the validity of our study.

A. Internal Validity

git merge can use several merging algorithms, and the
choice of algorithm used may impact the results. We employ
the default one (recursive merging strategy) since developers
typically do not change the default configuration of Git merge.

Rebasing is another strategy for integrating changes from
different branches. When git rebase is used instead of
git merge or when the --rebase option is used while
pulling, a linear history is created and no explicit merge
commits will exist. Therefore, there is a chance that we miss
some merge scenarios since we detect merge scenarios based
on the number of parents of a commit. Unfortunately, there
is no precise methodology to extract rebased merge scenarios
since there is no information in Git about them.

We eliminate n-way (octopus) merging and only focus on
3-way merging where each merge commit has exactly two
parents. This may eliminate some merge scenarios. However,
3-way merging happens more often in practice.

We use a set of candidate values for the hyper-parameters
we use for our classifiers and find the best option by using
a grid search. We created these candidate values based on
our intuition and the heuristics in the literature about the
hyper-parameters for machine learning techniques. However,
we cannot guarantee that we found the globally optimal values
for our hyper-parameters.

We do not consider the chronological order or timeline of
commits in any way. In other words, we do not train our model
with a subset of merge scenarios and test them only with the
subsequent ones. While such time travel is often a threat in
prediction studies, we believe that the impact is low in our
context since most of the features we use in our prediction
model are not time sensitive. For example, the number of co-
modified files or the number of changed lines is not dependent
on the time in a project. In contrast, features such as the name
of the file or code component being modified (which we do
not use in our work) are time sensitive since they may change
significantly over time in a project.

B. External Validity

While we have a large-scale empirical study, our evaluation
is still limited to 744 open-source repositories in GitHub
in seven popular programming languages. Our results may
not address merge conflict prediction in other programming
languages. However, our work is, to the best of our knowledge,
the largest study for merge conflict prediction, to date, that also
studies multiple programming languages. While we need to
train a separate predictor for repositories in each programming
language, this does not have a negative impact on proactive
conflict detection in practice since the language of each
repository is known beforehand and the appropriate classifier
can be used.

IX. CONCLUSION

In this paper, we investigated whether predicting merge
conflicts is feasible, with the long-term motivation of using
it in the context of proactive conflict detection. We extracted
267, 657 merge scenarios from 744 repositories, written in
seven programming languages, and used 28 light-weight fea-
tures from Git to design a classifier for merge conflicts. We
compare a Random Forest classifier to two variations of a
Decision Tree classifier. While similar to previous work, we
could not find a correlation between our feature sets and
conflicts, we were able to successfully design a classifier for
merge conflicts. This shows that lack of correlation does not
necessarily mean that prediction is not possible. Our results
show that a Random Forest classifier with all our selected
features outperformed the other classifiers we compared to.
Our high precision (0.97 to 0.98) for detecting safe merge
scenarios ensures that we can eliminate merge scenarios that
are labeled as safe from the speculative merging process.

As future work, we plan to investigate the characteristics of
conflicts in different domains to determine if the application
context can have any impact on merge conflicts. Moreover,
we want to integrate our conflict predictor with speculative
merging in developer’s IDEs.

X. ACKNOWLEDGEMENT

This project has been partially funded through a 2017
Samsung Global Research Outreach (GRO) program.

REFERENCES

[1] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German,
and P. Devanbu, “The promises and perils of mining git,” in Mining
Software Repositories, 2009. MSR’09. 6th IEEE International Working
Conference on. IEEE, 2009, pp. 1–10.

[2] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories. ACM,
2014, pp. 92–101.

[3] S. McKee, N. Nelson, A. Sarma, and D. Dig, “Software practitioner per-
spectives on merge conflicts and resolutions,” in Software Maintenance
and Evolution (ICSME), 2017 IEEE International Conference on. IEEE,
2017, pp. 467–478.

[4] P. Accioly, P. Borba, and G. Cavalcanti, “Understanding semi-structured
merge conflict characteristics in open-source java projects,” Empirical
Software Engineering, vol. 23, no. 4, pp. 2051–2085, 2018.

[5] A. Sarma, D. F. Redmiles, and A. Van Der Hoek, “Palantir: Early
detection of development conflicts arising from parallel code changes,”
IEEE Transactions on Software Engineering, vol. 38, no. 4, pp. 889–908,
2012.

[6] C. Bird and T. Zimmermann, “Assessing the value of branches with
what-if analysis,” in Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering. ACM,
2012, p. 45.

[7] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Early detection
of collaboration conflicts and risks,” IEEE Transactions on Software
Engineering, vol. 39, no. 10, pp. 1358–1375, 2013.

[8] M. L. Guimarães and A. R. Silva, “Improving early detection of software
merge conflicts,” in Proceedings of the 34th International Conference
on Software Engineering. IEEE Press, 2012, pp. 342–352.

[9] H. C. Estler, M. Nordio, C. A. Furia, and B. Meyer, “Awareness and
merge conflicts in distributed software development,” in Global Software
Engineering (ICGSE), 2014 IEEE 9th International Conference on.
IEEE, 2014, pp. 26–35.

[10] J. Baumgartner, R. Kanzelman, H. Mony, and V. Paruthi, “Incremental
speculative merging,” Apr. 26 2011, uS Patent 7,934,180.

[11] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection of
collaboration conflicts,” in Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software
engineering. ACM, 2011, pp. 168–178.

[12] B. K. Kasi and A. Sarma, “Cassandra: Proactive conflict minimization
through optimized task scheduling,” in Proceedings of the 2013 Inter-
national Conference on Software Engineering. IEEE Press, 2013, pp.
732–741.

[13] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen, “In-
dicators for merge conflicts in the wild: survey and empirical study,”
Automated Software Engineering, vol. 25, no. 2, pp. 279–313, 2018.

[14] P. Accioly, P. Borba, L. Silva, and G. Cavalcanti, “Analyzing conflict
predictors in open-source java projects,” in Proceedings of the 15th
International Conference on Mining Software Repositories. ACM,
2018, pp. 576–586.

[15] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, 2017.

[16] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[17] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[18] “Artifact page,” https://github.com/ualberta-smr/conflict-prediction.
[19] T. Mens, “A state-of-the-art survey on software merging,” IEEE trans-

actions on software engineering, vol. 28, no. 5, pp. 449–462, 2002.
[20] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner, “Semistruc-

tured merge: rethinking merge in revision control systems,” in Proceed-
ings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering. ACM, 2011, pp.
190–200.

[21] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How do
centralized and distributed version control systems impact software
changes?” in Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 322–333.

[22] S. Apel, O. Leßenich, and C. Lengauer, “Structured merge with auto-
tuning: balancing precision and performance,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2012, pp. 120–129.

[23] B. Westfechtel, “Structure-oriented merging of revisions of software
documents,” in Proceedings of the 3rd international workshop on
Software configuration management. ACM, 1991, pp. 68–79.

[24] J. Buffenbarger, “Syntactic software merging,” in Software Configuration
Management. Springer, 1995, pp. 153–172.

[25] “Fstmerge tool,” https://github.com/joliebig/featurehouse/tree/master/
fstmerge.

[26] “Jdime tool,” http://fosd.net/JDime.
[27] G. Cavalcanti, P. Borba, and P. Accioly, “Evaluating and improving

semistructured merge,” Proceedings of the ACM on Programming Lan-
guages, vol. 1, no. OOPSLA, p. 59, 2017.

[28] G. G. L. Menezes, L. G. P. Murta, M. O. Barros, and A. Van Der Hoek,
“On the Nature of Merge Conflicts: a Study of 2,731 Open Source
Java Projects Hosted by GitHub,” IEEE Transactions on Software
Engineering, 2018.

[29] C. Costa, J. Figueiredo, L. Murta, and A. Sarma, “Tipmerge: recom-
mending experts for integrating changes across branches,” in Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2016, pp. 523–534.

[30] D. Dig, K. Manzoor, R. E. Johnson, and T. N. Nguyen, “Effective
software merging in the presence of object-oriented refactorings,” IEEE
Transactions on Software Engineering, vol. 34, no. 3, pp. 321–335, 2008.

[31] M. Mahmoudi, S. Nadi, and N. Tsantalis, “Are refactorings to blame?
an empirical study of refactorings in merge conflicts,” in Proc. of the
26th IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER ’19), 2019.

[32] L. Hattori and M. Lanza, “Syde: a tool for collaborative software
development,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 2. ACM, 2010, pp. 235–
238.

[33] Y. Nishimura and K. Maruyama, “Supporting merge conflict resolu-
tion by using fine-grained code change history,” in Software Analysis,
Evolution, and Reengineering (SANER), 2016 IEEE 23rd International
Conference on, vol. 1. IEEE, 2016, pp. 661–664.

[34] O. Kononenko, T. Rose, O. Baysal, M. Godfrey, D. Theisen, and
B. de Water, “Studying pull request merges: a case study of shopify’s
active merchant,” in Proceedings of the 40th International Conference
on Software Engineering: Software Engineering in Practice. ACM,
2018, pp. 124–133.

[35] Y. Fan, X. Xia, D. Lo, and S. Li, “Early prediction of merged code
changes to prioritize reviewing tasks,” Empirical Software Engineering,
pp. 1–48, 2018.

[36] M. Owhadi-Kareshk and S. Nadi, “Scalable software merging studies
with merganser,” in Proceedings of the 16th International Conference
on Mining Software Repositories (MSR ’19), 2019.

[37] https://git-scm.com/docs/git-merge.
[38] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and

G. Bing, “Learning from class-imbalanced data: Review of methods and
applications,” Expert Systems with Applications, vol. 73, pp. 220–239,
2017.

[39] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[40] “reaper dataset,” https://reporeapers.github.io/static/downloads/dataset.
csv.gz.

[41] M. G. Kendall, S. F. Kendall, and B. B. Smith, “The distribution of
spearman’s coefficient of rank correlation in a universe in which all
rankings occur an equal number of times,” Biometrika, pp. 251–273,
1939.

[42] T. W. Anderson and J. D. Finn, The new statistical analysis of data.
Springer Science & Business Media, 2012.

