
Microservice Decomposition Techniques:
An Independent Tool Comparison

Yingying Wang
Univ. of British Columbia, Canada

wyingying@ece.ubc.ca

Sarah Bornais
Univ. of British Columbia, Canada

sbornais@ece.ubc.ca

Julia Rubin
Univ. of British Columbia, Canada

mjulia@ece.ubc.ca

Abstract

The microservice-based architecture – a SOA-inspired principle
of dividing systems into components that communicate with each
other using language-agnostic APIs – has gained increased pop-
ularity in industry. Yet, migrating a monolithic application into
microservices is a challenging task. A number of automated mi-
croservice decomposition techniques have been proposed in indus-
try and academia to help developers with the migration complexity.
Each of the techniques is usually evaluated on its own set of case
study applications and evaluation criteria, making it difficult to
compare the techniques to each other and assess the real progress
in this field. To fill this gap, this paper performs an independent
study comparing eight microservice decomposition tools that imple-
ment a wide range of different decomposition principles with each
other on a set of four carefully selected benchmark applications. We
evaluate the tools both quantitatively and qualitatively, and further
interview developers behind two of the selected benchmark applica-
tions. Our analysis highlights strengths and weaknesses of existing
approaches, and provides suggestions for future research, e.g., to
provide differential treatment of application elements of different
types, to customize the decomposition strategy and granularity per
specific application, and more.

ACM Reference Format:

Yingying Wang, Sarah Bornais, and Julia Rubin. 2024. Microservice Decom-
position Techniques: An Independent Tool Comparison. In 39th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’24), Octo-
ber 27-November 1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3691620.3695504

1 Introduction

Microservice-based architecture is a SOA-inspired principle of build-
ing complex systems as a composition of small, loosely coupled com-
ponents that communicate with each other using lightweight tech-
nologies such as HTTP/REST [32]. This architectural principle has
become increasingly popular in industry due to its advantages, such
as greater development agility and improved scalability of deployed
applications. With the increased popularity of microservice-based
architectures, many companies invest in migrating their monolithic
applications onto this more modern architecture.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695504

The decomposition of a monolithic application into microser-
vices requires substantial time and effort [17, 55, 57]. It entails
sorting hundreds, if not thousands, of classes and methods into
groups (potential microservices). A number of academic and indus-
trial automated microservice decomposition techniques have been
recently proposed to assist developers with this process [6, 8, 11,
16, 19, 20, 27–29, 33, 38–40, 45, 46, 48, 49, 58, 59]. These techniques,
at large, capture relationships between elements of a monolithic
application and further use these relationships to cluster similar
elements together. The techniques vary by the type of elements and
relationships they consider and the type of clustering they perform.

Each technique is typically evaluated on a set of case study
applications, comparing it to a subset of other techniques using
a subset of evaluation metrics chosen by the authors. Yet, there
is no uniform comparison that performs a systematic selection
of techniques, case studies, and metrics. Moreover, the evaluation
often focuses on decomposition outputs, with little discussion given
to the advantages and disadvantages of the underlying principles
the evaluated techniques use.

Our paper aims to fill this gap, providing an independent system-
atic study that compares a diverse set of code-based microservice
decomposition tools, both quantitatively and qualitatively. To this
end, we first analyze the existing literature, identifying more than
60 papers describing microservice decomposition tools, which we
further categorize based on the underlying principles these tools use.
As running such a number of tools is impractical, we systematically
narrow down our selection to eight tools, involving the developers
of the evaluated tools in our study, to make sure the results we
obtain are reliable. One of our selected tools,Mono2Micro [28], is a
commercial offering by IBM [3]; the rest are developed in academia.

Next, we evaluate more than 20 monolithic applications, identi-
fying those that satisfy the input requirements of all the selected
tools, e.g., having a test suite with reasonably high coverage, using
databases, etc. We also include a “challenge” open-source applica-
tion that was not attempted by any of the tools in prior experiments.
Overall, we use four case study applications in our analysis.

We further systematically select a set of quantitative metrics that
align with tool decomposition goals, such as structural modularity,
business use case separation, and database separation, to inform our
analysis of decomposition results. We analyze the decomposition
results produced by each tool both quantitatively and qualitatively,
and further conduct two semi-structured interviews with the au-
thors of the involved case study applications, to get their opinions
about the decomposition.

When inspecting tool results, we interpret them w.r.t. the de-
scriptions in the corresponding papers. As our team is not involved
in the development of any of the tools, we believe our comparative
analysis of the results is independent and unbiased. As a means to

https://orcid.org/0000-0002-6531-5420
https://orcid.org/0009-0005-5599-1694
https://orcid.org/0000-0001-7280-1614
https://doi.org/10.1145/3691620.3695504
https://doi.org/10.1145/3691620.3695504

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yingying Wang, Sarah Bornais, and Julia Rubin
S

te
p

2
:

T
o

o
l

S
e
le

c
ti

o
n

S
te

p
1
:

T
o

o
l

Id
e
n

ti
fi

c
a
ti

o
n

Search for papers

in 2022 and 2023

Include all papers

from Abgaz et al. Keep

A and A*

venues

Exclude

papers

replying on

additional

artifacts

Invite to

participate

Align

language

Select

versions

Include open-source tools

using uncovered principles

35

papers

33

papers

31

papers

24

papers

11 participate

9 no resource

4 no reply

8 tools7 tools

1 tool

Figure 1: Tool Selection Process.

quality assurance, all authors of the paper discussed the results of
each tool; we clarified with the tool authors results we could not
adequately explain. In a few cases, this process led the authors to
re-run their tool and send us updated results. Sections 2 and 3 pro-
vide more details about our selection of tools, case studies, metrics,
and our evaluation methodology.

Our evaluation results show that decomposition techniques
could benefit from the ability to identify application classes of
different types, such as business capability, persistence layer, and
helper classes, and treat them appropriately. The techniques could
also benefit from developing strategies to decide when to duplicate
classes, when to split by methods, etc. Adaptively selecting proper
decomposition principles (by business use cases, linguistic similar-
ity, databases, etc.) for a given application type (or even its parts)
is also needed. Finally, decomposition techniques often fail due
to limitations of the underlying tools they use, especially around
static analysis and framework support (e.g., Spring). Evaluating and
adapting ideas for practical use is often overlooked.
Contributions. This paper makes the following contributions:
1. It provides a unified benchmark of case study applications and
metrics that are applicable for evaluating a wide range of microser-
vice decomposition tools.
2. It performs the first in-depth independent analysis that compares
microservice decomposition tools to each other on the same set of
case study applications and metrics.
3. It identifies the main strengths and weaknesses of each tool and
provides suggestions for future research.
4. It makes our empirical evaluation setup and results publicly
available to facilitate replicability, reproducibility, and future work
in this area [56].

We hope that such a comprehensive comparison will allow the
community to better understand the strengths and weaknesses
of existing solutions, facilitate development of more advanced ap-
proaches, and provide grounds for a more systematic evaluation of
the existing and new tools.

2 Tools, Case Studies, and Metrics

We start from describing the microservice extraction tools and our
process of selecting tools for our study. We then discuss our case
study and metric selection.

2.1 Microservice Extraction Tools

To identify relevant tools, we started from a systematic review by
Abgaz et al. [7], which includes 35 papers describing automated
microservice decomposition tools that were published before the
end of 2021. To extend this set of tools with more recent ones, in
January 2024, we repeated the search using the methodology by
Abgaz et al., covering the years 2022 and 2023. This resulted in 33

Monolithic

Application

Partition 2Partition 1

Service RecommendationGraph Representation

Analysis Clustering

Additional

Input

Class

Method

Static

Dynamic

Code Structure

Code EvolutionUse Case Similarity

Linguistic Similarity

Data Access

Figure 2: Automated Microservice Decomposition.

additional relevant tools. The exact search query that we used and
our inclusion/exclusion criteria are available online [56].

As running almost 70 tools is impractical, we first selected only
publications from A* and A venues according to the CORE rank-
ing [1, 2] – an approach commonly used in the literature [18, 34, 47].
Two researchers then independently read each publication to ex-
tract the underlying principles each tool uses. We further excluded
7 tools that rely on additional artifacts that are often unavailable
or require a considerable time to produce, e.g., entity-relationship
and use case diagrams, as was also done in prior work [30]. This
selection results in a set of 24 publications, as described in the upper
part of Figure 1.

We observed that while each of the identified tools has unique
characteristics, they largely follow the same general principle illus-
trated in Figure 2: they analyze a monolithic application statically
and/or dynamically, to extract information deemed relevant to de-
compose the application. They encode this information in a graph
whose nodes represent application entities, such as classes and
methods, and edges represent relationships between the entities;
they further cluster the graph into partitions, i.e., service recom-
mendations, using existing or customized clustering algorithms.

The exact type of information the techniques extract depends on
the heuristics that they use to partition the monolithic software and
the goal they aim to achieve: high code modularity, encapsulation
of business domains by services, etc. as discussed below:
1. Code Modularity: code structure captures control and data de-
pendencies between code artifacts. This type of information groups
together architecturally-related elements to increase code modu-
larity and thus reduce inter-service communication and perfor-
mance overhead associated with over-the-network inter-service
calls. Code structure relationships can be extracted statically or
dynamically. Static relationships include method calls [8, 11, 16, 19,
20, 27, 38, 45, 49, 51, 58, 59], class hierarchy [8, 20, 38, 46, 58, 59],
package structure [46, 58], and variable dependencies [45, 58, 59].
The main dynamic code structure relationship type is dynamic
method calls [11, 16, 27–29, 33, 51].
2. Business Context Purity: use case similarity relies on a pre-
defined set of application business use cases, identifying code el-
ements that are used to realize the same business use cases [16,
28, 29]. The idea behind these techniques is to support a single-
responsibility principle, so that produced partitions contain ele-
ments belonging to the same (small) set of use cases.

In addition, linguistic similarity assumes that developers fol-
lowed a certain naming convention, giving similar names to el-
ements that belong to the same conceptual domain. Some of the
techniques focus on class/method name similarity [27], while others
compute broader term similarity, considering other terms within
the class/method bodies, such as variable names, method names
and parameters, comments, etc. [40, 46, 49, 51, 58]. Most of the tech-
niques exclude stop words and language-specific technical terms.

Microservice Decomposition Techniques: An Independent Tool Comparison ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

3. Database Transaction Purity: data access considers depen-
dencies between code elements and databases [8, 19, 20, 38, 45]
and internal dependencies between database tables (via foreign
keys) [48]. Data dependencies are obtained with the goal of group-
ing together elements that access the same database tables, thus
minimizing distributed transactions within the decomposition.
4. Team Independence: code evolution captures the similarity
between elements through the lens of the version control history.
These relationships aim to producemicroservice candidates that can
be maintained and developed by autonomous teams, grouping to-
gether code contributed by the same developers or code frequently
changed together [40]. More specifically, commit similarity groups
together elements that are often changed together in the same com-
mit, while contributor similarity groups together elements that are
often updated by the same developer.

2.2 Tool Selection

When inspecting the 24 identified tools, we observed that many are
not publicly available and many other require configuration and
adaptations to run properly, e.g., to correctly configure as many as
11 different parameters [27] or adapt the class-labeling script for
each considered case study [59]. Some tools only provide partial
implementation and, thus, do not run out-of-the-box [20]. After
experimenting with several tools for a few weeks each, we realized
that such a process (a) cannot scale and (b) might bias the study if
we configure tools incorrectly.

To evaluate this sheer number of tools in a fair and reliable man-
ner, we decided to reach out to the tool authors and involve them
in our study, while focusing our efforts on an unbiased selection of
benchmark applications and in-depth analysis of results. Specifi-
cally, we first asked the tool authors whether they would agree to
run their tools on a set of open-source case study projects, given
that we will (a) ensure each project is appropriate for their tool in
terms of the implementation language and framework, the required
information types, test coverage, etc., (b) provide guidelines on how
to compile and run the projects and their tests, and (c) offer any
help and technical support handling the projects, as needed.

We received a positive confirmation from the authors of 11 tools
from eight research groups. The authors of an additional nine pub-
lications replied to our inquiry but did not have the resources to
participate in the study; the authors of four publications did not
reply, even after a reminder. From the replies we received, two
groups contributed different versions of the same tool: one group
with two tools [33, 60] and another one – with three [49–51]. As
the tools from each group were versions of each other, we left the
authors the freedom to run their best-performing tool. Furthermore,
as all but one participating tool worked for Java applications, to
enable a meaningful comparison, we had to exclude the single tool
that works for Python [39]. In fact, out of the 24 identified tools,
18 support Java, 3 are language-agnostic, 2 support PHP, and 1 –
Python. Thus, using Java is a reasonable choice for our comparison.

Finally, after inspecting the obtained set of seven tools, we de-
cided to include one additional publicly available tool which we
ran ourselves [40], to make sure the selected tools cover all popular
microservice decomposition principles. This is the only tool in our
collection that relies on code evolution (and optimizes for team
independence) when decomposing to microservices.

This methodology led us to include eight tools listed in Table 1
and described below. To the best of our knowledge, our study in-
volves more tools than any other comparisons. Our tool selection
also provides a diverse and representative set of microservice de-
composition approaches that rely on static and dynamic analysis,
work on class and method levels, and optimize for a variety of
goals, such as code modularity, business context purity, team in-
dependence, and database transaction purity. One of these tools,
Mono2Micro [28], is a commercial offering by IBM [3]; the rest
are developed in academia. We describe these tools next.

Mono2Micro [28] relies on business use cases and structural
code relationships to create class-level decompositions that opti-
mize for business context purity and code modularity. Specifically,
it analyzes business use case execution traces, where each use case
trace can be obtained either by running a set of tests or by having
the user manually trigger the application to execute a business use
case. The tool performs hierarchical clustering to group together
classes that are structurally similar and that contribute to the im-
plementation of the same business use cases. Apart from monolith
application artifacts and business use cases, the tool can be con-
figured with a desired number of microservices to generate; this
number is set to five by default. A recent commercial release of
the tool [4] includes additional support for automated detection of
utility classes based on a number of heuristics, such as the ratio of
incoming/outgoing method calls, the ratio of methods/fields in a
class, and the frequency of static class methods and fields.

HyDec [51] uses static and dynamic analysis to extract method
calls, variable dependencies, and inheritance relationships. It further
extracts linguistic similarity between classes, considering all terms
defined within classes, such as class, field, and method names. Com-
bining this information, HyDec performs hierarchical clustering to
produce class-level decompositions that optimize code modularity
and business context purity. Different from Mono2Micro, HyDec
does not require the tests to correspond to business use cases but
uses linguistic similarity to identify elements that belong to the
same business domain.

Data-Centric [48] looks at relationships between classes and
database tables. It statically analyzes the database schema of a
monolithic application to extract cross-table data accesses (foreign
key relationships) and linguistic similarities among database tables.
Based on this information, it partitions the database tables of the
monolithic application and further creates a class-level microservice
decomposition based on transitive structural relationships between
application classes and database tables. This decomposition opti-
mizes for code modularity and database transaction purity.

Log2MS [33] analyzes execution logs to label classes of the
monolithic application according to the following order of priorities:
(a) controller classes that serve as externally accessed application
endpoints; (b) data-related classes that map to or interact with
database tables; and (c) other classes that process business logic.
It then assigns each controller class to a separate partition and
further groups business-logic-related classes into partitions with
which they have the highest affinity, based on dynamic method
call relationships. Finally, the tool adds data-related classes into
these partitions. Similar to HyDec, Log2MS does not assume tests
correspond to business use cases and does not require additional
input, besides the application artifacts.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yingying Wang, Sarah Bornais, and Julia Rubin

Table 1: Participating Tools.

Tool Granularity Analysis Optimization Goal Relationship Type Additional Input

Mono2Micro [28] Class Dynamic Code Modularity,
Business Context Purity

Code Structure (method calls),
Use Case Similarity

business use cases,
number of microservices

HyDec [51] Class Static and
Dynamic

Code Modularity,
Business Context Purity

Code Structure (method calls, variable dependencies, inheritance),
Linguistic Similarity -

Data-Centric [48] Class Static Code Modularity,
Database Transaction Purity

Code Structure (method calls),
Data Access database schema

Log2MS [33] Class Dynamic Code Modularity Code Structure (method calls) -

MEM [40] Class Static Business Context Purity,
Team Independence

Linguistic Similarity,
Code Evolutionary (commit, contributor) number of microservices

toMicroservices [11] Method Static and
Dynamic

Code Modularity,
Business Context Purity

Code Structure (method calls),
Use Case Similarity

business use cases,
number of microservices

CARGO [45] Method Static Code Modularity,
Database Transaction Purity

Code Structure (method calls, variable dependencies),
Data Access number of microservices

MOSAIC [23] Method Static Code Modularity Code Structure (method calls, variable dependencies, inheritance) -

MEM [40] mines the version history of the monolithic applica-
tion to extract the frequency of a file being modified in the same
commit or by the same contributor. Similar to HyDec, it also ex-
tracts linguistic similarity between classes, considering all terms
defined within classes. Using one or multiple types of the collected
information, MEM constructs a weighted graph of the monolithic
application, with the extracted information encoded as edgeweights
and clusters this graph to create microservice candidates. The tool
optimizes for team independence, lifecycle independence, and busi-
ness context purity. In our analysis, we focused on the first two
cases: the frequency of files being modified in the same commit
(denoted by MEM-CMT) and the frequency of files being modified
by the same contributor (denoted byMEM-CNTR).

toMicroservices [11] performs a method-level decomposi-
tion, optimizing for code modularity and business context purity.
The tool employs static and dynamic analyses to collect structural
information from code and use case execution traces. It treats de-
composition as a multi-objective optimization problem, considering
four criteria: coupling, cohesion, inter-partition communication
overhead (all of which correlate with code modularity), and fea-
ture modularity (which correlates with business context purity).
In our analysis, we focused on the output decomposition with the
highest feature modularity, to compare the results with those of
Mono2Micro, which optimizes for the same goal. Like several other
tools, toMicroservices relies on the user to specify the desired
number of microservices to produce.

CARGO [45] relies on static analysis and performs a method-
level decomposition to optimize for code modularity and database
transaction purity. Unlike Data-Centric, it does not rely on a data-
base schema. Instead, it performs context-sensitive static analysis
to extract call and data dependencies between methods and data
access relationships between methods and database tables. It then
assigns a unique label to all methods of each class and utilizes a
label propagation algorithm to assign the same label to (a) methods
that share transaction edges with the same database table and (b)
methods that are closely related based on method call and variable
dependency relationships. The tool also requires as an additional
input the desired number of microservices and uses it as a stopping
condition for the label propagation.

MOSAIC [23] assumes a layered architecture of monolithic ap-
plications and statically analyzes the application to identify en-
tity, logic-layer, and persistence-layer classes (using annotations
in code). It focuses the decomposition on these classes only, disre-
garding the remaining non-business-logic-related classes. The tool

optimizes for code modularity and performs a hybrid class- and
method-level decomposition. It constructs a graph with two types
of nodes – a class node for each entity class and a method node for
each method in the logic- and persistence-layer classes; it then runs
a community detection algorithm to first partition entity classes
and then to determine which methods should be grouped together
with each entity class. A unique feature of MOSAIC is its ability to
detect classes and methods that should be duplicated to multiple
partitions: it identifies entity classes that are extended by other
entity classes but do not have their corresponding persistence-layer
classes and duplicates them into the partitions of the extending
classes. It also identifies methods of the persistence layer that do
not have outgoing calls and are only called by methods from the
same class; it duplicates them into partitions of the calling method.

2.3 Case Study Selection

We started by collecting a list of all monolithic applications used as
case studies by at least one of the 24 identified microservice extrac-
tion tools. This resulted in 62 applications. Focusing on those that
have (a) publicly-available Java source code and (b) documentation
and setup instructions written in English resulted in 22 applications.
Out of the 22, only eight have the corresponding microservice de-
composition produced manually by developers. As we intended to
use this manually-produced decomposition to facilitate our analysis
of results, we proceed to the next step with these eight applications.

To satisfy the requirements of tools that rely on dynamic analysis,
we built each of the applications and executed its corresponding
functional test suites. We only included those applications that
have at least 60% statement-level coverage – a common industrial
guideline [10, 13]. To satisfy the requirement of the tools that rely
on business use cases for decomposition purposes, we selected case
studies with at least three functional tests (approximated these as
high-level use cases). To satisfy the requirements of the tools that
use database relationships, we selected case studies with at least
three database tables. Finally, to satisfy the requirements of the tool
that relies on data from version histories, we selected case studies
with at least 100 commits and at least three contributors.

This process narrowed down our selection to three case study
applications: JPetStore [44], Spring-PetClinic [54], and PartsUnlim-
itedMRP [41]. These applications, together with their properties,
are listed in the first three rows of Table 2. Interestingly, only two
out of the eight tools we selected for our study used these applica-
tions for their evaluation:MEM used Spring-PetClinic andMOSAIC
used both Spring-PetClinic and JPetStore.

Microservice Decomposition Techniques: An Independent Tool Comparison ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 2: Case Studies.

Case Study

Monolith Microservice

Version #
Cls.

#
Meth.

SLOC Test
Cvg.

Use
Cases

DB
Tbl.

#
Cmit.

Con-
trib.

#
Svc.

#
Cls.

#
Meth.

JPetStore 4a07a02 24 298 1409 64% 3 13 1334 21 3 26 304
Spring-PetClinic 1079767 23 90 752 94% 4 7 837 101 3 31 112
PartsUnlimitedMRP a83586b 53 459 4407 65% 5 5 791 44 5 73 525
7ep-demo 7fdc2b0 47 266 2326 93% 4 4 1047 4 4 70 378

To further challenge the tools with new and realistic case studies,
in January 2023, we searched for open-source monolithic Java ap-
plications in GitHub. We started by identifying the 100 most starred
GitHub repositories which contain Java web applications that have
at least one commit in the last two years (GitHub Search Query:
"web application" OR "web app", language:Java, pushed:>2021-01-
01, archived:False, orderby:stars). We then excluded repositories
not using English for instructions and documentation, frameworks
and tutorials for building web applications, projects that are already
implemented as microservices, projects with limited business use
cases and test coverage, and projects without databases. This left
us with three projects.

As these projects do not have an existing reference microservice-
based version available, we reached out to their owners, asking
whether they are willing to review and provide feedback on the
decompositions of their web apps to microservices produced by
automated tools. We received a positive reply from the 7ep-demo
owner and included this project in our study. The details about
the 7ep-demo application are given in the last row of Table 2; the
full list of all repositories we considered is available in our online
appendix [56]. Overall, our four selected case studies span multiple
application domains. We describe them in more detail below.
JPetStore [44] is an online pet store application, which consists
of 24 classes and 298 methods implementing account, catalog, and
order functionality of the store. It has 13 database tables and 10
functional test cases. We excluded five tests that check the user
interface and do not exercise any business logic. Wemapped each of
the remaining five tests to one of the three application business use
cases according to the JPetStore documentation. We relied on these
functional tests to produce per-business-use-case information for
Mono2Micro and toMicroservices. Overall, these five functional
tests provide a statement-level coverage of 64%.

The reference microservices-based version of this application
was developed in prior work by researchers and three experienced
software engineers [59]. It includes three partitions,Account Service,
Catalog Service, and Order Service, which contain all classes of
the monolithic application. The microservice-based version also
includes two additional classes with six methods; these classes are,
in fact, duplicates of one abstract class from the monolithic version
that was added to all of the partitions.
Spring-PetClinic [54] is a pet clinic management system built in
Spring, which implements owner, pet, vet, and visit management
use cases of the store. It consists of 23 classes with 90 methods,
13 database tables, and 4 functional tests that correspond to the 4
business use cases of the application. The functional tests provide
a statement-level coverage of 94%.

The Spring-PetClinic team also developed a microservice-based
version of this application [53], which contains three services incor-
porating the application business logic: Customers/Pets, Vets, Visit,
and four additional services that implement microservice-related

infrastructure, such as API Gateway and Discovery services. We
only focused on the business-logic-related services for our reference
microservice-based version. As the owner and pet management use
cases are highly overlapping, they were merged into one partition
in the microservice-based version. Moreover, as with the JPetStore
application, four classes were duplicated into two additional parti-
tions, resulting in a version with 31 classes and 112 methods.
PartsUnlimitedMRP [41] is a Manufacturing Resource Planning
application developed and maintained by Microsoft. We focus our
analysis on the backend part of PartsUnlimitedMRP. It contains 53
classes with 459 methods, which conceptually correspond to five
functional domains: catalog, dealer, order, quote, and shipment. The
application has five NoSQL documents and five functional tests,
each corresponding to one functional domain of the system. Its
functional tests provide a statement-level coverage of 65%.

The microservice-based version of PartsUnlimitedMRP was also
developed by Microsoft [42]. It contains five services that represent
the application’s five business domains, and two additional infras-
tructure services, which we excluded from our analysis, like in
the case of Spring-PetClinic. Our resulting reference microservice-
based version consists of 73 classes and 525 methods; 20 of these
classes (with 66 methods) are duplicates of 7 classes in the mono-
lithic version (exceptions and utilities).
7ep-demo [5] is a web application developed for demonstration
purposes. It contains four main functionalities: authentication, li-
brary management, mathematics, and database management. It
consists of 47 classes with 266 methods, 4 database tables, and 12
functional tests that correspond to the four business use cases of the
application. The tests provide a statement-level coverage of 93%.

7ep-demo does not have an existing reference microservice-
based version available. The project owner we engaged with in-
stead preferred to decompose the application by business use cases,
which results in four partitions: Authentication, LibraryManage-
ment, Mathematics and DBManagement. The owner also decided to
duplicate 10 classes with a total of 42 methods (nine utility classes
and one application bootstrap class); one additional class and the
interface it implements were split into three different partitions.
The resulting reference microservice-based version consists of 70
classes with 378 methods.
Target number of produced partitions. Four of the tools in our study,
Mono2Micro, MEM, CARGO, and toMicroservices, require the
desired number of partitions as an input. We asked the tool owners
to produce decompositions with the same number of partitions
as the reference microservice-based version, namely, 3, 3, 5, and 4
services for JPetStore, Spring-PetClinic, PartsUnlimitedMRP, and
7ep-demo, respectively.

2.4 Metrics Selection

We use two types of metrics to inform and complement our quali-
tative analysis of decompositions produced by the evaluated tools:
metrics that (a) evaluate microservice quality w.r.t. their design
principles, and (b) compare a decomposition produced by a tool to
the reference decomposition produced manually by developers.
Microservice Design Principles. We started from the ten mi-
croservice design principles for evaluating microservice-based ar-
chitectures collected by Engel et al. [22]. We excluded scalability

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yingying Wang, Sarah Bornais, and Julia Rubin

and performance, as we cannot assess these properties for the non-
runnable decompositions produced by the tools. We also excluded
maintainability, as we cannot reliably assess how the team main-
taining the produced decompositions will deem it.

We mapped the remaining seven principles (Size; Cyclic De-
pendencies; Structural Modularity; Network Complexity; Business
Context Modularity; Domain Independence; Team, Lifecycle, and
Technology Independence) to a set of quantitative metrics used in
the literature. Specifically, when possible, we relied on the relevant
metrics used in the evaluations of the tools included in our study.
However, we noticed that the tool authors occasionally use differ-
ent calculations for even seemingly identical metrics, e.g., Business
Context Modularity in [28, 45]. We thus unified and cleaned up the
definitions, when necessary.

Partition Size measures the minimum, maximum, mean, and
median number of elements in all partitions of a decomposition.
The rationale behind these statistical metrics is to assess whether
the produced microservice candidates are reasonably small and
their sizes are evenly distributed, e.g., that a tool does not produce
one excessively large and a few tiny partitions.

Cyclic (In-)Dependence (CiD) corresponds to the principle stat-
ing that microservice networks should be free of cyclic dependen-
cies. We say two partitions 𝑝 and 𝑞 have a cyclic dependency iff
there is at least one call from a method in 𝑝 to a method in 𝑞 and
there is at least one call from a method in 𝑞 to a method in 𝑝 . Then,
this metric measures the fraction of partition pairs that do not have
such cyclic dependency.

Code Modularity (CMod) measures the coupling and cohesion of
the produced decomposition w.r.t. structural relationships between
partitions. Low partition coupling and high cohesion correspond
to more efficient, scalable, and maintainable software. As such, all
tools in our study optimize for better code modularity. We calculate
CMod using Turbo Modularization Quality (TurboMQ) [43], which
combines coupling and cohesion into a single metric. It is defined
over a graph whose nodes are partition elements and edges are
relationships between these elements. For method-level decom-
positions, we calculate the metric over a static method-level call
graph, where there exists a directed edge between methods𝑀𝑖 and
𝑀𝑗 iff 𝑀𝑖 calls 𝑀𝑗 ; each edge in this graph has a weight of 1. For
class-level decompositions, we use a static class-level call graph,
where there is a directed edge with the weight𝑤𝐶 between classes
𝐶𝑖 and 𝐶 𝑗 iff the total number of calls between methods of 𝐶𝑖 and
𝐶 𝑗 is𝑤𝐶 . We denote by `𝑖 the sum of intra-partition edge weights
for a partition 𝑖 and by Y𝑖 𝑗 – the sum of inter-partition edge weights
from partition 𝑖 to 𝑗 . Then, the Cluster Factor for a partition 𝑖 , 𝐶𝐹𝑖
is 2`𝑖

2`𝑖+
∑

𝑗 Y𝑖 𝑗+Y 𝑗𝑖
and the normalized TurboMQ is defined as the av-

erage of all Cluster Factors for all partitions in a decomposition.
The value of CMod varies between 0% and 100%, with higher values
indicating more modular decompositions. We use this metric to
assess both Structural Modularity and Network Complexity proper-
ties, as network complexity is directly proportional to the coupling
between partitions.

Business Context Purity (BCP) [28, 29, 45] measures how busi-
ness use cases are distributed across partitions, which is one of the
optimization goals for three tools in our study: Mono2Micro, Hy-
Dec, and toMicroservices. These works define business use case

distribution in terms of the number of business use cases each par-
tition handles. A high BCP thus means that each partition handles
a small number of business use cases, which represents adherence
to the Single Responsibility Principle [37].

Calculating BCP relies on Shannon entropy [52], which assesses
the degree of randomness in a set of samples. Here, samples repre-
sent methods in a partition and BCP measures the probability of
these methods to implement a business use case. Specifically, for
each partition, the probability that a method in the partition imple-
ments a given business use case 𝑏 is defined as 𝑃 (𝑏) = 𝑛𝑏/𝑛, where
𝑛𝑏 is the number of times a method in the partition appears in the
execution log of business use case 𝑏 and 𝑛 is the total number of
times a method in the partition appears in the execution log of any
of the business use cases. The business use case entropy for a parti-
tion,𝐻 (𝑖), is then the entropy over the probability distribution 𝑃 (𝑏)
for all business use cases in an application: −∑

𝑏 𝑃 (𝑏) × 𝑙𝑜𝑔(𝑃 (𝑏)).
Further, BCP is defined as 1−𝐻 , where𝐻 is the average𝐻 (𝑖) for all
partitions in a given decomposition. BCP values can range from 0
to 100, where a higher BCP value indicates that each partition “im-
plements” a smaller number of business use cases. BCP is calculated
the same way for both method-level and class-level decompositions.

Domain Independence (DI) measures how many partitions han-
dle each business use case, which represents how well decomposi-
tions adhere to the by-business-domain decomposition principle
behind microservice-based architectures [32]. Its calculations also
rely on the entropy of a set of samples. However, in this case, the
samples are methods in an execution log of a given business use
case and we calculate the probability that a use case is implemented
in a partition 𝑝 , 𝑃 ′ (𝑝) = 𝑛𝑝/𝑛, where 𝑛𝑝 is the number of methods
in a partition 𝑝 that implement a use case and 𝑛 is the total number
of partitions that implement the use case.

Database Transaction Purity (DTP) [45] measures how database
accesses are distributed across partitions, which is one of the op-
timization goals for two tools in our study: Data-Centric and
CARGO. Having each partition interact with fewer databases is
yet another principle behind microservice-based architectures [32].
Similar to BCP , DTP is defined based on the average entropy of
partitions that access a given table across all database tables in a
given decomposition. For each database table, the probability that
a database transaction originates from a partition 𝑝 is 𝑃 (𝑝) = 𝑛𝑝/𝑛,
where 𝑛𝑝 is the number of times partition 𝑝 accesses the table, ei-
ther directly or indirectly, and 𝑛 is the total number of database
transactions that access the given table. That is, the metric aims
to penalize situations where multiple partitions access the same
database and we used it as one way to assess the Technology In-
dependence principle. DTP is calculated the same way for both
method-level and class-level decompositions.

Team – Contributors (TC) measures how frequently elements
historically modified by the same developer are assigned to the
same partition, which is one of the optimization goals of MEM.
We use TC to assess the Team Independence principle, as a team
working on a produced microservice will be more independent if
all elements the team members need to modify are included in the
same service. We calculate TC using TurboMQ, defined over a graph
whose nodes are partition elements; there exists an edge between
two elements iff these elements are modified by the same developer,

Microservice Decomposition Techniques: An Independent Tool Comparison ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

where the weight of this edge represents the number of developers
who modified both entities. The value of TC varies between 0% and
100%, with higher values indicating elements frequently modified
by the same developers are indeed placed in the same partition.

Lifecycle – Commits (LC) measures how frequently elements
historically modified in the same commit are assigned to the same
partition, which is also yet another optimization goal of MEM. We
use LC to assess the Lifecycle Independence principle, as entities
that are committed together are more likely to go through the
same development lifecycle and, thus, should be grouped in the
same service. Like TC, we calculate LC using TurboMQ over a
graph whose nodes are partition elements and a weighted edge
between two elements indicates the number of commits in which
both elements are modified.
Comparison of produced and reference decompositions. We
used two popular metrics commonly used in the literature on archi-
tectural refactoring and microservice decomposition for measuring
the distance between two architectures of the same software system:
MoJoFM [61] and Cluster-to-Cluster Coverage (c2ccvg) [24, 35, 36].

MoJoFM measures the distance between two architectures of
the same software system. In our study, it takes as input the au-
tomatically produced and the reference decompositions, 𝑃 and 𝑅,
and quantifies the number of Move and Join operations needed to
transform 𝑃 into 𝑅. The Move operation moves an entity from a
partition to an existing or a newly created one. The Join operation
joins two partitions into one, reducing the total number of parti-
tions. MoJoFM scores range from 0% to 100%, wherein a higher
value represents a higher similarity between two decompositions.
As the metric assigns the same weight to both operations, it tends
to prefer more fine-grained decompositions, where small partitions
of the produced architecture can be merged into a larger partition
of the reference architecture.

Cluster-to-cluster Coverage (c2ccvg) is a complementary metric
that measures the degree of overlap between the produced and
reference decompositions, 𝑃 and 𝑅. It first calculates the similarity
between each partition in 𝑃 and each partition in 𝑅 as a fraction
of common elements in 𝑃 and 𝑅 over the size of the larger of these
two partitions: |𝑝𝑖∩𝑟 𝑗 |

𝑚𝑎𝑥 (|𝑝𝑖 |, |𝑟 𝑗 |) × 100%. c2ccvg is then defined as the
fraction of partitions in 𝑃 that are at least 𝑡ℎ𝑐𝑣𝑔-similar to at least
one partition in 𝑅, where 𝑡ℎ𝑐𝑣𝑔 is a threshold that can be set to a
certain percentage – typically, 10% (some overlap), 33% (moderate
overlap), and 50% (high overlap) [36]. For example, a high c2ccvg
50% value implies that there is a large fraction of partitions in the
produced decomposition that are at least 50% similar to at least one
partition in the reference decomposition.

3 Evaluation Methodology

We evaluated the decomposition results proposed by the tools both
qualitatively and quantitatively. For the quantitative evaluation, we
used the metrics defined in Section 2.4.

As there could be multiple valid ways to decompose an applica-
tion, we also qualitatively analyzed all decompositions to extract
the strengths and weaknesses of each. Specifically, we conducted
two types of qualitative evaluation. First, two authors of this paper
independently analyzed the decomposition results produced by
each tool for each of the case studies. Then, all authors of the paper

met to discuss all decompositions. When analyzing the decompo-
sitions, we aimed to map the properties of the produced result to
those of the analyzed tools. The goals of our analysis were to (a) per-
form a “sanity check”, interpreting the results of the tools given our
understanding of the mechanisms behind their implementations;
(b) compare the results produced by different tools with each other;
and (c) compare the results with the manual decomposition of the
application provided by developers. We shared our observations
with the tool authors, which, in a few cases, led to re-running the
tools with an updated configuration setup and small bug fixes. We
incorporated the fixes for further analysis.

To gain further insights into how practitioners view decomposi-
tions provided by the tools and collect additional practical consid-
erations about their usefulness, we reached out to project owners
and top contributors of our case study applications, asking whether
they would be willing to review and provide feedback on the de-
compositions of their project produced by automated tools. We
received positive replies from the developers of two applications:
Spring-PetClinic and 7ep-demo. These developers are senior soft-
ware engineers working in industry. One has 13 years of software
development experience and 9 years of experience in microservices
and cloud-based software. Another has 45 years of software devel-
opment experience, 12 years of experience in microservices and
cloud-based software, and is one of the founders of Spring Cloud,
Spring Boot, and Spring Batch.

Tomaximize productivity and use the developers’ time efficiently,
we started the interaction by providing a pre-recorded video de-
scribing the purpose of our study and the principles behind existing
microservice extraction techniques. We also shared the interview
consent form and other documents for collecting the qualifications
and demographic information offline.

After this initial communication, we conducted a semi-structured
interview with each developer individually. Each interview lasted
one and a half hours. We started the interview by briefly review-
ing the background information about microservice decomposition
tools. The remainder of the interview was driven by the following
high-level questions: (1) What does the developer consider as a
good decomposition; (2) How would they decompose their cor-
responding application; (3) What is their opinion on each of the
decompositions produced by the tools; and (4) Whether and how
they changed their mind about the properties of a good decom-
position and the desired decomposition of their application after
reviewing the decompositions proposed by the tools.

The interviews were recorded (with the consent of the develop-
ers), which gave us the ability to reliably transcribe the collected
information. We also followed up with the developers by email
after the interview, when we believed clarifications were needed.
We shared the summary of the interviews and a draft of this paper
with the developers, for their final approval. This study protocol
was approved by the ethics board in our institution.

4 Results

We now discuss the performance of each tool on the four con-
sidered case studies. We then summarize the lessons learned and
implications of our findings in Sections 5.

Table 3 shows the summary of the metrics we calculated to
inform our tool evaluation. We first present the metrics for each

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yingying Wang, Sarah Bornais, and Julia Rubin

Table 3: Evaluation Results for the Decomposition Metrics.

Case

Study

Tool

#Part-

itions

Partition Size # Obs.

Ents. (%)

CiD CMod BCP DI DTP TC LC MoJoFM
c2ccvg

Min Mean Med Max 10% 33% 50%

JPetStore

Reference (class-level) 3 5 8.7 10 11 24 (100%) 66.7 71.4 50.5 45.4 85 33.1 33.1 - - - -
Mono2Micro 3* 4 5.7 5 8 17 (70.8%) 0 68 33.6 16.5 57 33.1 33.1 57.1 100 75 50
HyDec 8 2 2.8 2 5 22 (91.7%) 96.4 32 51.5 10.2 59.1 12.1 12.1 57.1 100 33.3 11.1
Data-Centric 3 5 8 6 13 24 (100%) 66.7 70.8 49.8 30.4 79.7 33.1 33.1 76.2 100 100 100

Log2MS 3 4 8 10 10 24 (100%) 66.7 69.9 48.9 43.6 85 33.1 33.1 100 100 100 100

MEM-CMT 5 2 3.4 3 6 17 (70.8%) 100 7.8 26.2 0 54.3 19.8 19.8 38.1 83.3 33.3 0
MEM-CNTR 6 2 3.3 2.5 6 20 (83.3%) 80 14.1 35.9 0 19.3 16.4 16.3 33.3 100 0 0
Reference (method-level) 3 73 103.3 105 132 302 (100%) 66.7 77.5 50.5 59.8 96.2 33.1 33.1 - - - -
toMicroservices 3* 8 76.3 8 213 229 (75.8%) 66.7 34.6 61.2 95.1 59.7 33 33 51.3 50 50 0
CARGO 3* 7 25.7 23 47 77 (25.5%) 66.7 52.1 44 52 83.4 32.4 32.4 46.7 75 25 0
MOSAIC 3 57 96 107 124 288 (95.4%) 100 80.3 40.2 58.8 96.2 33.1 33.1 89.5 100 75 75

Spring-

PetClinic

Reference (class-level) 3 6 9 10 11 23 (100%) 100 85.4 48.9 65.4 70.7 34.4 38.1 - - - -
Mono2Micro 3* 3 5.7 7 7 17 (73.9%) 66.7 77.8 33.3 28.5 64.9 34.6 39.3 36.8 100 75 25
HyDec 3 4 5.3 5 7 16 (69.6%) 100 42.3 36.3 40.4 47.2 36 43.2 36.8 100 75 25
Data-Centric 3 3 7.7 6 14 23 (100%) 66.7 64.2 13 30.9 77.1 33.5 36.1 57.9 100 100 66.7

Log2MS 7 1 2.7 2 6 19 (82.6%) 85.7 29.2 9.8 3.3 57.1 14.1 16.9 52.6 100 37.5 0
MEM-CMT 6 2 2.5 2 4 15 (65.2%) 100 36.9 45 1.2 43.3 17.9 24.4 31.6 100 28.6 0
MEM-CNTR 5 1 2.6 2 5 13 (56.5%) 100 13.3 20 27.5 44.3 23.7 31.2 31.6 83.3 33.3 0
Reference (method-level) 3 27 44 30 75 112 (100%) 66.7 79.8 48.9 65.3 73 34 36.8 - - - -
toMicroservices 3* 9 22.7 9 50 68 (60.7%) 100 60.3 33.5 55.5 68.1 32.7 33.9 56.5 100 50 25
CARGO - - - - - - - - - - - - - - - - -
MOSAIC 2 28 54 54 80 95 (84.8%) 100 100 59.8 100 100 50.8 53.7 69.4 100 100 100

Parts

Unlimited

MRP

Reference (class-level) 5 5 12.4 13 17 53 (100%) 100 90.2 29.7 12.7 57.5 20.2 20.1 - - - -
Mono2Micro 5* 1 6.2 7 10 31 (58.5%) 60 42.9 40.7 19.5 33 20 19.9 33.3 83.3 0 0
HyDec 3 5 15.3 5 36 46 (86.8%) 33.3 89.4 10.8 37 87.3 33.2 33.2 37.5 100 75 0
Data-Centric 4 7 13 10 25 52 (98.1%) 33.3 71.7 1.5 8 75.3 25 25 50 80 80 40

Log2MS - - - - - - - - - - - - - - - - -
MEM-CMT 2 2 2 2 2 4 (7.5%) 100 0 1.7 59.5 100 49.1 49.1 25 33.3 0 0
MEM-CNTR 12 1 3.8 3 8 44 (83%) 89.4 11.5 11.4 0 8.8 8.2 8.2 22.9 61.5 7.7 0
Reference (method-level) 5 42 82.2 95 111 412 (100%) 90 89.7 29.7 24.2 81.8 20.1 20.1 - - - -
toMicroservices 5* 9 32.2 9 125 161 (39.1%) 60 29.5 80 79.2 2.8 19.4 19.2 29.3 33.3 0 0
CARGO 5* 8 38.4 20 122 192 (46.6%) 60 35.1 6.1 26.5 58.8 19.6 19.5 36.7 83.3 16.7 0
MOSAIC 5 36 59.4 69 78 297 (72.1%) 90 90.8 29.3 49.1 78.1 20.2 20.1 86.2 100 100 100

7ep-demo

Reference (class-level) 4 13 17.5 18 21 47 (100%) 100 100 53.3 93.9 57.6 24.4 44.6 - - - -
Mono2Micro 4* 3 7.5 4 19 30 (63.8%) 100 80.3 83 60.4 84.1 24.6 48.4 51.2 100 40 20
HyDec 8 3 5 3.5 12 40 (85.1%) 96.4 47.1 68.8 37.2 8.4 12 34.8 69.8 88.9 22.2 11.1
Data-Centric 4 2 11 9 24 44 (93.6%) 33.3 38 77.2 51.4 43.9 24.6 38.9 62.8 60 60 40

Log2MS - - - - - - - - - - - - - - - - -
MEM-CMT 7 1 2.9 3 6 20 (42.6%) 100 25.4 55.1 35.3 23 13.2 43.9 37.2 62.5 12.5 12.5
MEM-CNTR 18 1 1.8 2 4 33 (70.2%) 97.4 2.1 55.6 0 0 4.8 13.7 20.9 26.3 5.3 0
Reference (method-level) 4 76 100.8 93.5 140 295 (100%) 100 96.5 53.3 77.9 37.5 24.6 47.1 - - - -
toMicroservices 4* 8 30.3 8.5 96 121 (41%) 50 35 72.5 68.4 44.4 24.3 27.6 36.2 40 40 0
CARGO 4* 6 29 11 89 117 (39.7%) 50 40.6 29.9 60.1 82.7 24.3 31.5 36.2 60 40 0
MOSAIC 4 6 38 36 73 151 (51.2%) 100 100 80 100 43.7 24.5 45.7 64.5 80 80 0

Summary

Reference (class-level) 4 7.3 11.9 12.8 15 36.8 (100%) 91.7 86.8 45.6 54.4 67.7 28 34 - - - -
Mono2Micro 3.8* 2.8 6.3 5.8 11 23.8 (66.8%) 56.7 67.3 47.7 31.2 59.8 28.1 35.2 44.6 95.8 47.5 23.8
HyDec 6 3.5 7.1 3.9 15 31 (83.3%) 81.5 52.7 41.9 31.2 50.5 23.3 30.8 50.3 97.2 51.4 11.8
Data-Centric 4 4.3 9.9 7.8 19 35.8 (97.9%) 50 61.2 35.4 30.2 69 29.1 33.3 61.7 85 85 61.7

Log2MS 5 2.5 5.4 6 8 21.5 (91.3%) 76.2 49.6 29.4 23.5 71.1 23.6 25 76.3 100 68.8 50
MEM-CMT 5 1.8 2.7 2.5 4.5 14 (46.5%) 100 17.5 32 24 55.2 25 34.3 33 69.8 18.6 3.1
MEM-CNTR 10.3 1.3 2.9 2.4 5.8 27.5 (73.3%) 91.7 10.3 30.7 6.9 18.1 13.3 17.4 27.2 67.8 11.6 0
Reference (method-level) 4 54.5 82.6 80.9 114.5 280.3 (100%) 80.9 85.9 45.6 56.8 72.1 28 34.3 - - - -
toMicroservices 3.8* 8.5 40.4 8.6 121 144.8 (54.2%) 69.2 39.9 61.8 74.6 43.8 27.4 28.4 43.3 55.8 35 6.3
CARGO 4* 7 31.1 18 86 128.7 (37.3%) 58.9 42.6 26.7 46.2 75 25.4 27.8 39.9 72.8 27.2 0
MOSAIC 4 31.8 61.8 66.5 88.8 207.8 (75.9%) 97.5 92.8 52.3 77 79.5 32.2 38.2 77.4 95 88.8 68.8

* indicates cases where tools were given the number of partitions as an additional input.

case study separately, to enable the comparison of the tools on
the same underlying code base. For each case study, we also show
the values of metric calculations for the reference decomposition,
for class-level and method-level versions, separately. Then, in the
“Summary” row, we present the average performance for each tool
across all four case studies.

After the names of the case studies and the tools, the third col-
umn of the table shows the number of partitions in the reference
and produced decompositions. We mark by * cases where tools
were given the number of partitions as an additional input. The “#
Observed Entities” column shows the number and the fraction of
elements from the original monolithic application that are included

in a decomposition produced by a tool (unobserved entities occur
because of static and dynamic unreachability, tool bugs, and more.)

The next two major sections of the table show the values of
the microservice quality metrics (CiD, CMod, BCP , DI , DTP , TC,
and LC) and the results of the comparison between the produced
and reference decompositions for each case study (MoJoFM and
c2ccvg). We boldface the best value for each metric in each of the
case studies, for class- and method-level decompositions separately.
Mono2Micro. The tool works well for case studies where business
use cases are well separated, e.g., 7ep-demo. However, as could be
expected, it does not perform as well for case studies with highly
entangled business use cases, e.g., JPetStore (see BCP). It also tends

Microservice Decomposition Techniques: An Independent Tool Comparison ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

to sacrifice the by-use-case decomposition (DI) for the single re-
sponsibility principle (BCP). The tool successfully identifies some
of the utility classes in our case studies. Yet, it does not provide
special treatment to exceptions, factories, and abstract base classes,
all of which were duplicated in the reference decompositions. This
is also the primary reasonMono2Micro does not achieve the same
level of code modularity as the reference decompositions (CMod),
despite having some of the best overall scores among all class-level
tools, as shown in the “Summary” part at the bottom of the table.
HyDec. UnlikeMono2Micro, this tool uses linguistic similarity
to identify business domains, relying on the assumption that de-
velopers use the same terminology when naming elements from
the same domain. Similar to all other tools, it also optimizes for
code modularity. Considering linguistic similarity works particu-
larly well in the 7ep-demo application, where the tool is able to
correctly split the Authentication and LibraryManagement parti-
tions, as they indeed use distinct terminology. Many other tools
end up unifying these partitions because of their strong code-level
dependencies. However, one weakness of the tool is its inability
to identify contextually-related yet linguistically-dissimilar terms,
which leads to the creation of a decomposition that is too fine-
grained. For example, for both JPetStore and 7ep-demo, the tool
created eight service candidates instead of three and four in the
reference decompositions, respectively, making the result largely
dissimilar to the reference architecture (see MoJoFM and c2ccvg).
Likewise, in PartsUnlimitedMRP, the tool pulled many unrelated
elements into one partition, resulting in a high modularity score
(CMod) but low similarity with the reference decomposition. Build-
ing a proper ontology capturing application-specific terminology
and using it to compute linguistic similarity could help largely
improve the quality of the tool.
Data-Centric. Despite optimizing for database access relation-
ships, this tool does not achieve the highestDTP in all but one of our
case studies. However, it achieves an overall high similarity to the
reference decomposition (seeMoJoFM and c2ccvg in the “Summary”
part of the table). This is particularly evident in PartsUnlimitedMRP,
where Data-Centric has the highestMoJoFM score of the tools; in
this application, there is a one-to-one mapping of database tables
to the associated partitions, providing evidence that developers
consider database tables when decomposing applications.
Log2MS. The authors only provided us with the decomposition
results for the JPetStore and Spring-PetClinic case studies; we thus
exclude the other two case studies from further analysis for this
tool. For JPetStore, Log2MS produced a result that is highly similar
(almost identical) to the reference decomposition (both MoJoFM
and all c2ccvg scores of 100%). This is because JPetStore has only
four controller classes and the reference decomposition has four
partitions. The tool starts by assigning each controller class to
its own partition and then merges highly-coupled partitions; it
thus can achieve a result similar to the reference decomposition.
However, this strategy does not work for Spring-PetClinic, which
has six controller classes. As these classes are rather disconnected,
Log2MS producesmore partitions than the expected three, resulting
in low similarity with the reference decomposition.
MEM. Our experience running the tool shows that it produces dras-
tically different decompositions in each run. While investigating

possible causes of this indeterminism, we observed that the tool is
configured to consider only 12 files of each commit; we changed
this number to the maximal possible – 30 (a restriction set by the
powerset function of Google’s Guava [25] library the tool uses, to
avoid powerset sizes exceed the ‘int‘ range). We further increased
the maximal size of each partition to 25 rather than the default
10 as, otherwise, the tool produced many (different) fine-grained
partitions. Even after these adjustments, the results produced by
the tool were indeterministic. Lacking support from developers, we
could not reliably repair the tool. For completeness, we report the
best result out of five runs of the tool for each case study in Table 3
and exclude the tool from further qualitative analysis.
toMicroservices. This tool performs method-level decomposi-
tion. While this design allows the tool to split bloated classes into
multiple partitions, it also often splits methods that are grouped
together in the reference decomposition. LikeMono2Micro, toMi-
croservices optimizes for business use case purity. We observe
that the tools tend to create unevenly sized partitions, with one
large partition that serves the majority of the business decomposi-
tion and several small partitions. This is particularly apparent in
PartsUnlimitedMRP, where the tool creates one large partition (125
methods) and four smaller partitions (9 methods each). It does this
because it groups methods that support the same business use case
together, and many methods support multiple business use cases.
While this decision makes it possible for the tool to achieve high
BCP and DI scores (with means of 61.8% and 74.6%, respectively,
across all use cases), optimizing solely for business purity metric
does not create good decompositions in this case. The produced
decompositions also have low similarity with the reference ones.
CARGO. Overall, this tool fails to achieve reasonable results on our
case studies due to the incomplete static analysis it performs. The
tool relies on Doop [15] to perform reachability analysis. However,
Doop appears to deemmany reachable methods as unreachable. For
example, in the JPetStore application with 302 methods, CARGO’s
reachability analysis reports only 97 methods as reachable and the
tool further observes only 77 of them (25.5% of all methods). Method-
level coverage for this application, calculated using the provided test
suite is, in fact, 78.1%, which is also confirmed by the high fraction
of methods observed by toMicroservices (75.8%). For Spring-
PetClinic, the tool produced a result which included only framework
and no application methods, which led us to exclude this case study
altogether. The reachability issue resulted in CARGO being able to
observe only 37.3% of the methods in our case studies, on average –
lowest of all tools (see the “Summary” part of the table). Upon a
discussion with the authors, they confirmed that more investigation
is required to better understandwhy the tool behaves in this manner
and how to update it to reach more application elements.
MOSAIC. This tool produces decompositions that are highly similar
to the reference ones: MoJoFM of 77.4%, on average, the highest
across all tools). The decompositions produced by the tool are also
close, or even higher, than the reference decompositions w.r.t. other
quality metrics. There are two factors contributing to the success of
the tool: first, the decision to perform hybrid class- andmethod-level
analysis allowed the tool to split classes only when necessary. The
tool’s ability to duplicate classes and methods among partitions is
also remarkable and contributes to its success. However, its decision

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yingying Wang, Sarah Bornais, and Julia Rubin

to focus on entity, logic-layer, and persistence-layer classes only
(potentially manually annotated) causes it to miss several classes,
especially in the 7ep-demo case, where the tool could only observe
a bit more than half of the code elements. We note that, per our
communication with the authors, the results they shared with us
are produced by the next release of the tool, which is not publicly
available yet, so we could not verify how the improved features of
that tool version contributed to the quality of its results.

5 Lessons Learned and Implications

We discuss the main observations from our study and suggestions
for future research in two dimensions: observations about the tool
evaluation process and observations about the tools themselves.

5.1 Tool Evaluation Process

Relying on Metrics. Our study shows that solely relying on met-
rics (or a subset of metrics, as done in some prior work) does not
provide a comprehensive view and is insufficient to properly evalu-
ate the tools. For example, pulling many classes into one partition
can result in a high modularity score, as in the case of HyDec for
PartsUnlimitedMRP. Likewise, observing only a small fraction of
monolithic application elements can result in high metric values, as
in the case of CARGO for DTP , but that does not translate to high-
quality decompositions. Overreliance on (a subset of) metrics also
prevents a reliable comparison of tools with each other. A holistic
approach that qualitatively analyzes the produced decompositions
and considers values of different metrics in combination, like we
performed in this paper, is expensive but necessary.
Comparison with Manually-Produced Decompositions. As
there could be multiple valid ways to decompose an application into
microservices, the comparison with manually-produced decompo-
sition should also be augmented with a qualitative discussion of
the results. Even though in our experiments we did not observe
any produced decomposition that appeared to be a reasonable al-
ternative to the reference ones we used, such situation could occur
in other studies.
Non-functional and Execution-time Properties. A usable de-
composition should be performant, scalable, and secure. Unfor-
tunately, none of the tools produces a runnable decomposition,
hindering the analysis of these properties. Creating deployable
microservices, as well as creating performance-, security-, and
scalability-friendly decompositions, is a fruitful direction for future
work. Such work could entail converting code dependencies into
inter-service code, setting up API gateways, porting the app into a
particular framework (e.g., Spring), adjusting the decomposition to
avoid passing sensitive information over the internet, and more.
Tool Performance. Another missing aspect of evaluation is the
performance of the tools. As our analysis shows, many tools utilize
static analysis, which causes them to miss application elements
and might not scale well for larger case studies. Another possible
performance bottleneck is clustering, when the number of nodes
becomes large (especially for method-level techniques). Our experi-
ence is that clustering can take several days/weeks for large appli-
cations [14]. Properly evaluating the performance and scalability of
existing tools would be useful for possible future tool comparisons.

5.2 Tools

Heuristics Employed by the Tools. Tools use a variety of heuris-
tics to decompose applications by business domains: while all tools
consider static and/or dynamic relationships between elements,
they also rely on using use case log executions (Mono2Micro and
toMicroservices), linguistic similarity (HyDec), database relation-
ships (Data-Centric and CARGO), and version histories (MEM).
Our analysis shows that (1) using use case execution logs is help-
ful when use cases do not cross-cut multiple business domains;
(2) linguistic similarity can be a useful approximation of business
domains when developers use consistent and precise terminology,
but an ontology of terms might need to be carefully defined for
other cases; (3) using database decomposition to infer code decom-
position is beneficial as database decomposition provides valuable
insights into the business domains embedded in the application.

Even though we carefully selected case study applications that
contain sufficient data for evaluating each tool, we observed that
some applications can benefit from some decomposition principles
but not all applications can benefit from all decomposition princi-
ples. Future work could look at dynamically adapting optimization
goals and granularity to the properties of the decomposed applica-
tion or even its different parts. MOSAIC makes a valuable first step
in this direction, with its hybrid class- and method-level analysis.

Interestingly, our interviewees generally preferred class-level
to full method-level decompositions («I probably would not go
down to the layer of methods. Unless we are working in a manner
that I would find to be less than professional, we ought to have
extremely related work in classes»). However, they saw method-
level decomposition as a good opportunity to obtain input for a
possible refactoring and noted that method-level decomposition
tools can be useful as a «quality problem indicator».
Types of Application Elements. In the same vein, we also ob-
serve that not every part of a monolithic application contributes to a
business use case directly. For example, in the 7ep-demo application,
persistence and helper classes provide services to different business
use cases. Such classes should be considered separately from busi-
ness classes. BothMono2Micro andMOSAIC already took the first
steps towards identifying such classes, which is remarkable. How-
ever, not all non-business-logic-related classes should be treated
the same. As stated by one of our interviewees, some of the classes,
e.g., in the persistence layer, are «kitchen drawers» of similar oper-
ations provided to different domains. Such classes «could be split
by different needs [domains]». Other types of classes, like helpers,
are «often meant to be cross-cutting helpful things, like convert
strings to bytes. [They] needs to run really fast and be just available
in a flash». As such, they should be duplicated to all partitions.

Duplication is not always the best solution and, pragmatically, us-
ing a shared library could be «better than duplication, even though
it is an anti-pattern [in microservices]». One way to decide which
classes should be duplicated vs. kept in a shared library is to look
at the class evolution: «if [things] do not change much, go with
a shared library». Future decomposition tools should look into
identifying application classes of different types, such as business
capability, persistence layer, and helper classes, and treat them ap-
propriately. The tools should also develop strategies to decide when
to duplicate classes, when to split by methods, etc.

Microservice Decomposition Techniques: An Independent Tool Comparison ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

One-shotApproach toDecomposition.Weobserved that several
of the manually-produced reference microservice-based architec-
ture underwent a refactoring during the decomposition process.
In fact, both interviewed developers pointed out that the process
of decomposition can induce such a refactoring. Even though the
refactoring can, in theory, be done before the decomposition, the
ROI is low: «It’s a case of cost and benefit and the amount of energy
it takes to do that refactoring. I wouldn’t spend that much energy
if I didn’t think that I was going to refactor it into services. It’s just
not worth it.» Yet, most microservice decomposition techniques,
including all those we analyzed in this study, perform one-shot
decomposition. As the decomposition process is typically entan-
gled with refactoring, future work dedicated to performing these
processes simultaneously could be of high practical value.
Developers-in-the-loop. Developers often start decomposition
knowing what microservices they desire: «I’ve already made clear
that inmymind, authentication and library andmathematics are the
domains». Moreover, the decomposition process is often iterative
and requires human-in-the-loop, as reported in literature [21] and
confirmed by our interviewees: «I would then go back and make
modifications until [the tool] is saying ‘this is all red and this is all
blue [partitions]’». Another productive research direction could
be exploring iterative approaches that keep developers in the loop,
which will help complement the information missed by the analysis.
Implementation Issues. Severalmicroservice decomposition tools
implement advanced and useful ideas for helping developers with
decomposition tasks. However, they tend to fail because of imple-
mentation issues, especially issues related to static analysis of mono-
lithic applications and the need to support multiple frameworks,
such as Spring Boot and Spring MVC. This was the main reason for
failures in tools such as CARGO, MOSAIC, and more. While the
difficulties of conducting an accurate analysis are well known [31],
evaluating and adapting ideas for practical use is often overlooked.
Future work should look into the potential of developing analysis-
based techniques that will scale for large, industrial applications
and the return on investment (ROI) in such development.

6 Limitations and Threats to Validity

For external validity, our results may not generalize beyond our
selected case study applications. We attempted to mitigate this
threat by selecting applications of different sizes and domains, en-
suring they satisfy the input requirements of all participating tools.
We included applications previously decomposed to microservices
and an additional “challenge” case study, 7ep-demo, that was not
decomposed before. We acknowledge that the selected case studies
do not fully reflect the scale of industry applications. Yet, we opted
to use open source applications for transparency and reproducibil-
ity. We thus believe our selection of applications is reliable and
representative.

For internal validity, we might have misinterpreted the tools’
results. We mitigated this threat in several ways: first, two authors
of the paper analyzed the results of all tools on all case studies inde-
pendently and cross-validated their observations. We also reached
out to the tool owners when unsure. Finally, we shared a draft of
the paper with all tool authors to obtain their feedback and ad-
dressed all feedback we received. Similarly, to mitigate the treat of
misinterpreting the statements of practitioners we interviewed, all

authors of this paper attended the interviews and both interviews
were recorded for further detailed analysis. Our interview data
analysis was performed independently by two authors of the paper
and discussed by all the authors. We shared a draft of this paper
with the practitioners and addressed all feedback we received.

7 Discussion and Related Work

Internal tool evaluation. The authors of three tools participating
in our study, namely HyDec [51], Log2MS [33], and CARGO [45],
compared their approaches with Mono2Micro [28, 29], as well
as with earlier tools such as MEM [40] and FoSCI [27]. Data-
Centric [48] and toMicroservices [11, 16] were not compared
with these or other approaches before. However, the existing com-
parisons do not use a consistent set of case studies and metrics.

Our work fills these gaps by performing a comprehensive selec-
tion of case studies and a uniform set of metrics appropriate for
evaluating a wide range of tools. Moreover, by including eight tools
in our study, wewere able to compare closely related tools with each
other, e.g., CARGO and Data-Centric, which both optimize for
database transaction purity; Mono2Micro and toMicroservices,
which both optimize for business use case purity; and toMicroser-
vices and CARGO, which both work on the method level. Such
comparison was not attempted before.

Finally, only a few works perform qualitative evaluations with
developers [11, 16, 28]. Such evaluations are mostly focused on the
usefulness of a particular tool rather than attempting to compare
multiple tools with each other, like we do in our work.
External tool evaluation. We are only aware of one work in
which the authors collected a number of automated microservice
decomposition techniques and evaluated their usability and per-
formance [9]. The authors included only three tools in their study,
which are all substantially older (published in 2016 and 2017) than
the tools we used in our work: Service cutter [26],MEM [40], and
Decomposer [12]. Our study complements and extends this work
by exploring a large set of contemporary tools, allowing us to pro-
vide suggestions for additional necessary future work in this area.

8 Conclusion

In this paper, we reported on the results of our study comparing
eight microservice decomposition tools on a set of systematically
selected benchmark applications and metrics. As our team was
not involved in developing these tools, we provide an independent
assessment of the tools’ performance, evaluating them both quali-
tatively and quantitatively. We also engaged with developers who
are the main contributors of two of our benchmark applications, to
collect their insights on the decomposition process and results. We
hope that such a comprehensive comparison will allow the commu-
nity to better understand the strengths and weaknesses of existing
solutions, facilitate development of more advanced approaches, and
provide grounds for a more systematic evaluation of the existing
and new tools.

9 Acknowledgments

We would like to thank the authors of all tools and the owners
of Spring-PetClinic and 7ep-demo projects for their involvement
in our study. We also thank the anonymous reviewers for their
insightful feedback, which helped us improve the paper.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Yingying Wang, Sarah Bornais, and Julia Rubin

References

[1] 2020. CORE ranking (Journal Portal). http://portal.core.edu.au/jnl-ranks/.
[2] 2021. CORE ranking (Conference Portal). http://portal.core.edu.au/conf-ranks/.
[3] 2022. IBM - Mono2Micro. https://www.ibm.com/cloud/mono2micro.
[4] 2024. What’s new in IBM Mono2Micro. https://www.ibm.com/docs/en/

mono2micro?topic=overview-whats-new-in-mono2micro.
[5] 7ep. [n. d.]. Demo - demonstrates an application and tests. https://github.com/

7ep/demo.
[6] Muhammad Abdullah, Waheed Iqbal, and Abdelkarim Erradi. 2019. Unsupervised

Learning Approach for Web Application Auto-Decomposition into Microservices.
Journal of Systems and Software (JSS) 151 (2019), 243–257.

[7] Yalemisew Abgaz, Andrew McCarren, Peter Elger, David Solan, Neil Lapuz,
Marin Bivol, Glenn Jackson, Murat Yilmaz, Jim Buckley, and Paul Clarke. 2023.
Decomposition of Monolith Applications Into Microservices Architectures: A
Systematic Review. IEEE Transactions on Software Engineering (2023), 1–32.

[8] Shivali Agarwal, Raunak Sinha, Giriprasad Sridhara, Pratap Das, Utkarsh Desai,
Srikanth Tamilselvam, Amith Singhee, and Hiroaki Nakamuro. 2021. Monolith
to Microservice Candidates using Business Functionality Inference. In 2021 IEEE
International Conference on Web Services (ICWS). 758–763.

[9] Kerem Akkaya and Tolga Ovatman. 2022. A Comparative Study of Meta-Data-
Based Microservice Extraction Tools. International Journal of Service Science,
Management, Engineering, and Technology (IJSSMET) 13, 1 (2022), 1–26.

[10] Carlos Arguelles, Marko Ivanković, and Adam Bender. 2020. Code Coverage
Best Practices. https://testing.googleblog.com/2020/08/code-coverage-best-
practices.html

[11] Wesley K. G. Assunção, Thelma Elita Colanzi, Luiz Carvalho, Juliana Alves Pereira,
Alessandro Garcia, Maria Julia de Lima, and Carlos Lucena. 2021. AMulti-Criteria
Strategy for Redesigning Legacy Features as Microservices: An Industrial Case
Study. In 2021 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). 377–387.

[12] Luciano Baresi, Martin Garriga, and Alan De Renzis. 2017. Microservices Identi-
fication Through Interface Analysis. In European Concerence on Service-Oriented
and Cloud Computing (ESOCC 2017). 19–33.

[13] Amit Kanti Barua. 2022. Test Coverage Definition - Unit Testing.
https://learn.microsoft.com/en-us/answers/questions/778016/test-coverage-
definition-unit-testing

[14] Evelien Boerstra, John Ahn, and Julia Rubin. 2022. Stronger Together: On Com-
bining Relationships in Architectural Recovery Approaches. 305–316.

[15] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specifica-
tion of Sophisticated Points-to Analyses (OOPSLA ’09).

[16] Luiz Carvalho, Alessandro Garcia, Thelma Elita Colanzi, Wesley K. G. Assunção,
Juliana Alves Pereira, Baldoino Fonseca, Márcio Ribeiro, Maria Julia de Lima,
and Carlos Lucena. 2020. On the Performance and Adoption of Search-Based
Microservice Identification with toMicroservices. In 2020 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME). 569–580.

[17] L. Carvalho, A. Garcia, W. K. G. Assunção, R. de Mello, and M. Julia de Lima. 2019.
Analysis of the Criteria Adopted in Industry to Extract Microservices. In 2019
IEEE/ACM Joint 7th International Workshop on Conducting Empirical Studies in
Industry (CESI) and 6th International Workshop on Software Engineering Research
and Industrial Practice (SER IP). 22–29.

[18] Roland Croft, Yongzheng Xie, and Muhammad Ali Babar. 2023. Data Preparation
for Software Vulnerability Prediction: A Systematic Literature Review. IEEE
Transactions on Software Engineering 49 (2023), 1044–1063.

[19] Adambarage Anuruddha Chathuranga De Alwis, Alistair Barros, Colin Fidge,
and Artem Polyvyanyy. 2021. Microservice Remodularisation of Monolithic
Enterprise Systems for Embedding in Industrial IoT Networks. In Advanced
Information Systems Engineering. 432–448.

[20] Utkarsh Desai, Sambaran Bandyopadhyay, and Srikanth Tamilselvam. 2021.
Graph Neural Network to Dilute Outliers for Refactoring Monolith Applica-
tion. In Thirty-Fifth AAAI Conference on Artificial Intelligence. 72–80.

[21] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. 2018. Migrating To-
wards Microservice Architectures: an Industrial Survey. In Proceedings of IEEE
International Conference on Software Architecture (ICSA). 29–38.

[22] Thomas Engel, Melanie Langermeier, Bernhard Bauer, and Alexander Hofmann.
2018. Evaluation of Microservice Architectures: A Metric and Tool-Based Ap-
proach. In International Conference on Advanced Information Systems Engineering
(CAiSE).

[23] Gianluca Filippone, Nadeem Qaisar Mehmood, Marco Autili, Fabrizio Rossi, and
Massimo Tivoli. 2023. From Monolithic to Microservice Architecture: An Auto-
mated Approach Based on Graph Clustering and Combinatorial Optimization. In
2023 IEEE 20th International Conference on Software Architecture (ICSA). 47–57.

[24] Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. 2013. A Comparative Analy-
sis of Software Architecture Recovery Techniques. In International Conference on
Automated Software Engineering (ASE). 486–496.

[25] Google. 2024. Google core libraries for Java. https://github.com/google/guava
[26] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zimmermann. 2016.

Service Cutter: A Systematic Approach to Service Decomposition. In Service-
Oriented and Cloud Computing. 185–200.

[27] Wuxia Jin, Ting Liu, Yuanfang Cai, Rick Kazman, Ran Mo, and Qinghua Zheng.
2019. Service Candidate Identification from Monolithic Systems based on Execu-
tion Traces. IEEE Transactions on Software Engineering (TSE) (2019).

[28] Anup K. Kalia, Jin Xiao, Rahul Krishna, Saurabh Sinha, Maja Vukovic, and Deba-
sish Banerjee. 2021. Mono2Micro: A Practical and Effective Tool for Decomposing
Monolithic Java Applications to Microservices. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1214–1224.

[29] Anup K. Kalia, Jin Xiao, Chen Lin, Saurabh Sinha, John J. Rofrano, Maja Vukovic,
and Debasish Banerjee. 2020. Mono2Micro: An AI-based Toolchain for Evolving
Monolithic Enterprise Applications to a Microservice Architecture. In Tool Demos
of ESEC/FSE. 1606–1610.

[30] Lisa J. Kirby, Evelien Boerstra, Zachary J.C. Anderson, and Julia Rubin. 2021.
Weighing the Evidence: On Relationship Types in Microservice Extraction. In
International Conference on Program Comprehension (ICPC). 358–368.

[31] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017. Challenges for
Static Analysis of Java Reflection - Literature Review and Empirical Study. In
International Conference on Software Engineering (ICSE). 507–518.

[32] James Lewis and Martin Fowler. 2014. Microservices: a Definition of This New
Architectural Term. https://www.martinfowler.com/articles/microservices.html.

[33] Bo Liu, Jingliu Xiong, Qiurong Ren, Shmuel Tyszberowicz, and Zheng Yang. 2022.
Log2MS: A Framework for Automated Refactoring Monolith Into Microservices
Using Execution Logs. In 2022 IEEE International Conference on Web Services
(ICWS). 391–396.

[34] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2022. Deep Learning
for Android Malware Defenses: A Systematic Literature Review. Comput. Surveys
55 (2022).

[35] Thibaud Lutellier, Devin Chollak, Joshua Garcia, Lin Tan, Derek Rayside, Nenad
Medvidovic, and Robert Kroeger. 2015. Comparing Software Architecture Re-
covery Techniques Using Accurate Dependencies. In International Conference on
Software Engineering (ICSE). 69–78.

[36] Thibaud Lutellier, Devin Chollak, Joshua Garcia, Lin Tan, Derek Rayside, Nenad
Medvidovic, and Robert Kroeger. 2017. Measuring the Impact of Code Depen-
dencies on Software Architecture Recovery Techniques. IEEE Transactions on
Software Engineering 44 (2017), 159–181.

[37] Robert C. Martin. 2014. The Single Responsibility Principle. https://blog.
cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html. [On-
line; accessed February 2024].

[38] Alex Mathai, Sambaran Bandyopadhyay, Utkarsh Desai, and Srikanth Tamil-
selvam. 2022. Monolith to Microservices: Representing Application Software
through Heterogeneous Graph Neural Network. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence (IJCAI-22). 3905–3911.

[39] T. Matias, F. F. Correia, J. Fritzsch, J. Bogner, H. S. Ferreira, and A. Restivo. 2020.
Determining Microservice Boundaries: A Case Study Using Static and Dynamic
Software Analysis. In European Conference on Software Architecture. 315–332.

[40] Genc Mazlami, Jurgen Cito, and Philipp Leitner. 2017. Extraction of Microservices
from Monolithic Software Architectures. In International Conference on Web
Services (ICWS). 524–531.

[41] microsoft. [n. d.]. Parts Unlimited MRP. https://github.com/microsoft/
partsunlimitedMRP.

[42] microsoft. https://github.com/microsoft/partsunlimitedMRPmicro. Parts Unlim-
ited MRP Microservices.

[43] B. S. Mitchell and S. Mancoridis. 2006. On the automatic modularization of
software systems using the Bunch tool. IEEE Transactions on Software Engineering
32, 3 (March 2006), 193–208.

[44] MyBatis.org. [n. d.]. JPetstore Demo 6 - MyBatis Spring. http://mybatis.org/
jpetstore-6/.

[45] Vikram Nitin, Shubhi Asthana, Baishakhi Ray, and Rahul Krishna. 2023. CARGO:
AI-Guided Dependency Analysis for Migrating Monolithic Applications to Mi-
croservices Architecture. In Proceedings of the 37th IEEE/ACM International Con-
ference on Automated Software Engineering. Article 20, 12 pages.

[46] I. Pigazzini, F. A. Fontana, and A. Maggioni. 2019. Tool Support for the Migration
to Microservice Architecture: An Industrial Case Study. In Software Architecture.
247–263.

[47] Pooja Rani, Arianna Blasi, Nataliia Stulova, Sebastiano Panichella, Alessandra
Gorla, and Oscar Nierstrasz. 2023. A Decade of Code Comment Quality Assess-
ment: A Systematic Literature Review. Journal of Systems and Software 195 (2023),
111515.

[48] Yamina Romani, Okba Tibermacine, and Chouki Tibermacine. 2022. Towards
Migrating Legacy Software Systems to Microservice-based Architectures: a Data-
Centric Process for Microservice Identification. In 2022 IEEE 19th International
Conference on Software Architecture Companion (ICSA-C). 15–19.

[49] Khaled Sellami, Ali Ouni, Mohamed Aymen Saied, Salah Bouktif, and Mo-
hamed Wiem Mkaouer. 2022. Improving Microservices Extraction Using Evolu-
tionary Search. Information and Software Technology 151 (2022), 106996.

[50] Khaled Sellami, Mohamed Aymen Saied, and Ali Ouni. 2022. A Hierarchical
DBSCAN Method for Extracting Microservices from Monolithic Applications. In
Proceedings of the 26th International Conference on Evaluation and Assessment in

http://portal.core.edu.au/jnl-ranks/
http://portal.core.edu.au/conf-ranks/
https://www.ibm.com/cloud/mono2micro
https://www.ibm.com/docs/en/mono2micro?topic=overview-whats-new-in-mono2micro
https://www.ibm.com/docs/en/mono2micro?topic=overview-whats-new-in-mono2micro
https://github.com/7ep/demo
https://github.com/7ep/demo
https://testing.googleblog.com/2020/08/code-coverage-best-practices.html
https://testing.googleblog.com/2020/08/code-coverage-best-practices.html
https://learn.microsoft.com/en-us/answers/questions/778016/test-coverage-definition-unit-testing
https://learn.microsoft.com/en-us/answers/questions/778016/test-coverage-definition-unit-testing
https://github.com/google/guava
https://www.martinfowler.com/articles/microservices.html
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
https://github.com/microsoft/partsunlimitedMRP
https://github.com/microsoft/partsunlimitedMRP
https://github.com/microsoft/partsunlimitedMRPmicro
http://mybatis.org/jpetstore-6/
http://mybatis.org/jpetstore-6/

Microservice Decomposition Techniques: An Independent Tool Comparison ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Software Engineering (EASE). 201–210.
[51] Khaled Sellami, Mohamed Aymen Saied, Ali Ouni, and Rabe Abdalkareem. 2022.

Combining Static and Dynamic Analysis to Decompose Monolithic Application
into Microservices. In International Conference on Service-Oriented Computing
(ICSOC). 203–218.

[52] C. E. Shannon. 1948. A mathematical theory of communication. The Bell System
Technical Journal 27, 3 (1948), 379–423.

[53] spring petclinic. [n. d.]. Distributed version of Spring Petclinic built with Spring
Cloud. https://github.com/spring-petclinic/spring-petclinic-microservices.

[54] spring projects. [n. d.]. Spring PetClinic Sample Application. https://github.com/
spring-projects/spring-petclinic.

[55] D. Taibi and V. Lenarduzzi. 2018. On the Definition of Microservice Bad Smells.
IEEE Software 35, 3 (2018), 56–62.

[56] Yingying Wang, Sarah Bornais, and Julia Rubin. 2024. Microservice Decompo-
sition Techniques: An Independent Tool Comparison. https://resess.github.io/
artifacts/MicroserviceToolStudy/.

[57] Yingying Wang, Harshavardhan Kadiyala, and Julia Rubin. 2021. Promises and
Challenges of Microservices: an Exploratory Study. Journal of Empirical Software
Engineering (EMSE) (2021).

[58] Kaiyuan Yang, Junfeng Wang, Zhiyang Fang, Peng Wu, and Zihua Song. 2022.
Enhancing Software Modularization via Semantic Outliers Filtration and Label
Propagation. Information and Software Technology 145 (2022), 106818.

[59] Pascal Zaragoza, Abdelhak-Djamel Seriai, Abderrahmane Seriai, Anas Shatnawi,
andMustaphaDerras. 2022. Leveraging the LayeredArchitecture forMicroservice
Recovery. In 2022 IEEE 19th International Conference on Software Architecture
(ICSA). 135–145.

[60] Yukun Zhang, Bo Liu, Liyun Dai, Kang Chen, and Xuelian Cao. 2020. Auto-
mated Microservice Identification in Legacy Systems with Functional and Non-
Functional Metrics. In 2020 IEEE International Conference on Software Architecture
(ICSA). 135–145.

[61] Zhihua Wen and V. Tzerpos. 2004. An Effectiveness Measure for Software Clus-
tering Algorithms. In IEEE International Workshop on Program Comprehension
(WPC). 194–203.

https://github.com/spring-petclinic/spring-petclinic-microservices
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic
https://resess.github.io/artifacts/MicroserviceToolStudy/
https://resess.github.io/artifacts/MicroserviceToolStudy/

	Abstract
	1 Introduction
	2 Tools, Case Studies, and Metrics
	2.1 Microservice Extraction Tools
	2.2 Tool Selection
	2.3 Case Study Selection
	2.4 Metrics Selection

	3 Evaluation Methodology
	4 Results
	5 Lessons Learned and Implications
	5.1 Tool Evaluation Process
	5.2 Tools

	6 Limitations and Threats to Validity
	7 Discussion and Related Work
	8 Conclusion
	9 Acknowledgments
	References

