
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Promises and Challenges of Microservices: an Exploratory
Study

Yingying Wang · Harshavardhan Kadiyala ·
Julia Rubin

Received: date / Accepted: date

Abstract Microservice-based architecture is a SOA-inspired principle of building
complex systems as a composition of small, loosely coupled components that com-
municate with each other using language-agnostic APIs. This architectural principle
is now becoming increasingly popular in industry due to its advantages, such as
greater software development agility and improved scalability of deployed applica-
tions. In this work, we aim at collecting and categorizing best practices, challenges,
and some existing solutions for these challenges employed by practitioners success-
fully developing microservice-based applications for commercial use. Specifically,
we focus our study on “mature” teams developing microservice-based applications
for at least two years, explicitly excluding “newcomers” to the field. We conduct a
broad, mixed-method study that includes in-depth interviews with 21 practitioners
and a follow-up online survey with 37 respondents, covering 37 companies in total.

Our study shows that, in several cases, practitioners opt to deviate from the
“standard” advice, e.g., instead of splitting microservices by business capabilities,
they focus on resource consumption and intended deployment infrastructure. Some
also choose to refrain from using multiple programming languages for implementing
their microservices, as that practice hinders reuse opportunities. In fact, our study
participants identified robust and shared infrastructural support established early on
in the development process as one of the main factors contributing to their success.
They also identified several pressing challenges related to the efficient managing of
common code across services and the support of product variants.

The results of our study can benefit practitioners who are interested to learn from
each other, borrow successful ideas, and avoid common mistakes. It can also inform
researchers and inspire novel solutions to some of the identified challenges.

Keywords Microservices · Cloud-native applications · Development practices ·
Empirical study

Yingying Wang · Harshavardhan Kadiyala · Julia Rubin
Department of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall,
Vancouver, BC V6T 1Z4, Canada
E-mail: {wyingying, devkhv129, mjulia}@ece.ubc.ca

2 Yingying Wang et al.

1 Introduction

Microservice-based architectures became popular around 2014, when Lewis and
Fowler published their blog on the topic (Lewis and Fowler 2014) and Netflix shared
their expertise and lessons learned from a successful transition to microservices at a
Silicon Valley Microservices Meetup (Cockroft 2014). At the core of microservice-
based architecture is the SOA-inspired principle of building complex applications as a
composition of small, loosely coupled components that encapsulate individual busi-
ness capabilities and communicate with each other using language-agnostic APIs.
This architectural style is particularly popular in cloud-based software-as-a-service
(SaaS) offerings; its advantages include greater software development agility and
improved scalability of deployed applications (Lewis and Fowler 2014; Richardson
2014). Splitting large applications into individual microservices provides the next
degree of independence for agile teams (Beck et al. 2001), further reducing synchro-
nization effort and allowing each team to independently deploy changes to production
at a time appropriate for the team. It also saves deployment costs by allowing to spin
up only instances of individual “busy” microservices, without the need to scale up
the entire application. Finally, for many organizations, the availability of open-source
tools, such as Docker1, Kubernetes2, Prometheus3, Grafana4 for deploying, manag-
ing, and monitoring microservices substantially simplifies the transition. Nowadays,
microservice-based architectures are adopted by many successful companies, includ-
ing Amazon, IBM, Uber, LinkedIn, Groupon, and eBay (Richardson 2018c).

Yet, just “jumping on the microservices trend”, expecting that the use of the new
tools will allow a company to achieve improvements similar to those reported by
Amazon and Netflix, is a false belief (Nadareishvili et al. 2016). Proper adoption
of microservices requires several technical and organizational changes companies
need to consider. In the past few years, several studies focused on the process of
transitioning to microservices (Taibi et al. 2017; Di Francesco et al. 2018; Gouigoux
and Tamzalit 2017; Bucchiarone et al. 2018; Balalaie et al. 2016, 2018; Ghofrani
and Lübke 2018; Vural et al. 2017; Carvalho et al. 2019; Knoche and Hasselbring
2019; Fritzsch et al. 2019; Bogner et al. 2019). These studies identified a number
of challenges related to the transition, such as difficulties around identifying the
desired service boundaries, costs involved in setting up the infrastructure to deploy
and monitor microservices, and the need for skilled developers to design, implement,
and maintain a large distributed system.

In our work, rather than focusing on the transition to microservices, we investigate
the experience of companies that have been successfully running microservices for
several years. That is because, based on our own experience and our interactions
with practitioners, we observed that while there is much emphasis on the initial
microservice build, little information is available about the pitfalls and support
organizations need in the long run. We thus focus our study on experiences of teams
developing microservices for commercial use for more than two years.

1 https://www.docker.com
2 https://kubernetes.io
3 https://prometheus.io
4 https://grafana.com

https://www.docker.com
https://kubernetes.io
https://prometheus.io
https://grafana.com

Promises and Challenges of Microservices: an Exploratory Study 3

Our investigation is driven by the following research questions:

RQ1: What are best practices learned by practitioners successfully adopting mi-
croservices for commercial use?

RQ2: What are challenges practitioners face?

RQ3: Which solutions to the identified challenges exist?

We report on the best practices and lessons learned we collected by conducting
21 semi-structured interviews and 37 follow-up online surveys with practitioners
employed by 37 different companies. Our semi-structured interviews were designed
to elicit the main concepts considered by organizations that apply microservice-based
architecture. The online survey was used to validate and extend our findings by
reaching out to additional practitioners. All of our study participants are experienced
software developers, with 12.4 years of experience on average for interviewees
and 13.4 years for survey participants. All have at least two years of experience
developing microservice-based applications (see Tables 1 and 2).

We used qualitative data analysis techniques borrowed from grounded
theory (Strauss and Corbin 1998), namely open and axial coding, for identifying and
categorizing the main concepts reported by our study participants. In a nutshell, for
RQ1, our participants learned that following the “standard” advice of splitting
microservices based on business capabilities and using the most appropriate
programming language for each microservice is not always fruitful. While they
started with such an approach, they later had to redefine and merge microservices,
e.g., because the resulting product consumed an unacceptable amount of computing
resources, and also restrict the number of languages that they use, e.g., because the
end product was difficult to maintain.

They also learned that an early investment in a robust infrastructure to support
automated setup and management, extensive logging and monitoring, tracing, and
more, is one of the main factors contributing to the success of their development
processes. Several practitioners indicated that while in practice they delayed setting
up a solid infrastructure, they regretted such decisions in the future. They found that
having a well-defined owner for each microservice is essential for the success of their
development process, as this owner is the one to ensure the architectural integrity of
the microservice, be the first to efficiently troubleshoot it, etc.

Answering RQ2, our study also identified several common challenges related to
managing code of microservices, where no explicit guidelines are available as part
of the microservices “cookbooks”. These include decisions on how to deal with code
shared by several microservices, e.g., for authentication and logging, how to manage
products consisting of multiple customer offerings, and more. Even though solutions
to these challenges might exist in the software engineering field in general, they are
still to be studied and adapted in the particular context of microservices. For RQ3, our
study lists different possible solutions applied by the studied companies and discusses
the trade-offs related to each solution.

Contributions. To summarize, this paper makes the following contributions:

(1) It describes the main characteristics of microservice-based applications and out-
lines the rationale for using microservices (Section 2).

4 Yingying Wang et al.

(2) It identifies best practices, challenges, and lessons learned in developing mi-
croservices, as viewed by our study participants, grouping them into three high-
level themes: architectural considerations, infrastructure support, and code man-
agement (Section 4).

(3) It outlines possible directions for researchers and tool builders who want to pro-
vide better support for practitioners developing microservice-based applications
(Section 5).

Target Audience. Our study collects best practices and lessons learned from a large
number of companies successfully developing microservice-based applications for
commercial use. We thus believe it can benefit industrial practitioners who develop
such applications and are interested to learn from each other, borrow successful
ideas, and avoid common mistakes. Moreover, a description of current practices and
challenges practitioners face can inspire researchers and tool builders in devising
novel software engineering methods and techniques.
Paper Structure. The remainder of the paper is structured as follows. Section 2
describes microservices and outlines their advantages. In Section 3, we describe
our study methodology, including the selection of interview and survey participants.
Section 4 outlines best practices, lessons learned, and challenges identified by the
study participants. We discuss the implications of our findings in Section 5. In
Section 6, we outline possible threats to the validity of our results. Related work
is discussed in Section 7. Finally, Section 8 summarizes and concludes the paper.

2 Background

Service-oriented architecture (SOA) is an architectural approach to designing appli-
cations around a collection of independent services. A service can be any business
functionality that completes an action and provides a specific result, such as process-
ing a customer order or compiling an inventory report. Services are stitched together
to create applications (Newcomer and Lomow 2005).

Service-orientation has received a lot of attention in the early 2000s (Fenn and
Linden 2005), but lost momentum around 2009. Since 2014, the interest in service-
oriented paradigms was renewed under the microservices moniker (Zimmermann
2017). Renewed interest in service-orientated development can be explained by a
combination of multiple factors, the most prominent of which are the popularity
of cloud-based offerings, the pay-as-you-go infrastructure costs, and the constantly
increasing demand for development agility.

In such reality, a microservice-based approach promotes building a single ap-
plication as a suite of (micro-)services which run as separate processes and can
be deployed and scaled independently (Lewis and Fowler 2014). Microservices
communicate with each other – synchronously or asynchronously – via lightweight
language-agnostic protocols, such as HTTP REST (Fielding 2000). Synchronous
communication can rely on various API gateways, such as Amazon API Gateway5.

5 https://aws.amazon.com/api-gateway/

https://aws.amazon.com/api-gateway/

Promises and Challenges of Microservices: an Exploratory Study 5

Asynchronous communication is facilitated by distributed stream-processing soft-
ware, such as Apache Kafka6, and message brokers, such as RabbitMQ7.

As any service call can fail due to the unavailability of the supplier, services
must be designed for failures and must respond to failures gracefully. This includes
dealing with partial consistency of decentralized data and gracefully degrading part
of the application functionality, if needed. Moreover, detecting failures quickly for
automatically restoring services is critical and is typically achieved using logging
and monitoring tools, such as Grafana8 and Kibana9.

Microservice-based applications promote autonomous teams that are organized
around business capabilities and assume end-to-end responsibility for these capa-
bilities: from development to production. The teams have the freedom to choose
technology platforms, languages, and tools that work best for the functionality they
want to implement (Lewis and Fowler 2014).

Advantages of using microservices. When implemented properly, microservices
aim at shortening the development lifecycle while improving the quality, availability,
and scalability of applications at runtime (Chen 2018; Fritzsch et al. 2019; Ghofrani
and Lübke 2018; Knoche and Hasselbring 2019; Luz et al. 2018; Taibi et al. 2017).
From the development perspective, cutting one big application into small independent
pieces reinforces the component abstraction and makes it easier for the system to
maintain clear boundaries between components (Fowler 2015). One cannot just “take
shortcuts” and access code at a wrong layer (Chen 2018); APIs specified in the service
contract are the only channel for accessing the service.

Developers can also focus on small parts of an application, without the need to
reason about complex dependencies and large code bases; this is especially beneficial
for junior developers and for onboarding new team members. Moreover, as the failure
domains of microservices are rather independent, only the specific teams responsible
for the failing microservice need to be notified. Dealing with legacy software also
becomes easier: as the application is broken down into smaller, replaceable pieces,
they become easier to understand and upgrade (Ghofrani and Lübke 2018; Gouigoux
and Tamzalit 2017).

A major advantage of microservice-based architectures is independent deploy-
ment (Chen 2018; Luz et al. 2018; Soldani et al. 2018; Viggiato et al. 2018), which re-
duces the coordination effort needed to align on common delivery cycles practiced for
monolithic applications. Independent deployment also leads to independent scaling at
runtime, when instances of only those microservices that experience increasing traffic
are spun off and later stopped, without affecting other parts of the application (Buc-
chiarone et al. 2018; Fritzsch et al. 2019; Ghofrani and Lübke 2018; Knoche and
Hasselbring 2019; Soldani et al. 2018; Taibi et al. 2017; Viggiato et al. 2018). Finally,
when implemented for fault-tolerance, defective microservices do not crash the entire
application, contributing to application stability and availability (Bucchiarone et al.
2018; Chen 2018; Fritzsch et al. 2019; Luz et al. 2018; Taibi et al. 2017).

6 https://kafka.apache.org
7 https://www.rabbitmq.com
8 https://grafana.com
9 https://www.elastic.co/products/kibana

https://kafka.apache.org
https://www.rabbitmq.com
https://grafana.com
https://www.elastic.co/products/kibana

6 Yingying Wang et al.

Start

Interview
Design

Pilots

Q3

Q2

Q1
21

Interviews
(15 Companies)

235
Quotes

33
Concepts

10
Categories

3
Themes

T2:
Infrastructure

T1:
Architecture

Findings

Study Design Data Collection and Analysis

Ph
as

e
1:

 In
te

rv
ie

w

Survey
Design

38
Questions

37
Qualified

Responses
(23 Companies)

Quantitative
Analysis

Open + Axial
Coding 2 Additional

Concepts

Findings

Results
Synthesis

Final
Results

End

Open +
Axial
Coding

Ph
as

e
2:

 O
nl

in
e

Su
rv

ey

Taxonomy

Pilots

T3:
Code Management

Fig. 1 Data Collection and Analysis Process

Together with advantages, microservice-based systems introduce additional chal-
lenges and call for software development tools and practices suitable to support
microservice-based engineering. We investigate these in our work.

3 Methodology

Figure 1 provides a high-level overview of our study methodology. Given the ex-
ploratory nature of our study, we followed the recommendation of Bratthall and
Jørgensen (2002) and applied a mixed-method approach: first, we conducted a
qualitative semi-structured interview study to identify challenges and lessons learned
in microservice-based development. We then distributed an online survey to enrich
and validate (or not) the interview findings using collected quantitative data. We
synthesized the findings from both the interview and survey studies, forming the final
results reported in this paper.

We now describe this process in detail, including our selection of subjects and
our approach to data collection and analysis, for both the interview study and the
follow-up survey.

3.1 Interview Study

Subjects. For the interview study, we recruited software developers with solid ex-
perience developing microservice-based applications. More precisely, our selection
criteria were for participants to (1) have more than two years of hands-on experience
using microservice-based architecture in industry, (2) be a member of a team that
designs, develops, and deploys microservices for commercial use for at least two
years, and (3) be familiar with processes and ways of interacting with other teams
working on the same product. Such selection criteria ensure that the interviewees are
experienced developers from organizations that use microservices in a mature way.

Promises and Challenges of Microservices: an Exploratory Study 7

Table 1 Interview Participants

ID Position Ind.
Exp.
[yrs]a

MS
Exp.
[yrs]b

Team
MS Exp.

[yrs]c

Team
Size

#MSd Co.
Sizee

Age Education

P1 Software Engr. 5 3 3 15 25 L 33 Undergrad
P2 Application Architect 8 4 4 10 7 S 30 Undergrad
P3 Director of R&D 19 3 3 4 20 L - Undergrad
P4 Manager - 2 2 4 15 L - Master’s
P5 Architect 9 2 2 7 5 L 34 Master’s
P6 Lead Front End Dev. 18 4 4 10 20 L 42 Master’s
P7 Front End Dev. 3 2.5 4 9 7 L 25 Undergrad
P8 Software Dev. 20 2 4 5 30 L 42 Undergrad
P9 Senior Software Engr. 3 2 15 4 4 L 25 Undergrad
P10 Principal Software Engr. 20 10 4 20 20 M 36 No Degree
P11 Full Stack Dev. 20 4 4 - 40 L 45 Undergrad
P12 Senior Software Dev. 6 4 4 4 4 L 39 Undergrad
P13 Software Architect 22 4 - - - L - Undergrad
P14 Senior Software Dev. 5 4 4 8 7 L 29 Undergrad
P15 Principal Software Engr. 20 7 2.5 - 6 M 47 PhD
P16 Platform Engineering Lead 14 4 2.5 12 25 S 37 Undergrad
P17 Senior Site Reliability Engr. 10 3 2 14 7 L 32 Undergrad
P18 Cloud Dev. 2.5 2.5 3 15 8 L 27 Master’s
P19 Distinguished Systems Engr. 21 3 5 6 - L 46 Undergrad
P20 Software Dev. Engr. 16 4 15 11 50 L 37 Undergrad
P21 Software Dev. 6 3 - 7 15 M 30 Master’s

Mean 12.4 3.7 4.6 9.2 16.6 - 35.3 -

a Industry Experience [years]
b Microservice Experience [years]
c Team Microservice Experience [years]
d Number of Microservices the Team is Responsible For
e Company Size. S: <100 Employees, M: 100-499 Employees, L: >499 Employees

For identifying the interviewees, we initially approached our network of col-
laborators and colleagues. We also reached out to developers who actively par-
ticipate in microservice-related events and Meetup10 groups. In addition, we used
the LinkedIn11 web platform to recruit developers listing microservices as their
core skills and holding active software development positions. Finally, we applied
snowballing (Goodman 1961), asking the interviewees to distribute a call for partic-
ipation in their professional networks. We interviewed each participant and stopped
recruiting new participants when we reached data saturation (Morse 1995), i.e., we
did not identify new concepts in the last five interviews. Interleaving data collection
and analysis processes is inspired by grounded theory and is typical for interview
studies. We further elaborate on our interview stopping criteria when describing the
data analysis process.

Overall, we interviewed 21 practitioners from 15 companies. For four large
enterprises we selected for our study, we interviewed more than one employee, as
these employees work in different, non-overlapping areas. Moreover, some of these
companies are among the pioneers of microservice-based software development; we
thus believe their experience is highly beneficial for our study. The detailed info about

10 https://www.meetup.com/
11 https://www.linkedin.com/

https://www.meetup.com/
https://www.linkedin.com/

8 Yingying Wang et al.

our study practitioners, including their positions, years of industrial experience, ex-
perience with developing microservices, information about their development teams
and companies, and their age and education level – for those who agreed to share this
info with us – are given in Table 1.

Most interviewees hold a title of Software Engineer or Developer, Senior or
Principal Software Engineer, or Software Architect. They have between 2.5 and
22 years of full-time software development experience, with a mean of 12.4 and a
median of 12 years. In the microservices domain, the participants have between 2 and
10 years of development experience, with a mean of 3.7 and a median of 3 years. They
are currently employed in teams that are practicing microservice-based development
between 2 and 15 years, with a mean of 4.6 and a median of 4 years. Notably, some of
the teams, e.g., from a company known as one of the main pioneers of microservice-
based development, developed microservice-style systems long before the term was
popularized. We thus believe their experience is valuable and reliable.

The size of the teams ranges between 4 and 20 members, with a mean of 9.2
and a median of 8.5 members. The teams are responsible for 4 to 50 microservices,
with a mean of 16.6 and a median of 15 microservices. Most work for large com-
panies. They develop human resources applications, retail and social media portals,
enterprise resource management and cloud resource management applications, cloud
infrastructure management and IoT management applications, and more. While we
cannot share the names of the companies due to confidentiality reasons, we report
their size in Table 1. We followed the Canadian Small to Medium Enterprise (SME)
definition12 that classifies companies into small (S), medium (M), and large (L) based
on the number of company employees: a company with less than 100 employees is
classified as small, a company with 100 to 499 employees is medium, and a company
with more than 499 employees is considered large.

As for the demographic information, the ages of the interviewees range between
25 and 47 years, with a mean of 35.3 and a median of 35 years. Six interviewees
hold a graduate-level degree (one PhD and five Master’s), 14 hold an undergraduate
degree, and one participant, with 20 years of experience, is entirely self-taught.

Interview Design. We performed semi-structured interviews with a set of open-
ended questions. To identify an appropriate study protocol, we first conducted five
pilot interviews with colleagues, friends, and student interns employed in organiza-
tions that develop microservices. These participants were not intended to satisfy our
selection criteria but rather help us clarify, reorder, and refine the interview questions.
We proceeded to the main study only when the pilot interviews ran smoothly; we
discarded the data collected during the pilot study and did not include it in our data
analysis.

For the main study, we conducted 21 semi-structured interviews that took around
50 minutes each (min=26; max=90; mean=49.9; median=47 minutes, total=17.5
hours). As typical for this kind of study, the interview length was not evenly dis-
tributed. At the beginning, the interviews were substantially longer, with many
follow-ups on open-ended questions. As the study progressed, we repeatedly heard
similar concerns and thus the interviews became shorter. We collected quantitative

12 https://www.ic.gc.ca/eic/site/061.nsf/eng/Home

https://www.ic.gc.ca/eic/site/061.nsf/eng/Home

Promises and Challenges of Microservices: an Exploratory Study 9

data about the participants’ background, their project, and team offline, which also
saved time from interviews.
Each interview revolved around three central questions:

(1) How, why, and when do you create new microservices?
(2) How are microservices maintained, evolved, tested, and deployed to production?
(3) Which of your practices work well and what you think can be improved?

We followed up with subsequent questions and in-depth discussions that de-
pended on the interviewees’ responses. Our goal was to identify best practices,
lessons learned, and the set of challenges practitioners face when developing and
maintaining microservice-based applications.

The interviews were conducted in English by at least two of the authors of this
paper. Four interviews were in person and the remaining ones – over the phone or
using telecommunication software, such as Skype. All but three interviewees agreed
to be recorded and the collected data was further transcribed word-by-word, only
removing colloquialism such as “um”, “so”, and “you know”, and breaking long
sentences into shorter ones. The additional three interviews were summarized during
the conversation.

We shared the transcripts with each corresponding interviewee for his or her
approval or corrections. At the time of writing, we received five corrections; most
of them were minor and related to the names of companies and tools, confidentiality-
related issues, and clarifications on the discussed topics. We applied all corrections
to the transcripts.

Interview Data Analysis. We relied on qualitative data analysis techniques borrowed
from the grounded theory, namely open and axial coding, for deriving theoretical
constructs from qualitative analysis (Strauss and Corbin 1998). Note that we did not
fully adopt the grounded theory methodology as our goal is to identify and categorize
best practices and challenges in using microservices rather than establish any theory.

For open coding, two of the authors of the paper independently read the transcripts
line by line and identified concepts – key ideas contained in data. When looking for
concepts, we searched for the best phrase that describes conceptually what we believe
is indicated by the raw data. We measured the inter-rater reliability for interview data
coding with the widely used Krippendorff’s alpha coefficient, typically used for such
studies (Krippendorff 2011; O’Connor and Joffe 2020). Our Kα score is 0.89 (higher
than the standard reference score Kα > 0.8 score).

On a weekly basis, all the authors met to discuss the identified concepts and any
disagreements, refine concept labeling, and merge related concepts if needed. We
further grouped the identified concepts into categories, which represent high-level
ideas that we found in the analyzed data. We then related categories to each other,
grouping them into higher-level themes.

As qualitative analysis seeks to find significant concepts and explore their
relationships (Strauss and Corbin 1998), we aimed at identifying ideas mentioned
by at least three study participants. We considered an interview contributing
new data for the study when it (a) identified new, previously unseen con-
cepts or (b) contributed to concepts mentioned by less than three different

10 Yingying Wang et al.

participants. We continued recruiting study participants until we could not
derive any new data in five consecutive interviews. This was done to avoid
premature closure of data collection: a common practice in interview stud-
ies (Francis et al. 2010; Jackson et al. 2000; Jassim and Whitford 2014). That is,
as mentioned earlier, we proceeded with more interviews until we reached data
saturation.

In total, we identified 33 concepts, linked to 235 quotes and excluding 19 quotes
that did not correspond to concepts mentioned by at least three interviewees. The
concepts were further grouped into ten higher-level categories and three main themes:
architectural considerations, infrastructure support, and code management, as shown
in Figure 1. As all our findings are linked to quotes extracted from the interviews,
results we report are grounded on the collected data. Detailed information about
our interview data analysis process, all the identified categories, concepts, and their
mapping to quotes is available online (Wang et al. 2020).

3.2 Online Survey

We further validated and enhanced the findings from the interviews with an online
survey. In a nutshell, we used the concepts brought up by our study participants as
a starting point for the survey, with the aims to (a) validate or refute the insights
collected in the interviews and (b) collect additional lessons learned and challenges
that are not raised by our interviewees.
Subjects. To mitigate potential sample bias of using one source of information, we
reached out to a different group of participants for the online survey. To this end, we
sent the survey via a diverse range of online channels, such as public microservice
forums on Reddit13, Google Groups14, Facebook15, and Twitter16. We also explicitly
searched for developers with microservice expertise on LinkedIn and sent them
a targeted invitation to participate in the survey and further distribute it to their
colleagues.

The survey was available online for eight months, till the end of September
2019, and we received a total of 185 responses. As we distributed the survey in
open forums, we could not track the views or calculate the response rate. For the
completion rate, 61 of the received responses were complete (33%). The majority of
incomplete responses (96/124, 77%) were when the survey was only opened on page
one, likely because the individuals only checked the description/participation criteria
or accidentally pressed the link.

Out of the 61 complete responses, we only considered responses from practition-
ers with at least two years of microservice development experience – a selection
criterion that we also applied to our interviewees. That resulted in 37 qualified
responses from practitioners employed by 23 different companies. As there is only

13 https://www.reddit.com/
14 https://groups.google.com/
15 https://www.facebook.com/
16 https://twitter.com/

https://www.reddit.com/
https://groups.google.com/
https://www.facebook.com/
https://twitter.com/

Promises and Challenges of Microservices: an Exploratory Study 11

Table 2 Survey Participants

Ind. Exp.
[yrs]a

MS Exp.
[yrs]b

Team MS
Exp. [yrs]c

Team Size #MSd Co. Sizee Age Education

Min: 2 Min: 2 Min: 0.5 <6: 10 <6: 4 Small: 10 Min: 23 Undergrad: 21
Max: 20 Max: 10 Max: 8 6-10: 13 6-10: 12 Medium: 7 Max: 51 Grad: 12
Mean: 13.4 Mean: 3.4 Mean: 2.5 11-20: 6 11-20: 8 Large: 7 Mean: 36.6 NoDegree: 2
Median: 13.5 Median: 3 Median: 2 21-50: 7 21-50: 5 Unknown: 13 Median: 35.5 Unknown: 2

51-100: 1 51-100: 7
>100: 0 >100: 1

a Industry Experience [years]
b Microservice Experience [years]
c Team Microservice Experience [years]
d Number of Microservices the Team is Responsible For
e Company Size. S: <100 Employees, M: 100∼499 Employees, L: >499 Employees

one overlap between employers of our interview and survey participants, our study
collects data from 58 participants employed by 37 companies in total.

Demographic information about the survey participants is given in Table 2 and
resembles that of the interviewees. Our survey participants have been working in
industry for two to 20 years, with a mean of 13.4 and a median of 13.5 years.
They have between two and 10 years of experience developing microservice-based
applications, with a mean of 3.4 and a median of 3 years. Their teams diverse in
size and the number of microservices they develop. Ten of them are from small,
seven from medium, and another seven are from large companies. In 13 cases, the
participants preferred not to declare the size of their company, so we do not report on
that data.

Survey Design. The main goal of the survey was to validate results from the interview
study using a different sample and to enrich our findings. To ease participants’ task
and provide context to our study (Flanigan et al. 2008), we used the taxonomy derived
from the interviews as a starting point for the survey. We asked participants whether
they agree or disagree with statements made by the interviewees, whether they see
additional solutions to the identified problems, and whether they want to report on
additional best practices and challenges.

The survey consisted of 13 groups of questions related to the ten categories
identified in the interview study as well as some background and demographic
information. In total, there were 38 questions, most of which are multiple-choice,
with an additional field to provide extra information. Several open-ended questions
were designed to collect information beyond that observed in the interviews.

We also asked participants to distinguish between the solution they apply in prac-
tice (what they do) and their perception (what they think they should do). Towards
this end, we focused the participants’ attention on their most significant microservice-
related development experience, as providing a specific frame of reference helps
reducing recall bias and facilitates cognitive processing (Sinkowitz-Cochran 2013).

As with the interview study, we performed several pilots for the survey to improve
the clarity of the questions and arrive at a reasonable time required to complete
the survey: around 20 minutes. Detailed information about the survey is available
online (Wang et al. 2020).

12 Yingying Wang et al.

Survey Data Analysis. For multiple-choice questions, we calculated statistics on
(a) how many survey participants agree or disagree with best practices identified in
the interviews, (b) how many participants actually apply these best practices in their
work, (c) how many participants apply each solution to a challenging microservice-
related problem identified in the interviews, and (d) additional solutions to these
problems the survey participants apply.

For the open-ended questions, we followed the process similar to that in the
interviews and performed open and axial coding for all write-in survey replies. As
the survey responses were much more structured and focused around the explicit
questions we asked, there were no disagreements between the two authors looking at
the data. We thus did not calculate Kα for the survey results.

We unified the concepts identified in the survey with those from the interviews
and included in the final results all concepts that were mentioned by at least three
interview or survey participants. As a result, we identified two additional concepts,
arriving at a total of 35 concepts belonging to ten categories and three themes. We
discuss these in Section 4. In Section 5, we also outline some of the ideas mentioned
by less than three participants.

Quality Considerations. To make sure our results are reliable, we sent the final
version of this report summarizing our findings to all study participants, asking them
to comment on any misinterpretations that might have occurred. That was done in
addition to sharing the transcripts with the corresponding interviewees, as described
above. The feedback we received shows that the study is accurate and representative:
P13: «Overall, I think this is a very strong study that accurately reflects my experience
in the industry.»17.

Ethical Considerations. Our study was also approved by the Research Ethics Board
of the University of British Columbia. In the ethics board application, we summarized
the intended purpose of our study, potential participants, recruitment strategy, in-
formed consent process, possible conflicts of interests, data collection strategies, and
confidential data handling. Before each interview or survey session, the participant
was required to give us an informed consent to conduct the study and record the
interview.

4 Results

We first present a high-level overview of our results (Section 4.1) and then discuss
these results in detail (Section 4.2). Following the detailed discussion, we summarize
our findings and explicitly answer research questions RQ1-RQ3 outlined in the
Introduction section (Section 4.3).

4.1 Results: Overview

Table 3 lists the ten categories and three themes identified in the interviews, together
with the number of interview participants mentioning concepts in each category.

17 The paper presents all participants’ quotes in this style: PID: «quote».

Promises and Challenges of Microservices: an Exploratory Study 13

Table 3 Categories Identified in the Interviews

Theme Category #Interview Participants (out of 21)

Architecture
Microservice granularity 15 (71%)
Microservice ownership 9 (43%)
Language diversity 7 (33%)

Infrastructure

Logging and monitoring 11 (52%)
Distributed tracing 6 (29%)
Automating processes 5 (24%)
Tools 6 (29%)

Code Management
Managing common code 14 (67%)
Managing API changes 20 (95%)
Managing variants 12 (57%)

The majority of the interviewees (71%) brought up topics related to identifying the
right granularity for microservices, beyond the typical considerations of splitting
microservices by business capabilities. Some interviewees also discussed the need for
identifying and enforcing strict service ownership (43%). Considerations related to
programming languages used for implementing microservices concerned one-third of
our interview participants (33%); most of them indicated that they moved away from
the initially attractive idea of letting each team decide which language to use for
their microservices towards more standard organization-wide decisions promoting
reuse and common support. We grouped these three categories of concerns into the
Architecture theme and discuss them in detail in Section 4.2.1.

For the Infrastructure theme, around half of the interviewees (52%) considered
logging and monitoring (or lack of support for logging and monitoring) as a concern
for their organization. They mostly agree that setting up such infrastructural support
early in the development process is essential for the success of their businesses.
Similar concerns about an early setup of distributed tracing and automated develop-
ment processes were mentioned by 29% and 24% of the interviewees, respectively.
Moreover, 29% of the interviewees raised consideration about development and
deployment tools used in their organizations. We discuss all these topics in detail
in Section 4.2.2.

Finally, Code Management issues, especially around dealing with and preventing
breaking API changes concerned almost all our interview participants (95%). Issues
related to the management of code used in multiple microservices and the manage-
ment of product variants targeting different types of customers concerned more than
half of the interviewees (67% and 57%, respectively). We discuss these in detail in
Section 4.2.3.

Due to the qualitative nature of our study, the list of concepts, categories, and
themes we report on is not intended to be complete. These constructs rather emerged
from performing open and axial coding on the data we collected and represent topics
raised by our study participants. As we only asked open-ended questions during the
interviews and did not steer the participants in any particular direction, we believe
these represent major concerns practitioners deal with on a daily basis.

14 Yingying Wang et al.

Interestingly, we did not find any strong correlation between the demographics of
the interviewees and the topics that they raised, indicating that the topics described
in this paper were raised by engineers of various ages, professional and educational
background, educations, etc. For example, Figure 2a shows the distribution of topics

40%

60%

40%

20%

40%

100%

80%

60%

83%

33%

67% 67%

17% 17% 17%

67%

100%

50%

78%

44%

11%

67%

56%

22%

44%

56%

100%

67%

0%

20%

40%

60%

80%

100%

Microservice
Granularity

Microservice
Ownership

Language
Diversity

Logging
and

Monitoring

Distributed
Tracing

Automating
Processes

Tools Managing
Common
Code

Managing
API

Changes

Managing
Variants

2-5 years (5) 6-15 years (6) > 15 years (9) X

Architecture Infrastructure Code Management

Unknown (1)

(a) By Industrial Experience

60%

40%

20% 20% 20% 20%

40%

60%

80%

40%

100%

57%

43%

57%

43%

14%

71%

100%

43%

33% 33% 33%

67%

50%

17% 17%

83%

100%

83%

0%

20%

40%

60%

80%

100%

Microservice
Granularity

Microservice
Ownership

Language
Diversity

Logging
and

Monitoring

Distributed
Tracing

Automating
Processes

Tools Managing
Common
Code

Managing
API

Changes

Managing
Variants

4-5 members (5) 6-10 members (7) > 10 members (6) X

Architecture Infrastructure Code Management

Unknown (3)

(b) By Team Size

Fig. 2 Interviewees Distribution by Demographic Info

Promises and Challenges of Microservices: an Exploratory Study 15

brought up by the study participants with different development experience. In this
figure, we show the percentage of participants of each type mentioning a particular
topic. E.g., two out of five participants with 2-5 years of experience (40%) discussed
topics related to the microservice granularity.

100%

75%

100%

50% 50% 50%

100% 100%

50%

100%

71% 71%

100%

71%

65%

59%

94%

100%

88%

100%

80%

73%

93%

73% 73%

60%

93%

100%

87%

0%

20%

40%

60%

80%

100%

Microservice
Granularity

Microservice
Ownership

Language
Diversity

Logging
and

Monitoring

Distributed
Tracing

Automating
Processes

Tools Managing
Common
Code

Managing
API

Changes

Managing
Variants

2-5 years (4) 6-15 years (17) > 15 years (15) X

Architecture Infrastructure Code Management

Unknown (1)

(a) By Industrial Experience

100%

30%

70%

100%

70% 70%

60%

100% 100% 100%100%

85%

69%

100%

77% 77%

62%

92%

100%

85%

100%

71%

79%

93%

64%

57% 57%

93%

100%

71%

0%

20%

40%

60%

80%

100%

Microservice
Granularity

Microservice
Ownership

Language
Diversity

Logging
and

Monitoring

Distributed
Tracing

Automating
Processes

Tools Managing
Common
Code

Managing
API

Changes

Managing
Variants

≤ 5 members (10) 6-10 members (13) > 10 members (14) X

Architecture Infrastructure Code Management

(b) By Team Size

Fig. 3 Survey Participants Distribution by Demographic Info

16 Yingying Wang et al.

Table 4 Agreement of the Survey Participants with the Interview Results

Theme Category
#Survey Participants (out of 37)

Practice Perception

Architecture
Microservice granularity 37 (100%)

Microservice ownership 24 (65%), 21 (57%)

Language diversity 27 (73%), 21 (57%)

Infrastructure

Logging and monitoring 36 (97%), 37 (100%)

Distributed tracing 26 (70%), 31 (84%)

Automating processes 25 (68%), 26 (70%)

Tools 22 (59%), 27 (73%)

Code management
Managing common code 35 (95%)

Managing API change 37 (100%)

Managing variants 31 (84%)

Figure 2b shows similar information when participants are distributed accord-
ing to the size of their team. Here, engineers working on larger teams (>10 team
members) typically have more code-management-related challenges, consistent with
our expectations. Members of smaller teams (4-5 members) raise more issues in
the tool category compared with other study practitioners; we conjecture that is
because tool management is more difficult for smaller teams that cannot afford to
split the workload between multiple team members. However, we note that as with
any qualitative studies, all numbers reported in this paper have informative rather
than statistical nature. We do not report on by-company-size distributions, as most
companies considered in our interview study are large enterprises.

To further validate or refute information identified during the interview study,
we reach out to a broader audience using a survey. Table 4 shows the agreement of
survey participants with the importance of the topics identified by the interviewees
in their current project (i.e., what they are currently doing). We also asked the survey
participants about their conceptual perception of the importance of the topics (e.g.,
what they think they should do). We report on these results with dashed bars in
Table 4. Interestingly, for the service ownership and language diversity categories
(which deviate from the standard advice in the microservice community), there are
more practitioners actually applying the practice than those that believe it is impor-
tant. However, practitioners believe in the importance of the infrastructure support
more frequently than actually being able to implement such support in practice.

Similar to interview results, we did not find a strong correlation between the
demographics of the survey participants and the topics they deem important. Figure 3
shows information similar to Figure 2, only for the survey participants. It is inter-
esting to note that infrastructure-related topics generally receive less attention than
topics related to architecture and code management. Infrastructure-related topics also
concern experienced engineers slightly more than their junior counterparts. Service
ownership is less of a concern for smaller teams, as expected. We discuss these results
in detail next.

Promises and Challenges of Microservices: an Exploratory Study 17

4.2 Results: Detailed Discussion

We organize the detailed discussion of the interview and survey results by three main
themes: architectural considerations, infrastructure support, and code management.
We outline best practices and lessons learned, list possible solutions to challenges
related to microservice-based development, and report the numbers of survey par-
ticipants employing each solution. We do not report on the number of interview
participants employing the solutions as our interviews had a more exploratory nature
and we did not explicitly ask interviewees to enumerate all solutions that they use.

4.2.1 Architecture

Architectural considerations include concepts related to microservice granularity,
ownership, and languages used.

Microservice Granularity. Identifying the right granularity for a microservice is
probably the most frequent question raised by both microservice newcomers and ex-
perienced microservice developers. Table 5 shows different, not necessarily mutually
exclusive strategies that organizations apply, according to our study.

The majority of the study participants follow the common guidelines stating
that business capabilities are the primary consideration for defining a microservice:
P15: «It just does one thing and does it really well». The size of the microservice in
terms of lines of code is a less important consideration: P14: «Having a big service is
not that bad, as long as the service is cohesive and it deals with one thing.»

Grouping together functions that need access to the same data is another well-
known guideline that enforces separation of concerns. In addition, it ensures that
only developers with the required permissions can access the appropriate data:
P2: «Machine learning has access to user data, so we want to separate it out from
[other] microservices. [...] We have a couple of people who have the responsibility
and the ownership of that code.» In fact, several practitioners mentioned that team
structure and capabilities help them decide on the microservice boundaries: P15: «If
[code] is very frontend-centric, then we will probably have teams of people who
think about web development and we will say that is a separate service. With the
data-centric thing, we might have a different group of people with different set of
skills that they work on that thing.» Another participant noted: P13: «The size of a
microservice matters only as it relates to the size of the team that can support it. [...]
that matters more than just saying, ‘Well, this microservice needs to handle these six
methods only’ or something like that. It’s more about team size.»

Looking at service dependencies and grouping together functions that talk to
the same APIs leads to minimizing service-to-service communication – another
consideration expressed by the study participants: P11: «The key is to have correct
separation of concerns, such that [...] the service-to-service communication is mini-
mized. Otherwise, you just pulled in a monolith again with network traffic between
the various systems.»

Yet, we observed multiple cases where companies that initially split their mi-
croservices based on these commonly accepted guidelines had to later revisit this

18 Yingying Wang et al.

Table 5 Microservice Splitting Criteria

Criterion #Survey Participants (out of 37)

Business capabilities 30 (81%)

Data access 16 (43%)

Team structure 9 (24%)

Dependencies 7 (19%)

Resource consumption 7 (19%)

Delivery cycles 5 (14%)

decision. The most prominent is the concern related to computing resource con-
sumption, i.e., CPU, memory, and disk space. Consumption of these resources might
increase substantially when common libraries are duplicated in many individual con-
tainers, e.g., for executing common operations, such as authentication and database
access, in each individual microservice. Excessive resource consumption increases
costs for companies that deploy their solutions in a pay-as-you-go cloud environment.

Furthermore, some companies need to deploy their solutions on proprietary hard-
ware, their own or of their customers. P1: «That has been fairly expensive because
we have to [...] figure out how exactly their server is set up, so we can deploy this
piece there with the dependencies.» When applications exceeded the hardware ca-
pacity allocated by the customer, companies had to merge microservices: P6: «[Our]
customers have more restricted resources. Splitting up to many microservices scared
them away because each microservice takes a certain amount of resources. [...] We
were able to trim down more than half of the size of that original module; we are still
doing that today.»

Closely related to resource consumption is the anticipated microservice utiliza-
tion criterion: P6: «We do not want too little traffic to a microservice. If we just serve
for one particular page that is not visited frequently, we are wasting our resources
starting up that microservice doing nothing for most of the time.»

Splitting applications into too granular microservices also induces additional
overhead on the development process: P1: «The more you split it up, the more
overhead you have. If you want to release, for example, a security patch for Java,
[...] you have to re-release each of your services. That is overhead.» To mitigate that
overhead, some study participants consider the frequency of changes and anticipated
delivery cycles as another criterion for defining microservices.

 Lesson learned #1: Apart from the common practice of considering business
capabilities and data access when deciding on microservice granularity, develop-
ers should apply product-specific considerations, such as the anticipated resource
consumption, team structure, and delivery cycles of microservices.

Microservice Ownership. Some of the interviewees strongly believed that having a
clear owner for each microservice is a necessity for functional organizations. That is
in contrast to the currently becoming popular practice of feature-based teams that can
“touch” any microservice when implementing a new feature. More than half of the
survey respondents (57%) also agreed with the need to define a service owner and
even more than that (65%) do have an owner defined in practice (see Table 4).

Promises and Challenges of Microservices: an Exploratory Study 19

Table 6 Microservice Owner Responsibilities

Responsibility #Survey Participants (out of 24)

Design microservices 20 (83%)

Identify bugs 22 (92%)

Fix bugs 19 (79%)

Implement new features 18 (75%)

Train newcomers 1 (4%)

A service owner is a person or a team, who is the primary point-of-contact when
the microservice malfunctions: P12: «Generally what happens is that if a service
isn’t working, that service’s owners or maintainers are informed and they are asked
to look into it.» The survey respondents that employ this practice (24 people, see
Table 6) report that, apart from being responsible for the design and architecture
of microservices (83%), owners identify and fix bugs (92% and 79%, respectively),
implement new features (75%), and train trusted committers for the service (4%).

Having service owners is important for defining a clear architecture, with
well-defined service responsibilities and boundaries, and reducing architectural
debt (Kruchten et al. 2012). When changes to a microservice are proposed, the owner
is responsible for assessing how appropriate the change is and, if not appropriate,
deciding on an alternative way to satisfy the demand: P20: «Because there wasn’t
that sense of ownership, there wasn’t that sense of continuum like ‘this is the purpose
of this service and it serves only that purpose’. It started being ‘[this service] gonna
do this, and this, and this, and that’. And it did not do either of them particularly well
as opposed to doing one thing really well.»

 Lesson learned #2: Assigning owners to microservices facilitates efficient
development and architectural integrity.

Language Diversity. Being polyglot is one of the most advertised advantages of
microservices, as it gives developers the flexibility to choose the technology stack and
languages that work best for their needs, as well as the ability to try new languages
on small components without affecting the whole system.

However, introducing many languages and frameworks may actually decrease
the overall understandability and maintainability of the system: P15: «We said, ‘Hey,
why not try using Golang? Why not try using Elixir?’ [...] so we wrote a service in
that language. But what happens then is you end up with one, maybe two people who
will understand it and nobody else can read the code or they struggle to read it, so
it makes the service a little bit less maintainable. And nobody wants to touch it, and
that is a big problem.»

Introducing many languages also makes the system harder to test: P17: «We’ve
got some ColdFusion parts. We’ve got JS. We’ve got some Golang, we’ve got
some Python. So now you’ve got all these different microservices [...] they’re using
multiple different tools for testing and at the same time to test the entire flow from
front to the end, it’s quite difficult.»

Our survey confirms this finding: 57% of respondents believe that companies
should prescribe a specific number or set of languages to be used (see Table 4). Even

20 Yingying Wang et al.

a larger number, 73% of respondents, report that their organizations already regulate
language diversity. One of the interviewees described the policy their company
follows: P15: «We are trying to converge on three main languages, JavaScript in
the front-end, Scala for data, and Ruby on Rails for business logic. When we are
building a new service, we pick one of those three languages depending on what
seems the most logical for the problem that we are solving as well as the team that is
gonna be implementing it.»

Another justification for steering away from multiple languages and technologies
is code and knowledge sharing: P15: «We ended up saying, ‘Yeah, we kind of do
[standardize languages] just because of the shared knowledge’. You can reuse ideas
from one microservice to another even though all the documents say that can be a
really bad idea because it limits creativity and it limits your ability to try out new
ideas and stuff. And we are like, ‘You know what? We don’t wanna do that. We just
want to have a small number of different technologies and live with it.’»

Our participants emphasized the need for standards on coding styles and devel-
opment workflows for all developers, which promote shared linting tools, testing
and deployment practices, etc. Such standards unify the development workflows for
hundreds or thousands of microservices, making knowledge and ownership transfer
more efficient.

 Lesson learned #3: For practical purposes, organizations should restrict the
number of programming languages used in a microservice-based system to a few
core languages: one for each high-level development “type”.

4.2.2 Infrastructure

As microservice-based applications consist of numerous independent components,
tracking their availability and performance, debugging the entire system, and using
an appropriate setup and maintenance infrastructure are critical activities, according
to our study participants.

Logging and Monitoring. One of the main criteria for a mature microservice-based
development process is the robustness of the logging and monitoring framework. All
the survey participants agree that the logging and monitoring framework is essential
and more than 90% believe it should be set up as early as the project starts. In practice,
practitioners report that this step can be neglected or postponed to a later stage, when
their project is experiencing failures and delays.

Practitioners often regret the decision not to set up a logging and monitoring
framework early as the project starts: P16: «Probably I will focus more on logging
and monitoring, right off the bat. Because trying to retrofit monitoring and logging
once we have all the services, is quite a bit of work.»

Our participants report that, apart from request and response time and service
availability, they log the number of requests, resource utilization, input, output, and
error data, request transaction id, and configuration values (see Table 7). Identifying
the right granularity level for logging is not a trivial task. Not logging enough
will cause problems when troubleshooting failures; logging too much might harm

Promises and Challenges of Microservices: an Exploratory Study 21

Table 7 Logging and Monitoring: What is Logged?

Information #Survey Participants (out of 36)

Request and response time 29 (81%)

Service availability 28 (77%)

Number of requests 24 (67%)

Resource utilization 21 (58%)

Input, output, error data 20 (56%)

Transaction id 2 (6%)

Configuration values 1 (3%)

Table 8 Logging and Monitoring: How Used?

Purpose #Survey Participants (out of 36)

Troubleshoot 36 (100%)

Customer reports 9 (25%)

Compliance and auditing reports 1 (3%)

Table 9 Logging and Monitoring: How Captured?

Solution #Survey Participants (out of 36)

Visualization 22 (61%)

Statistical data 19 (53%)

the application performance. Several participants also stated that, when logging,
particular care is needed to preserve client privacy, e.g., by obfuscating logged data.
P20: «Having metrics in place and reviewing them, making sure that they are the right
metrics, those are all things that get reviewed by the team ahead of time before you
actually launch.»

As shown in Table 8, practitioners use logged info for troubleshooting (100%),
for creating customers’ reports, e.g., on the delivered quality of service (25%), and
for creating reports for auditing purposes (3%). They mostly rely on monitoring and
visualization of the overall health of the system (61% in Table 9). Moreover, more
than half of the respondents mentioned that they run statistical analysis on the logged
info, to automatically identify failures, even before customers notice them, and notify
the corresponding team: P20: «Any time that the logs record a failure, we have tools
to find out where there were a lot of failures in this particular period of time, what
percentage of failures there were, was the latency for that call abnormal or something,
did it exceed a certain threshold over a certain period of time, etc. We have a tool that
would monitor those logs and send us alarms when those thresholds were exceeded,
for example, latency thresholds or success thresholds.»

 Lesson learned #4: Logging and monitoring frameworks should be set up
at the onset of the project. Developers should carefully evaluate the effect of
logged information on the performance of the application, client privacy, and the
troubleshooting, monitoring, and reporting abilities.

22 Yingying Wang et al.

Distributed Tracing. When locating failures, most companies follow the chain
of ownership, i.e., start from the failing microservice and gradually track where
problems are coming from.

As requests often span multiple services and the call relationships between mi-
croservices get very complex, solutions like distributed tracing (Richardson 2018b),
which track services participating in fulfilling a request, are applied: P23: «There
have been issues that I have worked on which were chained through five different
teams that are completely unrelated. And it was like, ‘okay, this is where the initial
source of this thing came from’.»

Like with logging and monitoring, setting up a distributed tracing framework is
an important task to do early as the project starts: P17: «A lot of companies that start
out, do not think about distributed tracing right from the get-go. They think about it
as an afterthought. And distributed tracing is a lot harder to implement after the fact
than it is when you start a project.» Around 65% of the survey participants agree that
distributed tracing should be established right as the project begins, but less than half
actually did that in their own project. Overall, 84% of the survey participants think
that a distributed tracing system should be set at some point during the lifecycle of
the project but, again, only 70% have such a system established in practice, as shown
in Table 4.

 Lesson learned #5: To efficiently troubleshoot a microservice-based applica-
tion, distributed tracing should be set up at the onset of the project.

Automating Processes. Building infrastructure to automatically create new mi-
croservice stubs and to add newly created microservices to the build and deployment
pipeline substantially reduces the operation costs: P14: «When we first started doing
microservices, it actually took about a month or two to get all the infrastructure ready
to create a new microservice. Now we have the ability to create a microservice in five
minutes.» P12: «The tooling is very important. There is kind of one way to create,
at least, the structure of projects for different platforms. So like, Scala microservices,
they will all look about the same. They will have the same structure. They will have
the same Jenkinsfile. They will have the same format in Kubernetes, the same way to
configure them, roughly. That is the core.»

Automated pipelines also help newcomers to start using microservices: P6: «To-
day we are working on our starter-kit for other teams to easily get on board with the
microservice-based architecture. Back at that time, we did not have a good way to
easily start up a new microservice, it involved a lot of learning curves.»

Like the aforementioned infrastructures, several interviewees, especially those
from large companies (e.g., P6, P12, P14), mentioned that an important lesson
they learned is not treating automation as an afterthought: P12: «If we had to start
microservices again, I think we would try to get the tooling for creating new services
ready and begin standardizing earlier. It is easy to say this in hindsight.»

Interestingly, while 59% of the survey participants agree with this statement and
57% indeed set up automated processes as early as possible, the rest either prefer to
postpone investing in an automated setup (11%) or do not believe such investment is
necessary at all (30%). These practitioners typically work on smaller projects which
rarely need to create new services; thus automation is deprioritized. In Table 4, we

Promises and Challenges of Microservices: an Exploratory Study 23

show the total number of survey participants that believe the automation has to be set
at some point of the project lifecycle: 70%.

 Lesson learned #6: For large projects, automating microservices setup help
reduce operation costs.

Tools. Early adopters of microservice-based architectures had to develop numerous
proprietary frameworks and tools, to support development, maintenance, and deploy-
ment of microservices. Some of these tools were later contributed to open source, e.g.,
Docker developed by Docker Inc., Kubernetes and Istio18 by Google, and Envoy19

by Lyft. By now, there are more than 370 tools out there to support development and
deployment of microservices, service discovery and API management at runtime, and
more20. For smaller companies, building proprietary tools no longer makes economic
sense: P13: «In the time that they were trying to build their own, Kubernetes came
about, and I think they realized now that they have wasted a lot of time building the
toolset.»

However, our study participants noticed that identifying an appropriate solution,
out of all available options, takes time; they usually lack time and incentive to do
that, as the development is driven by business needs: P10: «There are tools that are
out or coming out that are solving a lot of problems that we have. Things like gRPC,
GraphQL, code generation and documentation, service meshes, [...], they are great
at solving a lot of problems. We just do not have the time to actually move over
to them.» Around 73% of the survey respondents believe that they should actively
explore and evaluate new tools, but only 59% had time to do that in practice.

An advisable strategy is to stick to vendor-neutral interfaces, when possible,
which decouples the implementation from vendors. For example, instead of instru-
menting the code to call a particular distributed tracing vendor, such as Zipkin21

or Jaeger22, using the vendor-neutral distributed tracing framework OpenTracing23

facilitates the transition between vendors.

 Lesson learned #7: When available, choose vendor-neutral interfaces to avoid
vendor lock-in.

4.2.3 Code Management

In this section, we discuss considerations related to managing code of microservice-
based applications. In particular, we present alternative strategies our participants
apply for dealing with code shared by multiple microservices, managing evolving
APIs, and developing applications consisting of multiple variants serving different
types of customers.

18 https://istio.io
19 https://www.envoyproxy.io
20 https://landscape.cncf.io/license=open-source
21 https://zipkin.io
22 https://www.jaegertracing.io
23 https://opentracing.io

https://istio.io
https://www.envoyproxy.io
https://landscape.cncf.io/license=open-source
https://zipkin.io
https://www.jaegertracing.io
https://opentracing.io

24 Yingying Wang et al.

Table 10 Common Code: How Managed?

Solution #Survey Participants (out of 35)

Duplicate code 1 (3%)

Latest-version shared library 15 (43%)

Multiple-version shared library 15 (43%)

Standalone microservice 1 (3%)

Sidecar 3 (9%)

Managing Common Code. Splitting an entire system into a set of fully independent
microservices is not realistic in practice. Virtually all study participants stated that
some functionalities and code need to be shared among microservices. These include
cross-cutting concerns such as logging and authentication, database access, common
utilities, and more. Simply duplicating code in multiple microservices is against the
“do not repeat yourself” (DRY) principle of software development (Hunt and Thomas
1999) and will make code unmanageable in the long run. Only one survey participant
follows this practice (see Table 10).

The most common practice other participants employ to minimize code duplica-
tion observed is to package the common code in a shared library, which is imported
at build time (Mitra 2018). In the simplest case, all microservices use the same latest
version of a library; if a microservice requires a new feature, it has to upgrade to
the newest version of the library. Around 43% of the survey participant apply this
strategy. Its downside is that a microservice cannot make independent changes to that
common code: P15: «That is a [...] hassle because you change the common library
and then all the services that depend on this library need to change. [...] you have to
coordinate carefully and make sure that you do not do any breaking changes.»

To address this problem, another 43% of the survey participants carefully ver-
sion libraries and allow services to rely on multiple versions of a library. Such
an approach could introduce another challenge – inconsistencies and application
instability: P12: «Hopefully, we pick the right versions so that everything works
because the worst thing is when you have had transitive dependencies, and their
version clashes with something else that another library brings in. So dependency
management can be painful.»

To avoid the library management hassle, one survey participant opted for wrap-
ping common code in a standalone microservice and several interviewees suggested
such a practice as well. This approach simplifies procedures as no redeployment of all
microservices that use the changed library is required: P18: «If you put this common
code in a JAR and then [...] there’s a bug, you have to redeploy those [microservices
that use the JAR]. But if you have it [common code] outside [as a service], you just
deploy it once, that would be enough.» Yet, the clear disadvantage of this approach is
the introduction of network delays when executing the common code, which affects
application performance.

A more systematic solution that addresses the disadvantages of a standalone
microservice while keeping its advantages is called sidecar. This solution has recently
emerged from industry and did not yet experience wide adoption: only 9% of our sur-
vey respondents started to use this strategy. The main idea behind sidecar resembles

Promises and Challenges of Microservices: an Exploratory Study 25

Table 11 APIs: How Managed?

Solution #Survey Participants (out of 37)

Direct API calls 15 (41%)

Message-based communication 10 (27%)

A proxy 25 (68%)

A client library 8 (22%)

a sidecar attached to a motorcycle: it co-locates common code implemented as a
standalone microservice with the primary microservice, dynamically attaching it to
the main container.

Using sidecars helps avoid network overhead (as it runs on the same host as the
primary microservice) and solve the deployment problem (as sidecar can be updated
independently from the primary microservice). Moreover, it provides a homogeneous
interface for services across languages: P13: «Applications do not have to embed
libraries and then encode anymore, they can use a container-based solution that is
going to provide common functionality. And that way, if one developer makes a
change to that common component, people can just pull down the latest container
image and run it as a sidecar. They do not need to go and get a new version of the
code to compile under their applications.»

 Lesson learned #8: Sharing common code in the form of software libraries
violates microservice independence; such an approach require careful planning
and management. Practitioners should also experiment with the newly emerged
sidecar solution.

Managing API Changes. With services, the contract with downstream customers,
external or internal, is done at the API level. Best practices for defining APIs are
well captured by Postel’s law (Postel 1980): being liberal in what you accept and
conservative in what you send. Our study participants make an extra effort to avoid
breaking API changes, unless those are security-related. Breaking changes that face
external customers are especially discouraged: P21: «If you break those, that’s a
huge problem.» To reduce the chance of breaking customer code, our participants
encourage customers to ignore data they do not use: P13: «If [the clients] receive
some data that they do not need, do not break on that, just drop it because that may
be a way of introducing new changes.»

When a company must change an API in a way that it is no longer compatible
with the original version, e.g., to support security features, they version the APIs up,
eventually deprecating the old version without breaking it: P6: «If we are going to
delete something from the payload or we completely change the signature, we will
have to bump up the major version and create another version of the API and ask
people to move over.»

API changes are typically discussed in internal or external interlocks, docu-
mented, and systematically deployed. Around 41% of our survey participants (see Ta-
ble 11) use direct API calls for synchronous communication between microservices.
Another 27% use asynchronous message-based communication within their product

26 Yingying Wang et al.

Table 12 Variants: How Managed?

Solution #Survey Participants (out of 31)

Feature flags 10 (32%)

Role-based access 16 (52%)

Separate deployments 5 (16%)

or across product boundaries. They mostly rely on distributed stream-processing
software, such as Apache Kafka or message brokers, such as RabbitMQ.

With both direct calls and messaging, when a change is introduced, it is imple-
mented by an API with a new version number. Both the old and the new versions
are deployed alongside to allow a smooth transition of the clients, and the old API
is removed when clients stop using it: P20: «You do your first deployment on the
API. You do the second deployment on the calling service. And then you do another
deployment on the API again to remove the old stuff.»

This strategy makes the transition simple and straightforward, but requires
changes in all clients using the API. Identifying and notifying such clients is a
challenging task. Various proxy solutions, e.g., API gateways (Richardson 2018a),
push the complexity to the server side. Proxies are employed by 68% of our survey
respondents.

As breaking API changes often involve simple modifications, e.g., adding a new
input parameter to the API, a proxy can be programmed to detect old API calls and
transform them to a new version, e.g., by adding default values to fields not passed
by the client, making them backward compatible before forwarding the requests to
the new API version. In this way, clients stay oblivious to the actual version they
are using, as every request goes through the gateway and the gateway just routes the
request as needed.

Another solution for simplifying clients’ transition to new API versions is to pro-
vide clients with a library that wraps calls to server APIs. Client libraries are utilized
by 22% of the survey respondents. They are typically automatically generated, e.g.,
using tools such as Swagger24. Using libraries has numerous benefits over clients
making direct HTTP calls (Google Cloud 2019). First, developers can push upgrades
to the clients more easily by using package management tools. The upgrade process
is also simplified for the customer as they do not need to get acquainted with the
details of the changes. Finally, client libraries can handle low-level communication
issues such as authentication with the API server, again, reducing the burden on the
customer side.

 Lesson learned #9: API breaking changes, especially those facing external
clients, are discouraged. When needed, e.g., for security upgrades, they should be
introduced via deprecation. API gateways and client libraries help to mitigate the
burden of upgrades for the client.

Managing Variants. Managing different customer offerings (a.k.a. variants), e.g.,
for “free” vs. “premium” customers, is yet another challenge in developing microser-

24 https://swagger.io/

https://swagger.io/

Promises and Challenges of Microservices: an Exploratory Study 27

vices. More than 80% of our survey participants (31) need to manage variants of their
products. Out of those, 32% rely on feature flags (see Table 12), which are basically
conditions that are passed with requests and that control different paths in code. In
the simplest form, these flags can identify a certain group of users: P12: «It can say,
‘Oh, if you are User X, do this code’, or ‘if you are in this cohort, do this code’. We
use feature flags very heavily, so we can turn on some code path for different people.»

More robust feature flags do not condition over particular users, which is hard to
scale, but rather specify high-level features: P21: «When the feature is toggled for
a customer, it is more like a temporary thing where it is like a hack. [...] Typically,
when it is a specific feature, that is something that is determined at the API level and
passed in. It is a call to the service with feature X enabled.»

The biggest benefit of using feature flags is to be able to make changes on the fly at
run-time. Companies also use feature flags to support blue-green deployments (Rossi
et al. 2016) and to roll-out changes to a certain group of users: P12: «We can say,
‘Let’s push this new feature out to 1% of our user groups, 10%, and slowly see what
the response is over time’.»

The disadvantages of feature-flags are that it requires extensive management of
features themselves and the correspondence between features and code that imple-
ment these features. Testing different combinations of features also becomes chal-
lenging. Another approach for managing variants, which is employed by the majority
of our survey respondents (52%, see Table 12), is role-based access which provides
access to APIs based on the user role. Such an approach is typically supported by
the API management tools and API gateways (Richardson 2018a). Each incoming
request has an API key tied back to a particular API plan, and an API gateway routes
the requests to certain code, based on the developer-specified configuration.

The main advantage of the role-based access approach compared to feature flags
is that this approach makes the primary functionality selection in the infrastructure
layer, making it possible to deny access to certain clients, instead of performing
checks in the code: P20: «Based on the customer ID, they are allowed to use a subset
of the service, when they try to call these other APIs that they are not supposed to,
they will just get an error back.»

Finally, 16% of the survey participants reported that they use separate deploy-
ments for different customers, on the company’s or customers’ sides. In detailed
interviews, the practitioners explained that their projects started from using feature
flags and other code-level differentiation, but that complicated code management:
P7: «Previously we were doing everything within the one microservice. [...] That
became very messy very quickly, so we ended up splitting an instance out into its
own branch.»

Such projects maintain different code bases for different customers: P6: «Dedi-
cated and local [offerings] are different because they are for only certain customers.
[...] We have a branch for the dedicated and local system; when we roll out a new
feature to the public system, they won’t get it automatically unless we pour that
feature to the branch.»

While separate branches induce the overhead of synchronizing the code bases,
some practitioners opt to do that to ease the maintenance effort: P5: «Let’s say we
have product v6.0, v6.1, and v6.2. We found a bug in v6.0, and need to fix the bug

28 Yingying Wang et al.

in all three versions. But the bug fix that is needed in the three versions can be
different due to compatibility issues. When fixing the bug, we need to independently
fix all versions.» Such a solution might be appropriate for cases when customer offers
diverge substantially.

 Lesson learned #10: Feature flags and role-based access for managing
product variants make it possible to maintain a single code base but complicate its
maintenance. Separate deployments can be considered when variants are expected
to substantially diverge.

4.3 Results: Summary

We now present the main best-practices, challenges, and lessons-learned identified
by our study participants, answering the research questions presented in Section 1.
RQ1: What are best practices learned by practitioners successfully adopting mi-
croservices for commercial use?

• When deciding on microservice granularity, apart from splitting by business
capabilities, developers should also consider product- and deployment-specific
constraints, e.g., those related to the anticipated resource consumption, team
structure, delivery cycles, and more.

• Assigning an explicit owner to each microservice (vs. shared ownership model)
helps improve architectural integrity, productivity, and the resulting product qual-
ity.

• Restricting the number of programming languages used within an organization
helps facilitate maintenance and reuse.

• Setting up extensive and comprehensive logging and monitoring support early in
the development lifecycle, as well as investing in distributed tracing early on, help
increase product quality.

• Automated tool support, the use of standardized tools, and the use of open
interfaces help reduce operational costs.

RQ2: What are challenges practitioners face?

• Managing common code shared by multiple microservices, e.g., for authentica-
tion and logging.

• Preventing and dealing with breaking API changes.
• Supporting products consisting of multiple different customer offerings using a

single code base.

Even though solutions to these challenges might exist in the software engineering
field in general, they are still to be studied and adapted in the particular context of
microservices.
RQ3: Which solutions to the identified challenges exist?

• For managing common code, our study enumerated several options employed
by the participants; they are shown in Table 10. While most participants rely on

Promises and Challenges of Microservices: an Exploratory Study 29

shared libraries, the emerging sidecar technology mentioned by some could be a
promising and elegant microservice-native solution to this problem.

• Numerous options for managing APIs are listed in Table 11. API gateways and
client libraries, although not adopted by the majority of the practitioners involved
in our study, have a high potential to mitigate the burden related to managing API
changes.

• Options for supporting product variants are listed in Table 12. Each of these
solutions has advantages and disadvantages, with most practitioners applying a
role-based access model to support different product offerings within the same
code base.

5 Discussion and Future Research Directions

Microservices are advertised as a way to speed up development, reduce commu-
nication effort and dependencies, and increase performance and scalability of an
application at runtime. Together with these benefits, there are several pitfalls and
challenges related to the adoption of microservices. In this section, we discuss the
implications of our findings in detail and outline possible future research directions
that emerged from our study (Section 5.1). We then summarize the main discussion
points and implications (Section 5.2).

The discussed topics were raised by study participants when we asked them an
open-ended question about emerging challenges they envision. Even though some of
these topics were raised by less than three participants (and thus we did not include
them in Section 4, per our study methodology), we believe it is valuable to report
on these results: these topics were raised by the most experienced participants of our
study (mostly Principle Software Engineers and Architects with more than 10 years
of experience) and thus could be of interest to the reader.

As with Section 4.2, we structure the discussion around architecture, infrastruc-
ture, and code management themes.

5.1 Detailed Discussion

5.1.1 Architecture

Identifying proper service granularity is one of the main concerns of multiple prac-
titioners. Splitting and merging microservices is a process that is performed con-
tinuously, long after the initial microservice topology is identified: P7: «A major
reason for creating a new microservice is to spin off one microservice that started
to get large.» This process should be informed not only by architectural consid-
erations, such as functional decomposition, coupling and cohesion, and fan-in and
fan-out metrics, but also by additional concerns such as performance, reliability, and
security. In particular, breaking the system into services that communicate over the
network increases the attack surface, security of data transferred within and between
applications is to be considered and minimizing transfer of sensitive data over the
network could be beneficial: P13: «There needs to be a lot more thought putting

30 Yingying Wang et al.

into security as you are building application components.» P19: «How do you create
security between microservices? [...] you might have encryption to an application [...]
but once you are inside, it is not encrypted anymore. [...] What if there was a hacker
that was able to get inside the overall system through some means and they were able
to do a man-in-the-middle [attack]?»

Another consideration related to the fact that all data between microservices
is transferred over the network is the volume of the transferred data, which could
add an additional decomposition consideration: P21: «Sometimes even choosing
microservices may not be the best option because you have a lot of communication
overhead then.»

As with any other systems, the quality of microservice-based architecture de-
grades over time and the abstractions introduced at the design stage get lost. The
systems accumulate, so to say, architectural debt: P2: «There will be technical debt
that you would accumulate even in terms of integration, in terms of source control and
versioning.» Metrics and tools that help practitioners continuously assess and provide
suggestions for refactoring their microservice-based architectures are thus needed.

 Future work #1: Guidelines and metrics for assessing the quality of a
microservice-based system, which go beyond the “classical” architectural pat-
terns, e.g., coupling and cohesion, and also consider performance-, reliability-,
and security-related concerns for microservices.

More generally, several study participants noted that microservices is not a magic
“pixie dust” and transitioning to microservices cannot solve all development prob-
lems. Moreover, microservices are not the solution to all applications. Organizations
should avoid being “deceived” by a few promises of microservices; more structured
guidelines on what types of applications would benefit from transitioning to mi-
croservices and which should be more cautious about migrating would be helpful:
P10: «At some point, it just does not make sense to make everything into a discrete
unit. The functionality is not important enough to spend the time on doing it or it
would just not have enough value to spend the time doing it.» In addition, guidelines
on co-existence of monolithic and microservice-based parts of an application are
needed. Our participants believed that at present, there is too much emphasis on the
initial microservice build, with not much support for assessing the necessity of this
decision and its implications in the longer run: P13: «It is an architectural style that
is optimized for post-implementation change as opposed to implementing the first
go-around.»

 Future work #2: Guidelines on types of applications that would benefit
from transitioning to microservices and support for co-existence of monolithic and
microservice-based parts of an application.

5.1.2 Infrastructure

Several study participants believed that breaking a system into small components
makes it easier to understand: P7: «For someone who joins our team about one or
two weeks ago, instead of giving them all 2.5 million lines of code that make up our

Promises and Challenges of Microservices: an Exploratory Study 31

entire product, we can give them 10,000 lines of code and say ‘hey, you do not have
to worry about anything but go learn this 10,000 lines of code, the changes you are
going to need to make are within this area.’ It is a lot less overwhelming. All that code
is consistent too, we just find it is a lot cleaner.» Others mentioned that while a limited
scope indeed decreases the entrance barrier, it weakens the developers’ understanding
of the system as a whole: P12: «If you are a principal developer, [...], someone who
is making more wide-reaching decisions, definitely understanding the whole system
is important.»

Under such a model, developers, in particular the junior ones, are trained to be-
lieve that they should only care about a few microservices that they directly work on.
They develop the impression that it is easy (or easier) to debug microservices: P-: «if
something is working incorrectly, you do not have to debug the whole application.
You just debug this tiny little part from the test.»25 Yet, understanding and debugging
a distributed system composed of multiple, independently managed and involving
components, is in fact, a challenging task (Liu et al. 2008; Beschastnikh et al. 2016):
P15: «I think you cannot find everything when you are just doing service-level testing
because you do not see the entire picture. The problems tend to be different [...].»

Performance debugging for microservice is especially difficult and is now mostly
based on metrics and logs, and is mostly done ad-hoc. Current tools help practitioners
understand the health and performance of a single microservice, a container, or the
application as a whole. However, the interpretation of how all these components work
together to identify the root cause of problems is mostly done manually: P7: «You
also need to understand the overall performance characteristics of the service as
a whole [...]. I am trying to pull out it together, to get a good overview of the
performance and the various bottlenecks, which is significantly more challenging
than just a single Java program.» Application performance management software for
microservices has not gained sufficient attention in the relevant communities (Seifer-
mann 2017; Heinrich et al. 2017).

Moreover, since the data and traffic load in the testing and production environ-
ments are different, defects are not readily apparent until going to the production
environment: P17: «It is a lot more difficult to try and test some product end-to-
end just because it is very difficult in the microservices world to actually replicate
production-like data in testing. That is always been a challenge ever since microser-
vices have been introduced because you cannot really test the full breadth and scope
of a product in testing simply because of the data inconsistencies and the scaling
inconsistencies.»

 Future work #3: Tools for understanding, debugging, and assessing perfor-
mance of a microservice-based system.

Microservices are commonly thought of as an architectural style that emerged
from the Agile and DevOps movements (McLarty 2016; MuleSoft 2018), to solve
the bottleneck of centralized delivery, to reduce the communication effort, and to
shorten build-test-deploy cycles. DevOps promotes full ownership from development
to production, and is one of the main backbones of microservice-based architectures.

25 The quote is anonymized, to preserve the confidentiality of the participant.

32 Yingying Wang et al.

Yet, for government and healthcare-related organizations, which are bound by privacy
laws that require careful handling of confidential and personal data, implementing
DevOps is not always straightforward: such companies often rely on contractors that
develop the software, who do not have access to the company’s infrastructure which
is managed by the operations team: S32: «Data privacy concerns require data to be
kept in-house».

 Future work #4: Development practices for microservice-based products
bound by privacy laws and/or requiring regulatory compliance.

5.1.3 Code Management

Maintaining different variants is another important concern for microservice or-
ganizations. While techniques like feature flags and segregation of functionality
by APIs are useful, they add complexity to the development processes and make
testing different combinations of features harder. Efficient management of product
variants is a research topic extensively studied by the software product line research
community (Weiss and Lai 1999; Clements and Northrop 2002; Pohl et al. 2005).
Adapting the techniques developed by this community to the context of microservices
could be a fruitful research direction.

 Future work #5: Tools and techniques for efficient development, maintaining,
testing, and debugging microservice-based system variants.

In the realm of managing API changes, several of the study participants indicated
that this process involves constant synchronization effort between the teams to
propose and discuss changes and even synchronization on deploying changes simul-
taneously. Our participants mentioned having meetings, emails, and Slack channel
conversations, to propose and discuss API changes: P15: «We talk to each other, that
is usually how it works. We basically get in a room and draw on a whiteboard, say,
‘Okay, you do this. You change this. Okay, and then we deploy that. And then you go
and change this and you deploy that,’ and so on. [...] We have a meeting or we have
just email discussion [...] on what the change is and we discuss it. We do this at least
once a week.»

In fact, communication and coordination within and between teams still remain a
challenge. Even though most companies adopted microservice-based architectures
because of the promise to decouple the teams, synchronization and collaborative
planning still takes a substantial portion of the teams’ time: P17: «What ends up
happening is that a lot of different teams logistically are working on different
microservices. They are speaking on a similar type of protocol, so it is very easy
to deploy the product. But when it comes to making changes across all of the
microservices in one go or change the entire flow, it is difficult logistically because
you are usually dealing with different teams. So there is that challenge, as well.»

 Future work #6: Tools for assessing the impact of the proposed changes and
facilitating communication of these changes between the teams.

Promises and Challenges of Microservices: an Exploratory Study 33

5.2 Summary

The main directions for possible future work, which emerged from our study, are
summarized below.
Architecture. The microservice-based architecture style is appropriate for some
but not all applications. Practitioners need structured guidelines to determine
whether the transition to microservices is beneficial, which parts of an application
will benefit from transitioning to microservices, and how to efficiently manage
microservice-based and monolithic components which are parts of the same system.
Non-functional considerations, such as performance, reliability, and security, need
particular attention.

Infrastructure. Practitioners need better tools that support performance testing and
debugging for microservices. Moreover, companies that cannot implement the “clas-
sical” DevOps pipelines, e.g., because the private customer data cannot be shared
with third-party developers, need solutions replacing a full-ownership model and
allowing smooth collaboration between developer, infrastructure, and support teams.

Code management. Change management is challenging in monolithic applica-
tions and becomes even more challenging in microservice-based applications. Tools
for assessing and communicating the impact of a change in one microservice on
other microservices is needed. Solutions for developing, managing, and debugging
microservice-based application variants targeting different related customers or mar-
ket systems are in demand as well.

6 Threats to Validity

External Validity. External validity is concerned with the conditions that limit the
generalization of our findings. As in many other exploratory studies in software
engineering, our research is inductive in nature and thus might not generalize beyond
the subjects that we studied. Yet, our sample is large enough and diverse enough to
give us confidence that it represents central and significant views. We intentionally
included in the study software developers from companies of different types and
sizes. We also interviewed practitioners in different roles – from software developers
to team leads and managers, and followed up on the interview study with an online
survey reaching a different industrial segment. We believe that these measures helped
to mitigate this threat.

Internal Validity. For internal validity, we might have misinterpreted participants’
answers or misidentified concepts and categories, introducing researcher bias to the
analysis. We attempted to mitigate this threat in two ways. First, all data analysis steps
were performed independently by at least two authors of the paper; furthermore, all
disagreements were discussed and resolved by all the authors. Second, we shared the
“raw” data collected during the interviews with each corresponding interviewee and
the resulting report (this paper) with all study participants for their validation. We
thus believe our analysis is solid and reliable.

34 Yingying Wang et al.
Ta

bl
e

13
C

om
pa

ri
so

n
w

ith
R

el
at

ed
W

or
k

M
ig

ra
tio

n
St

ud
ie

s
Po

st
-m

ig
ra

tio
n

St
ud

ie
s

To
pi

cs

Di Francesco et al. (2018)

Balalaie et al. (2018)

Carvalho et al. (2019)

Ghofrani and Lübke (2018)

Taibi et al. (2017)

Knoche and Hasselbring (2019)

Fritzsch et al. (2019)

Luz et al. (2018)

Gouigoux and Tamzalit (2017)

Bucchiarone et al. (2018)

Balalaie et al. (2016)

Zhang et al. (2019)

Taibi and Lenarduzzi (2018)

Taibi et al. (2020)

Bogner et al. (2019)

Chen (2018)

Zhou et al. (2018)

Alshuqayran et al. (2016)

Bandeira et al. (2019)

Soldani et al. (2018)

Viggiato et al. (2018)

A
rc

hi
te

ct
ur

e
M

ic
ro

se
rv

ic
e

gr
an

ul
ar

ity
+

+
+

+
+

M
ic

ro
se

rv
ic

e
ow

ne
rs

hi
p

L
an

gu
ag

e
di

ve
rs

ity
*

*
In

fr
as

tr
uc

tu
re

L
og

gi
ng

an
d

m
on

ito
ri

ng
+

D
is

tr
ib

ut
ed

tr
ac

in
g

A
ut

om
at

in
g

pr
oc

es
se

s
+

+
+

+
+

+
+

+
+

To
ol

s
+

C
od

e
m

an
ag

em
en

t
M

an
ag

in
g

co
m

m
on

co
de

*
*

M
an

ag
in

g
A

PI
ch

an
ge

s
M

an
ag

in
g

va
ri

an
ts

T
he

sy
m

bo
li

nd
ic

at
es

th
at

th
e

re
la

te
d

w
or

k
is

fu
lly

al
ig

ne
d

w
ith

ou
rfi

nd
in

gs
on

a
to

pi
c.

T
he

sy
m

bo
li

nd
ic

at
es

th
at

th
e

re
la

te
d

w
or

k
m

en
tio

ns
so

m
e

bu
tn

ot
al

lc
on

ce
pt

s
w

e
id

en
tifi

ed
on

a
to

pi
c.

T
he

sy
m

bo
li

nd
ic

at
es

th
at

th
e

re
la

te
d

w
or

k
do

es
no

tc
ov

er
th

e
to

pi
c

at
al

l.
T

he
+

sy
m

bo
li

nd
ic

at
es

th
at

th
e

re
la

te
d

w
or

k
m

en
tio

ns
ad

di
tio

na
lc

on
ce

pt
s

on
no

tc
ov

er
ed

in
ou

rs
tu

dy
.

T
he

*
sy

m
bo

li
nd

ic
at

es
th

at
th

e
re

la
te

d
w

or
k

m
en

tio
ns

vi
ew

co
nt

ra
di

ct
in

g
th

os
e

id
en

tifi
ed

in
ou

rs
tu

dy
.

Promises and Challenges of Microservices: an Exploratory Study 35
Ta

bl
e

14
A

dd
iti

on
al

To
pi

cs
M

en
tio

ne
d

in
R

el
at

ed
W

or
k

M
ig

ra
tio

n
St

ud
ie

s
Po

st
-m

ig
ra

tio
n

St
ud

ie
s

To
pi

cs

Di Francesco et al. (2018)

Balalaie et al. (2018)

Carvalho et al. (2019)

Ghofrani and Lübke (2018)

Taibi et al. (2017)

Knoche and Hasselbring (2019)

Fritzsch et al. (2019)

Luz et al. (2018)

Gouigoux and Tamzalit (2017)

Bucchiarone et al. (2018)

Balalaie et al. (2016)

Zhang et al. (2019)

Taibi and Lenarduzzi (2018)

Taibi et al. (2020)

Bogner et al. (2019)

Chen (2018)

Zhou et al. (2018)

Alshuqayran et al. (2016)

Bandeira et al. (2019)

Soldani et al. (2018)

Viggiato et al. (2018)

A
dd

iti
on

al
to

pi
cs

M
an

ag
in

g
re

po
si

to
ri

es
*

Te
st

in
g

an
d

de
bu

gg
in

g*
Se

cu
ri

ty
*

D
ep

lo
ym

en
t*

D
at

a
m

an
ag

em
en

t
C

om
m

un
ic

at
io

n
pr

ot
oc

ol
s

A
PI

de
si

gn
Q

ua
lit

y
m

et
ri

cs
se

le
ct

io
n

H
um

an
an

d
or

ga
ni

za
tio

na
l

T
he

sy
m

bo
li

nd
ic

at
es

th
at

th
e

re
la

te
d

w
or

k
m

en
tio

ns
th

e
to

pi
c.

T
he

sy
m

bo
li

nd
ic

at
es

th
at

th
e

re
la

te
d

w
or

k
do

es
no

tc
ov

er
th

e
to

pi
c.

T
he

*
sy

m
bo

li
nd

ic
at

es
th

at
th

e
to

pi
c

w
as

co
ve

re
d

by
le

ss
th

an
th

re
e

pa
rt

ic
ip

an
ts

of
ou

rs
tu

dy
.

36 Yingying Wang et al.

7 Related Work

We divide the discussion of related work into three main areas: studies discussing mi-
gration to microservices, studies focusing on post-migration practices and challenges,
and meta-studies on microservice-based development.

Table 13 lists papers in the first two areas and relates their findings to the finding
identified in our study. With a symbol we indicate that the related work is fully
aligned with our findings on a particular topic. A symbol indicates that the related
paper mentions some but not all concepts we identified on a topic. Finally, a symbol
indicates that the related work does not cover the topic at all. With a + sign we indicate
that the related work mentions additional concepts not covered in our study; a * sign
indicates that the related work mentions views contradicting those identified in our
study.

As a high-level comparison, the table shows that while some of the papers cover
part of the topics we identified, none of them covers all our findings. Moreover,
none of the papers identifies the need for managing variants in microservices, the
importance of service ownership, and the responsibility of the owners.

Furthermore, while some of the papers discuss topics similar to those identified
in our work, most touch them at a high-level, without explicitly synthesizing a list
of possible solutions to the challenges faced by the practitioners. For example, Di
Francesco et al. (2018), Balalaie et al. (2018), Fritzsch et al. (2019), Luz et al.
(2018), Gouigoux and Tamzalit (2017), Bogner et al. (2019), and others discuss the
challenge of identifying proper service granularity but do not provide a practical set
of options collected from practitioners (thus the in Table 13). Likewise, managing
API changes is outlined as a challenge by Balalaie et al. (2016), Zhang et al. (2019),
Taibi and Lenarduzzi (2018), Taibi et al. (2020), Bogner et al. (2019), Chen (2018),
Soldani et al. (2018) but these papers do not provide alternative solutions and discuss
their advantages and disadvantages. Di Francesco et al. (2018), Balalaie et al. (2018),
Knoche and Hasselbring (2019), Bucchiarone et al. (2018), Taibi et al. (2020), Bogner
et al. (2019), and Chen (2018) discuss the importance of logging and monitoring,
but do not provide suggestions on what to log and how to use the logged info. As
our study is larger and involves more companies than most of previous work (with
exceptions being only Knoche and Hasselbring (2019), Taibi and Lenarduzzi (2018),
and Taibi et al. (2020)), we were able to consolidate numerous concerns scattered in
multiple papers in related literature.

As with any qualitative exploratory study, the list of topics we report on is not
intended to be complete but rather represents topics raised by our study participants.
Table 14 summarizes the main topics reported by related work, which were not
covered by our study. Topics related to managing multiple repositories, testing and
debugging, security, and deployment were mentioned by less than three of our study
participants; we did not report on those in our results as our goal was to focus on
topics of importance that concern a substantial number of participants. We discuss
some of these topics in Section 5 and mark them with a * in Table 14. Data
management considerations, as well as challenges related to communication protocol
selection, API design, and selection of appropriate quality metrics did not come up
explicitly in our study. Human and organizational challenges, including developer

Promises and Challenges of Microservices: an Exploratory Study 37

mindset change and recruitment of skilled personnel, did not come up in our study
either; these topics are often important when migrating to microservices. We believe
our study participants did not mention these topics to us as we focused our study on
teams that develop microservice-based applications for several years, who often have
migration-related issues already resolved. We now discuss each of the related papers
in detail.

Migration to Microservices. Overall, the work in this area focused on the pro-
cess of migration to microservices. In contrast, we collected experiences, chal-
lenges, and lessons learned by organizations in the post-migration phase. We also
included companies that did not perform any migration but built their systems
using a microservice-based architecture from the start. Di Francesco et al. (2018)
investigated the practices and challenges in migration to microservices by conducting
five interviews and following up with a questionnaire involving 18 practitioners.
They observed that finding a proper service granularity and setting up an initial
infrastructure for microservices are some of the migration challenges developers face.
They also discussed challenges related to the automated support for testing (hence the

+ in the “Automating processes” row in Table 13).
Balalaie et al. (2018) reported on a set of migration design patterns that the

authors collected from industrial-scale software migration projects, showing how to
decompose monolith based on data ownership, transform code-level dependency to
service-level dependency, monitor the running microservices, and more. The authors
also presented three case studies showing the applicability of their patterns. They
highlighted the value of using automated DevOps practices, which did not come up
in our study, hence the + in the “Automating processes” row in Table 13 again.

Carvalho et al. (2019) investigated the usefulness of microservice extraction
criteria proposed in academia by surveying 15 practitioners. The results suggested
that practitioners often consider multiple criteria, such as coupling, cohesion, com-
munication overhead, and reuse potential simultaneously when extracting microser-
vices from monolith. Yet, academic solutions do not satisfy the industrial needs
and existing tools are insufficient for making well-formed decisions on microservice
extraction. This paper identified reuse as an additional consideration when splitting
a monolithic application to microservices. We thus put a + in the “Microservice
granularity” row in Table 13.

Ghofrani and Lübke (2018) conducted an online survey with 25 industrial and
academic participants who answered questions related to goals and challenges in de-
vising a microservice-based architecture, notations used to describe it, and solutions
for improving a microservice-based architecture. The authors found that identifying
proper service cuts is challenging and that optimization in security, response time,
and performance are the major concerns in microservice-based architecture. Our
study did not consider security as a criterion when splitting to microservices, but
enumerated other important criteria, such as team structure and delivery cycles, hence
the + in Table 13.

Taibi et al. (2017) surveyed 21 practitioners from industry who adopted a
microservice-based architecture style for at least two years. Unlike our work, the
goal of that survey was to analyze the motivation as well as pros and cons of

38 Yingying Wang et al.

migration from monolithic to microservice-based architectures. The authors found
that maintainability and scalability were ranked as the most important motivation,
that the return on investment in the transition is not immediate, and that the reduced
maintenance effort in the long run is considered to compensate for non-immediate
return on investment. Similar to our work, the authors also noticed that an investment
in setting up automated infrastructure early on pays off in the long term; they also
discussed the importance of setting DevOps processes and practices, hence the + in
Table 13.

More recently, Knoche and Hasselbring (2019) and Fritzsch et al. (2019) inves-
tigated the drivers and barriers of migration to microservices among practitioners
in Germany and confirmed findings of Taibi et al. (2017) that maintainability and
scalability are the primary motivations for adopting microservices. Major migration
barriers include identifying appropriate service boundaries and human skill- and
mindset-related challenges. Knoche and Hasselbring (2019) also discussed topics
related to logging, monitoring, automating testing infrastructure, and runtime de-
ployment environment, but did not provide any concrete suggestions on, say what
to log and how to used the logs, hence the in Table 13. Interestingly, Fritzsch
et al. (2019) suggested that prescribed technological and architectural decisions
can be troublesome while our participants suggested the necessity to restrict pro-
gramming language and technology stack diversity (indicated by a * in Table 13).
This divergence likely stems from the fact that most participants in the study by
Fritzsch et al. (2019) are still migrating their application to microservices, whereas
our participants shared post-transition perspectives after several years of experience
with technological heterogeneity. Our findings are also in agreement with other post-
migration studies, e.g., Chen (2018), Bogner et al. (2019), Zhang et al. (2019), Taibi
and Lenarduzzi (2018), and Taibi et al. (2020).

Luz et al. (2018) shared observations on the transition process of three Brazilian
Government Institutions and cross-validated the results by surveying 13 practitioners
in the studied institutions. The authors found that the lack of guidance on criteria for
decomposing a monolithic system into a set of microservices, infrastructural support,
and metrics for evaluating the quality of a microservice-based system are commonly
perceived as challenges in the transition process. Gouigoux and Tamzalit (2017)
described the lessons learned during migration from monolith to microservices in
a French company named MGDIS SA. The study focused on how the company
determined a suitable granularity of services, and their deployment and orchestration
strategies. Likewise, Bucchiarone et al. (2018) reported on experience transitioning
from monolith to microservices in Danske Bank, showing that such transition im-
proved scalability. Balalaie et al. (2016) also described the migration of a commercial
mobile backend application to microservices, focusing on DevOps adoption practices
that enabled a smooth transition for the company (hence the + in the “Automating
processes” row in Table 13). The authors learned that even a small API change
can break the system and suggested to use customer-specific contracts to make the
system more error-prone. Again, our study does not focus on the migration phase.
Moreover, rather than a single case study, we collected practices and challenges from
multiple companies successfully completing the migration, helping researchers and

Promises and Challenges of Microservices: an Exploratory Study 39

practitioners get a better overview of the current state-of-practice in microservice
development.

Post-migration Practices and Challenges. Zhang et al. (2019) interviewed practi-
tioners from 13 companies to (a) identify the gaps between the ideal and practical
versions of microservice-based applications and (b) to understand the tradeoffs
between the benefits and pains of microservice-based application development. The
authors found that missing guidelines on decomposition to microservices, inadequate
automation around logging, monitoring, and other types of infrastructural support,
as well as excessive technology diversity are some of the pains practitioners face.
The also discussed considerations for setting up DevOps and an infrastructural
tool topology, designing microservices so that they can be reused in the future,
testing and debugging considerations, and topics related to management of data and
communication protocols. While some of the authors findings are similar to ours,
they did not discuss all considerations for splitting to microservices mentioned in our
work, such as those related to resource consumption, what to log and how to utilize
the logged info, and considerations related to microservice ownership, management
of common code, and management of product variants, as indicated in Table 13.

Taibi and Lenarduzzi (2018) and Taibi et al. (2020) focused on collecting code
smells and anti-patterns in microservice-based development. In the former study,
the authors interviewed 72 developers from 61 different organizations; they latter
extended the study by collecting opinions from another 27 developers from 27
different organizations, all with at least two years of microservice development
experience. The developers were asked to rank bad practices in microservice-based
development that the authors collected from the literature, report on additional bad
practices participants faced, and on solutions they developed. As the result of these
studies, the authors identified a taxonomy of 20 anti-patterns, covering both organiza-
tional and technical aspects of microservice-based development. The identified anti-
patterns include excessive language diversity, usage of local vs. distributed logging
infrastructure, lack of proper version for APIs, and management of common code.
The authors also identified anti-patterns related to testing and debugging, design of
APIs, communication protocols, and data management, as indicated in Table 14. Our
study confirms some of these findings, while identifying additional considerations
related to management of product variants and robust infrastructural support, e.g.,
the use of distributed tracing. Our study also explicitly mentions responsibilities of
service owners, what to log and how to use the logged info, and more. In the realm of
common code management, we are the first to report on using a sidecar as a practical
solution to the problem. Furthermore, while the studies by Taibi et al. identify shared
library as an anti-pattern in microservice-based development, our study shows that
several practitioners report on advantages of using such a solution in practice. We
mark this divergence with a * in Table 13.

Bogner et al. (2019) interviewed 17 engineers from ten companies, collecting
processes, tools, metrics, patterns applied, and challenges faced by practitioners when
ensuring sustainable evolution of microservices. Like in our study, the authors also
reported that several participants believe technological heterogeneity beneficial while
others prefer a more sensible handling of technology diversities. The authors also

40 Yingying Wang et al.

reported on the need for test automation, clear guidelines about establishing the right
service granularity, logging and monitoring infrastructure, and managing breaking
API changes, but did not provide concrete solutions (hence the in Table 13).
Performing in-depth interviews with a substantially higher number of practitioners
led us to discover additional challenges not mentioned in this work, e.g., the need to
redefine service granularity in resource-constrained environments, the importance of
having clear service ownership, and issues related to management of variants.

Chen (2018) shared the post-migration challenges and the corresponding solu-
tions in an Irish sports betting company called Paddy Power. The author highlighted
challenges related to technology and language diversity, management of service con-
tracts, testing, and having a large number of services. While our study confirms some
of the findings, we also identified potential solutions to some of these challenges.
Again, reaching out to a larger set of companies also allowed us to identify additional
challenges and solutions related to managing infrastructure, microservice variants,
and more. Zhou et al. (2018) focused specifically on fault analysis and debugging
of microservices. The authors interviewed 16 practitioners from 12 companies,
investigating the fault cases these practitioners encounter, debugging practices they
use, and practical challenges the practitioners face when debugging microservices.
The authors reported that only around one third of participants in their study employ
distributed tracing while the remaining ones rely on localized logging only, indicating
the immature debugging practice for microservices among practitioners. Our study
also emphasize the importance of distributed tracing but does not exclusively focus
on fault analysis and debugging processes.

Alshuqayran et al. (2016) conducted a mapping study for identifying archi-
tectural challenges, popular microservice architectural diagram types, and quality
measurement in microservice-based architectures mentioned in the literature. By
studying 33 papers on microservice-based development, the authors identified and
classified keywords associated with challenges of building microservice-based sys-
tems; they identified challenges related to communication and integration of services,
deployment operations, performance, and more. Like in our study, the authors also
mentioned challenges related to distributed tracing and setting up a logging and
monitoring infrastructure, but did not provide any information on how and what to
log, hence the in Table 13.

Bandeira et al. (2019) analyzed 781 microservice-related posts on StackOverflow
to understand what topics are being discussed the most by the microservice com-
munity. The authors found that developers discuss topics related to communication,
security, data handling, integration testing, and versioning of microservices. Soldani
et al. (2018) reviewed grey literature to identify benefits and challenges of microser-
vices. The authors found that determining the right granularity of microservices,
devising security policies, managing distributed storage, application testing, and
resource management are among the most reported challenges practitioners face.
Again, the authors did not identify any practical solutions to the reported challenges.

Viggiato et al. (2018) collected the general characteristics, advantages, and chal-
lenges of microservice-based development from literature and online posts. The
authors found that the advantages of microservices reported in the literature include
independent deployment, technology diversity, scalability, and maintainability (easy

Promises and Challenges of Microservices: an Exploratory Study 41

to replace), while top challenges are distributed transactions, integration tests, service
faults, and inter-service communication. The authors then surveyed 122 online partic-
ipants who agreed with most benefits and challenges reported in the literature. While
our study suggests that mature organizations prefer to limit technological diversity,
the study by Viggiato et al. reported that to be an advantage of microservice-based
development, hence the * in Table 13.

Leitner et al. (2019) investigated Function-as-a-Service (FaaS) applications by
conducting a mix-method study that combined semi-structured interviews, the analy-
sis of online articles related to FaaS, and the analysis of responses from a web-based
survey. Our work is orthogonal to that as we did not include FaaS applications in our
study. For that reason, we do not include this paper in Table 13.

Meta-studies on Microservice-based Development. Pahl and Jamshidi (2016) con-
ducted a systematic mapping study on 21 reports that were published by the end of
2015, to identify, classify, and compare the existing research body on microservices
and their application in the cloud. The authors concluded that microservice research is
still in an early stage and there is a lack of tool support to facilitate microservice-based
developments. Di Francesco et al. (2017) performed a systematic mapping study that
included 71 papers, classifying and evaluating publication trends, research focus, and
industrial adoption potential for microservices. Di Francesco et al. (2019) further
extended this work to include 32 additional papers. The authors found that existing
research has a strong focus on cloud and mobile paradigms, legacy migration, and
tradeoffs between complexity and flexibility of microservices. Yet, the technology
readiness levels of most studies suggest that industrial adoption is still far away. Vural
et al. (2017) also performed a systematic mapping study that included 37 papers,
aiming to find current trends, motivation behind microservices research, emerging
standards, and the possible research gaps. Like Di Francesco et al., the authors
also concluded that microservice research is still immature. Finally, Dragoni et al.
(2017) reviewed the history of software architecture, discussed characteristics of
microservices, and outlined future challenges. The authors state that security and
dependability will become key challenges of microservices. Our work is orthogonal
to these mapping studies as we focus on identifying challenges related to the adoption
of microservices in industry rather than surveying the state-of-the-art in literature.

8 Conclusion

This paper reports on best practices, lessons learned, and challenges collected using a
mixed-method study with practitioners that successfully adopted microservice-based
architectures. The study included in-depth interviews with 21 practitioners and a
follow-up survey that received 37 replies satisfying our selection criteria.

Our participants identified a clear sense of ownership, strict API management,
automated processes, and investment in robust logging and monitoring infrastructure
as some of the best practices that contribute to the success of their development
processes. They learned that using a plurality of languages and following the advice to
split microservice by business functionality is not always fruitful. Our study identified
several common challenges faced by practitioners that use a microservice-based

42 Yingying Wang et al.

architecture, such as managing code shared between microservices and managing
multiple product variants. Based on the study, we reported on alternative solutions
practitioners employ to address these challenges and identified lessons learned from
their experience. We also identified potential next steps the community can take to
further facilitate efficient software engineering practices in developing microservice-
based applications. These include efficient solutions for managing versions and vari-
ants for microservices, assessing the impact of API changes, tools for performance
debugging, and more.

We believe our study can help software engineering researchers to better focus
their agenda when devising solutions for organizations that employ a microservice-
based architecture and also be useful for practitioners that can learn from each other’s
experience, adopt best practices, and avoid common mistakes.

Acknowledgements We thank all of our interview and survey participants for sharing their experience on
microservice-based development with us. We also thank Huawei Technologies Sweden AB, who partially
funded this work.

References

Alshuqayran N, Ali N, Evans R (2016) A Systematic Mapping Study in Microservice Architecture. In:
Proceedings of IEEE International Conference on Service-Oriented Computing and Applications
(SOCA), pp 44–51

Balalaie A, Heydarnoori A, Jamshidi P (2016) Microservices Architecture Enables DevOps: Migration to
a Cloud-Native Architecture. IEEE Software 33(3):42–52

Balalaie A, Heydarnoori A, Jamshidi P, Tamburri DA, Lynn T (2018) Microservices Migration Patterns.
Software: Practice and Experience 48(11):2019–2042

Bandeira A, Medeiros CA, Paixao M, Maia PH (2019) We Need to Talk about Microservices: an Analysis
from the Discussions on StackOverflow. In: Proceedings of the 16th International Conference on
Mining Software Repositories (MSR), pp 255–259

Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning J, Highsmith
J, Hunt A, Jeffries R, Kern J, Marick B, Martin RC, Mellor S, Schwaber K, Sutherland J, Thomas
D (2001) Manifesto for Agile Software Development. https://agilemanifesto.org, (Last ac-
cessed: July 2020)

Beschastnikh I, Wang P, Brun Y, Ernst MD (2016) Debugging Distributed Systems. Communications of
the ACM 59(8):32–37

Bogner J, Fritzsch J, Wagner S, Zimmermann A (2019) Assuring the Evolvability of Microservices:
Insights into Industry Practices and Challenges. In: Proceedings of the 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp 546–556

Bratthall L, Jørgensen M (2002) Can you Trust a Single Data Source Exploratory Software Engineering
Case Study? Empirical Software Engineering 7(1):9–26

Bucchiarone A, Dragoni N, Dustdar S, Larsen ST, Mazzara M (2018) From Monolithic to Microservices:
an Experience Report from the Banking Domain. IEEE Software 35(3):50–55

Carvalho L, Garcia A, Assunção WKG, de Mello R, de Lima MJ (2019) Analysis of the Criteria Adopted
in Industry to Extract Microservices. In: Proceedings of the Joint 7th International Workshop on
Conducting Empirical Studies in Industry and 6th International Workshop on Software Engineering
Research and Industrial Practice, pp 21–30

Chen L (2018) Microservices: Architecting for Continuous Delivery and DevOps. In: 2018 IEEE Interna-
tional Conference on Software Architecture (ICSA), pp 39–46

Clements P, Northrop L (2002) Software Product Lines: Practices and Patterns. Addison-Wesley Longman
Publishing Co., Inc.

Cockroft A (2014) Migrating to Microservices. https://youtu.be/1wiMLkXz26M, (Last accessed: July
2020)

https://agilemanifesto.org
https://youtu.be/1wiMLkXz26M

Promises and Challenges of Microservices: an Exploratory Study 43

Di Francesco P, Malavolta I, Lago P (2017) Research on Architecting Microservices: Trends, Focus, and
Potential for Industrial Adoption. In: Proceedings of IEEE International Conference on Software
Architecture (ICSA), pp 21–30

Di Francesco P, Lago P, Malavolta I (2018) Migrating Towards Microservice Architectures: an Industrial
Survey. In: Proceedings of IEEE International Conference on Software Architecture (ICSA), pp 29–
38

Di Francesco P, Lago P, Malavolta I (2019) Architecting with Microservices: a Systematic Mapping Study.
Journal of Systems and Software 150:77–97

Dragoni N, Giallorenzo S, Lafuente AL, Mazzara M, Montesi F, Mustafin R, Safina L (2017) Microser-
vices: Yesterday, Today, and Tomorrow, Springer International Publishing, pp 195–216

Fenn J, Linden A (2005) Gartner’s Hype Cycle Special Report for 2005. https://www.gartner.com/
doc/484424/gartners-hype-cycle-special-report, (Last accessed: July 2020)

Fielding RT (2000) Architectural Styles and the Design of Network-Based Software Architectures. PhD
thesis, University of California, Irvine

Flanigan TS, McFarlane E, Cook S (2008) Conducting Survey Research among Physicians and Other
Medical Professionals: a Review of Current Literature. In: Proceedings of the Survey Research
Methods Section, American Statistical Association, pp 4136–4147

Fowler M (2015) Microservice Trade-Offs. https://martinfowler.com/articles/microservice-
trade-offs.html, (Last accessed: July 2020)

Francis J, Johnston M, Robertson C, Glidewell L, Entwistle V, Eccles M, Grimshaw J (2010) What Is
an Adequate Sample Size?: Operationalising Data Saturation for Theory-Based Interview Studies.
Psychology & Health 25(10):1229–1245

Fritzsch J, Bogner J, Wagner S, Zimmermann A (2019) Microservices Migration in Industry: Intentions,
Strategies, and Challenges. In: Proceedings of the 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp 481–490

Ghofrani J, Lübke D (2018) Challenges of Microservices Architecture: A Survey on the State of the
Practice. In: Proceedings of the 10th Central European Workshop on Services and Their Composition
(ZEUS), pp 1–8

Goodman L (1961) Snowball Sampling. The Annals of Mathematical Statistics 32(1):148–170
Google Cloud (2019) Client Libraries Explained. https://cloud.google.com/apis/docs/client-

libraries-explained, (Last accessed: July 2020)
Gouigoux JP, Tamzalit D (2017) From Monolith to Microservices: Lessons Learned on an Industrial

Migration to a Web Oriented Architecture. In: Proceedings of IEEE International Conference on
Software Architecture Workshops (ICSAW), pp 62–65

Heinrich R, van Hoorn A, Knoche H, Li F, Lwakatare LE, Pahl C, Schulte S, Wettinger J (2017)
Performance Engineering for Microservices: Research Challenges and Directions. In: Companion
Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering (ICPE),
pp 223–226

Hunt A, Thomas D (1999) The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley
Longman Publishing

Jackson D, Daly J, Davidson P, Elliott D, Cameron-Traub E, Wade V, Chin C, Salamonson Y (2000)
Women Recovering from First-Time Myocardial Infarction (MI): a Feminist Qualitative Study.
Journal of Advanced Nursing 32(6):1403–1411

Jassim GA, Whitford DL (2014) Understanding the experiences and quality of life issues of Bahraini
women with breast cancer. Social Science & Medicine (1982) 107:189–195

Knoche H, Hasselbring W (2019) Drivers and Barriers for Microservice Adoption - a Survey among
Professionals in Germany. International Journal of Conceptual Modeling 14(1):1–35

Krippendorff K (2011) Agreement and Information in the Reliability of Coding. Communication Methods
and Measures 5(2):93–112

Kruchten P, Nord RL, Ozkaya I (2012) Technical Debt: from Metaphor to Theory and Practice. IEEE
Software 29(6):18–21

Leitner P, Wittern E, Spillner J, Hummer W (2019) A Mixed-Method Empirical Study of Function-As-A-
Service Software Development in Industrial Practice. Journal of Systems and Software 149:340–359

Lewis J, Fowler M (2014) Microservices: a Definition of This New Architectural Term. https://
www.martinfowler.com/articles/microservices.html, (Last accessed: July 2020)

Liu X, Guo Z, Wang X, Chen F, Lian X, Tang J, Wu M, Kaashoek MF, Zhang Z (2008) D3S: Debugging
Deployed Distributed Systems. In: Proceedings of USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pp 423–437

https://www.gartner.com/doc/484424/gartners-hype-cycle-special-report
https://www.gartner.com/doc/484424/gartners-hype-cycle-special-report
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://cloud.google.com/apis/docs/client-libraries-explained
https://cloud.google.com/apis/docs/client-libraries-explained
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html

44 Yingying Wang et al.

Luz W, Agilar E, de Oliveira MC, de Melo CER, Pinto G, Bonifácio R (2018) An Experience Report on the
Adoption of Microservices in Three Brazilian Government Institutions. In: Proceedings of Brazilian
Symposium on Software Engineering (SBES), pp 32–41

McLarty M (2016) Microservice Architecture is Agile Software Architecture. https:
//www.infoworld.com/article/3075880/microservice-architecture-is-agile-
software-architecture.html, (Last accessed: July 2020)

Mitra S (2018) Dilemma on Utility Modules: Making a JAR or a Separate Microservice? . https:
//dzone.com/articles/dilemma-on-utility-module-making-a-jar-or-separate-2,
(Last accessed: July 2020)

Morse JM (1995) The Significance of Saturation. Qualitative Health Research 5(2):147–149
MuleSoft (2018) Microservices and DevOps: Better Together. https://www.mulesoft.com/

resources/api/microservices-devops-better-together, (Last accessed: July 2020)
Nadareishvili I, Mitra R, McLarty M, Amundsen M (2016) Microservice Architecture: Aligning Princi-

ples, Practices, and Culture. O’Reilly Media
Newcomer E, Lomow G (2005) Understanding SOA with Web Services. Addison-Wesley
O’Connor C, Joffe H (2020) Intercoder Reliability in Qualitative Research: Debates and Practical Guide-

lines. International Journal of Qualitative Methods 19
Pahl C, Jamshidi P (2016) Microservices: A Systematic Mapping Study. In: Proceedings of the Interna-

tional Conference on Cloud Computing and Services Science (CLOSER), pp 137–146
Pohl K, Böckle G, Linden FJvd (2005) Software Product Line Engineering: Foundations, Principles and

Techniques. Springer-Verlag
Postel J (1980) DoD Standard Transmission Control Protocol. RFC 761:1–88
Richardson C (2014) Microservice Architecture. https://microservices.io/, (Last accessed: July

2020)
Richardson C (2018a) Pattern: API Gateway / Backends for Frontends. https://microservices.io/

patterns/apigateway.html, (Last accessed: July 2020)
Richardson C (2018b) Pattern: Distributed Tracing. https://microservices.io/patterns/

observability/distributed-tracing.html, (Last accessed: July 2020)
Richardson C (2018c) Who is Using Microservices? https://microservices.io/articles/

whoisusingmicroservices.html, (Last accessed: July 2020)
Rossi C, Shibley E, Su S, Beck K, Savor T, Stumm M (2016) Continuous Deployment of Mobile

Software at Facebook (Showcase). In: Proceedings of the ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE), pp 12–23

Seifermann V (2017) Application Performance Monitoring in Microservice-Based Systems. Bachelor’s
thesis, Institute of Software Technology Reliable Software Systems, University of Stuttgart

Sinkowitz-Cochran RL (2013) Survey Design: To Ask or Not to Ask? That is the Question... Clinical
Infectious Diseases 56(8):1159–1164

Soldani J, Tamburri DA, Heuvel WJVD (2018) The Pains and Gains of Microservices: a Systematic Grey
Literature Review. Journal of Systems and Software 146:215–232

Strauss A, Corbin J (1998) Basics of Qualitative Research: Techniques and Procedures for Developing
Grounded Theory. Thousand Oaks, CA: Sage

Taibi D, Lenarduzzi V (2018) On the Definition of Microservice Bad Smells. IEEE Software 35(3):56–62
Taibi D, Lenarduzzi V, Pahl C (2017) Processes, Motivations, and Issues for Migrating to Microservices

Architectures: An Empirical Investigation. IEEE Cloud Computing 4(5):22–32
Taibi D, Lenarduzzi V, Pahl C (2020) Microservices Anti-patterns: A Taxonomy, Springer International

Publishing, pp 111–128
Viggiato M, Terra R, Rocha H, Valente MT, Figueiredo E (2018) Microservices in Practice: A Survey

Study. In: Brazilian Workshop on Software Visualization, Evolution and Maintenance (VEM), pp
1–8

Vural H, Koyuncu M, Guney S (2017) A Systematic Literature Review on Microservices. In: Proceedings
of International Conference on Computational Science and Its Applications (ICCSA), pp 203–217

Wang Y, Kadiyala H, Rubin J (2020) Promises and Challenges of Microservices: an Exploratory
Study. https://osf.io/8mxeg/wiki/home/, DOI 10.17605/OSF.IO/8MXEG, (Last accessed:
July 2020)

Weiss D, Lai CTR (1999) Software Product-Line Engineering: a Family-Based Software Development
Process. Addison-Wesley Longman Publishing Co., Inc.

Zhang H, Li S, Zhang C, Jia Z, Zhong C (2019) Microservice Architecture in Reality: An Industrial
Inquiry. In: 2019 IEEE International Conference on Software Architecture (ICSA), pp 51–60

https://www.infoworld.com/article/3075880/microservice-architecture-is-agile-software-architecture.html
https://www.infoworld.com/article/3075880/microservice-architecture-is-agile-software-architecture.html
https://www.infoworld.com/article/3075880/microservice-architecture-is-agile-software-architecture.html
https://dzone.com/articles/dilemma-on-utility-module-making-a-jar-or-separate-2
https://dzone.com/articles/dilemma-on-utility-module-making-a-jar-or-separate-2
https://www.mulesoft.com/resources/api/microservices-devops-better-together
https://www.mulesoft.com/resources/api/microservices-devops-better-together
https://microservices.io/
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/observability/distributed-tracing.html
https://microservices.io/patterns/observability/distributed-tracing.html
https://microservices.io/articles/whoisusingmicroservices.html
https://microservices.io/articles/whoisusingmicroservices.html
https://osf.io/8mxeg/wiki/home/

Promises and Challenges of Microservices: an Exploratory Study 45

Zhou X, Peng X, Xie T, Sun J, Ji C, Li W, Ding D (2018) Fault Analysis and Debugging of Microservice
Systems: Industrial Survey, Benchmark System, and Empirical Study. IEEE Transactions on Software
Engineering 14(8):1–18

Zimmermann O (2017) Microservices Tenets: Agile Approach to Service Development and Deployment.
Computer Science - Research and Development 32(3):301–310

	Introduction
	Background
	Methodology
	Results
	Discussion and Future Research Directions
	Threats to Validity
	Related Work
	Conclusion

