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ABSTRACT
Algorithm fairness has started to attract the attention of researchers
in AI, Software Engineering and Law communities, with more than
twenty different notions of fairness proposed in the last few years.
Yet, there is no clear agreement on which definition to apply in
each situation. Moreover, the detailed differences between multiple
definitions are difficult to grasp. To address this issue, this paper
collects the most prominent definitions of fairness for the algo-
rithmic classification problem, explains the rationale behind these
definitions, and demonstrates each of them on a single unifying
case-study. Our analysis intuitively explains why the same case
can be considered fair according to some definitions and unfair
according to others.
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1 INTRODUCTION
Recent years have brought extraordinary advances in the field of
Artificial Intelligence (AI). AI now replaces humans at many critical
decision points, such as who will get a loan [1] and who will get
hired for a job [3]. One might think that these AI algorithms are
objective and free from human biases, but that is not the case. For
example, risk-assessment software employed in criminal justice
exhibits race-related issues [4] and a travel fare aggregator steers
Mac users to more expensive hotels [2].

The topic of algorithm fairness has begun to attract attention in
the AI and Software Engineering research communities. In late 2016,
the IEEE Standards Association published a 250-page draft docu-
ment on issues such as the meaning of algorithmic transparency [6];
the final version of this document is expected to be adopted in 2019.
The document covers methodologies to guide ethical research and
design that uphold human values outlined in the U.N. Universal Dec-
laration of Human Rights. Numerous definitions of fair treatment,
e.g., [8, 10, 12, 14], were also proposed in academia. Yet, finding
suitable definitions of fairness in an algorithmic context is a subject
of much debate.

In this paper, we focus on the machine learning (ML) classifica-
tion problem: identifying a category for a new observation given
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training data containing observations whose categories are known.
We collect and clarify most prominent fairness definitions for clas-
sification used in the literature, illustrating them on a common,
unifying example – the German Credit Dataset [18]. This dataset
is commonly used in fairness literature. It contains information
about 1000 loan applicants and includes 20 attributes describing
each applicant, e.g., credit history, purpose of the loan, loan amount
requested, marital status, gender, age, job, and housing status. It
also contains an additional attribute that describes the classification
outcome – whether an applicant has a good or a bad credit score.

When illustrating the definitions, we checked whether the clas-
sifier that uses this dataset exhibits gender-related bias. Our results
were positive for some definitions and negative for others, which is
consistent with earlier studies showing that some of the proposed
definitions are mathematically incompatible [10, 11, 16]. The main
contribution of this paper lies in an intuitive explanation and simple
illustration of a large set of definitions we collected.

The remainder of the paper is structured as follows. Section 2
provides the necessary background and notations. Statistical, in-
dividual, and casual definitions of fairness are presented in Sec-
tions 3-5, respectively. We discuss lessons learned and outline ideas
for future research in Section 6. Section 7 concludes the paper.

2 BACKGROUND

Considered Definitions. We reviewed publications in major con-
ferences and journals on ML and fairness, such as NIPS, Big Data,
AAAI, FATML, ICML, and KDD, in the last six years. We followed
their references and also cross-validated our list with several reports
that list known definitions of fairness [5, 7, 8, 21]. Most prominent
definitions, together with the papers that introduce them and the
number of citations for each paper on Google Scholar as of January
2018, is shown in the first four columns of Table 1.
Dataset. As our case study, we used German Credit Dataset [18].
Each record of this dataset has the following attributes:
1. Credit amount (numerical); 2. Credit duration (numerical); 3.
Credit purpose (categorical); 4. Status of existing checking account
(categorical); 5. Status of savings accounts and bonds (categori-
cal); 6. Number of existing credits (numerical); 7. Credit history
(categorical); 8. Installment plans (categorical); 9. Installment rate
(numerical); 10. Property (categorical); 11. Residence (categorical);
12. Period of present residency (numerical); 13. Telephone (binary);
14. Employment (categorical); 15. Employment length (categorical);
16. Personal status and gender (categorical); 17. Age (numerical);
18. Foreign worker (binary); 19. Dependents (numerical); 20. Other
debtors (categorical); 21. Credit score (binary).

For example, Alice is requesting a loan amount of 1567 DM for a
duration of 12 months for the purpose of purchasing a television,
with a positive checking account balance that is smaller than 200
DM, having less than 100 DM in savings account, and having one
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Definition Paper Citation
# Result

3.1.1 Group fairness or statistical parity [12] 208 ×

3.1.2 Conditional statistical parity [11] 29 ✓

3.2.1 Predictive parity [10] 57 ✓

3.2.2 False positive error rate balance [10] 57 ×

3.2.3 False negative error rate balance [10] 57 ✓

3.2.4 Equalised odds [14] 106 ×

3.2.5 Conditional use accuracy equality [8] 18 ×

3.2.6 Overall accuracy equality [8] 18 ✓

3.2.7 Treatment equality [8] 18 ×

3.3.1 Test-fairness or calibration [10] 57 ✓–

3.3.2 Well calibration [16] 81 ✓–

3.3.3 Balance for positive class [16] 81 ✓

3.3.4 Balance for negative class [16] 81 ×

4.1 Causal discrimination [13] 1 ×

4.2 Fairness through unawareness [17] 14 ✓

4.3 Fairness through awareness [12] 208 ×

5.1 Counterfactual fairness [17] 14 –
5.2 No unresolved discrimination [15] 14 –
5.3 No proxy discrimination [15] 14 –
5.4 Fair inference [19] 6 –

Table 1: Considered Definitions of Fairness

existing credit at this bank. She duly paid existing credits at the bank
till now and has no other installment plan. She possesses a car and
owns a house, has been living at the present residence for one year
and has a registered telephone. She is a skilled employee, working
in the present employment for past four years. She is a 22-year-old
married female and is a German citizen. She has one dependent
and no guarantors. The recorded outcome for Alice (attribute #21)
is a good credit score.

We focus our illustration of fairness definitions on gender-related
discrimination, i.e., whether male and female applicants are treated
differently. The gender and the marital status of the applicants is
specified in one attribute (attribute #16), which has five possible
categorical values: single male, married male, divorced male, single
female, married or divorced female. As in all the 1000 records of
this dataset there is no case of a single female applicant, we focus
our investigation on checking whether married and divorced males
are treated differently than married and divorced females.
Notations. In the rest of the paper, we use the following notations:
– G: Protected or sensitive attribute for which non-discrimination
should be established.
– X: All additional attributes describing the individual.
– Y: The actual classification result (here, good or bad credit score
of an applicant as described in the dataset: attribute #21)
– S: Predicted probability for a certain classification c , P (Y = c |G,X )
(here, predicted probability of having a good or bad credit score).
– d: Predicted decision (category) for the individual (here, predicted
credit score for an applicant – good or bad); d is usually derived
from S , e.g., d = 1 when S is above a certain threshold.

For Alice in the example above, the probability of having a good
credit score (S) as established by a classifier is 88%. Thus, the pre-
dicted score (d) is good, same as the actual credit score recorded in
the database (Y). Next, we describe in detail each of the analyzed
fairness definitions and its meaning in the context of the German
Credit Dataset.

Attribute Coefficient
Personal status and gender: single male 0.16
Personal status and gender: married male -0.04
Personal status and gender: married/divorced female -0.08
Personal status and gender: divorced male -0.14

Table 2: Coefficients of gender-related features

3 STATISTICAL MEASURES
We start by describing statistical notions of fairness, which form
the basis for other, more advanced definitions described later in the
paper. For our discussion, we trained an off-the-shelf logistic regres-
sion classifier in Python. We applied the ten-fold cross-validation
technique, using 90% of the data for training and the remaining
10% of the data for testing and illustrating each of the definitions.
We used numerical and binary attributes directly as features in the
classification and converted each categorical attribute to a set of
binary features, arriving at 48 features in total.

We explicitly included the protected gender attribute in our train-
ing, as it appears to influence the predicted credit score: Table 2 lists
coefficients learned by the classifier for all features derived from
the personal status and gender attribute. The classifier appears to
favor single males when deciding on the credit score and disad-
vantage divorced males. Female applicants seem to receive similar
treatment as married male applicants. Looking at the coefficient,
one might conclude that the classifier does not explicitly disad-
vantage female applicants. In the rest of the section, we explore
whether married/divorced female applicants get unfair treatment
comparing with married/divorced male applicants according to var-
ious definitions of fairness known from the literature. We focus on
married/divorced applicants because the dataset does not contain
instances of single females.
Statistical Metrics. Most statistical measures of fairness rely on
the following metrics, which are best explained using a confusion
matrix – a table that is often used in ML to describe the accuracy of
a classification model [22]. Rows and columns of the matrix repre-
sent instances of the predicted and actual classes, respectively. For
a binary classifier, both predicted and actual classes have two val-
ues: positive and negative (see Table 3). In our case study, positive
and negative classes correspond to good and bad credit scores, re-
spectively. Cells of the confusion matrix help explain the following
definitions:

1. True positive (TP): a case when the predicted and actual out-
comes are both in the positive class.

2. False positive (FP): a case predicted to be in the positive class
when the actual outcome belongs to the negative class.

3. False negative (FN): a case predicted to be in the negative class
when the actual outcome belongs to the positive class.

4. True negative (TN): a case when the predicted and actual
outcomes are both in the negative class.

5. Positive predictive value (PPV): the fraction of positive cases
correctly predicted to be in the positive class out of all predicted
positive cases, T P

T P+F P . PPV is often referred to as precision, and
represents the probability of a subject with a positive predictive
value to truly belong to the positive class, P (Y = 1|d = 1). In our
example, it is the probability of an applicant with a good predicted
credit score to actually have a good credit score.
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6. False discovery rate (FDR): the fraction of negative cases in-
correctly predicted to be in the positive class out of all predicted
positive cases, F P

T P+F P . FDR represents the probability of false ac-
ceptance, P (Y = 0|d = 1), e.g., the probability of an applicant with a
good predicted credit score to actually have a bad credit score.

7. False omission rate (FOR): the fraction of positive cases in-
correctly predicted to be in the negative class out of all predicted
negative cases, FN

TN +FN . FOR represents the probability of a positive
case to be incorrectly rejected, (P (Y = 1|d = 0)), e.g, the probability
of an applicant with a bad predicted credit score to actually have a
good score.

8. Negative predictive value (NPV): the fraction of negative cases
correctly predicted to be in the negative class out of all predicted
negative cases, T N

TN +FN . NPV represents the probability of a subject
with a negative prediction to truly belong to the negative class,
P (Y = 0|d = 0), e.g., the probability of an applicant with a bad
predicted credit score to actually have such score.

9. True positive rate (TPR): the fraction of positive cases correctly
predicted to be in the positive class out of all actual positive cases,

T P
T P+FN . TPR is often referred to as sensitivity or recall; it represents
the probability of the truly positive subject to be identified as such,
P (d = 1|Y = 1). In our example, it is the probability of an applicant
with a good credit score to be correctly assigned with such score.

10. False positive rate (FPR): the fraction of negative cases incor-
rectly predicted to be in the positive class out of all actual nega-
tive cases, F P

FP+T N . FPR represents the probability of false alarms –
falsely accepting a negative case, P (d = 1|Y = 0), e.g., the probabil-
ity of an applicant with a actual bad credit score to be incorrectly
assigned with a good credit score.

11. False negative rate (FNR): the fraction of positive cases incor-
rectly predicted to be in the negative class out of all actual positive
cases, FN

T P+FN . FNR represents the probability of a negative result
given an actually positive subject, P (d = 0|Y = 1), e.g., the prob-
ability of an applicant with a good credit score to be incorrectly
assigned with a bad credit score.

12. True negative rate (TNR): the fraction of negative cases cor-
rectly predicted to be in the negative class out of all actual negative
cases, T N

FP+T N . TNR represents the probability of a subject from the
negative class to be assigned to the negative class, P (d = 0|Y = 0),
e.g., the probability of an applicant with a bad credit score to be
correctly assigned with such score.

Next, we list statistical definitions of fairness that are based on
these metrics.

3.1 Definitions Based on Predicted Outcome
The definitions listed in this section focus on a predicted outcome
d for various demographic distributions of subjects. They represent
the simplest and most intuitive notion of fairness. Yet, they have
several limitations addressed by definitions listed in later sections.

3.1.1.Group fairness [12] (a.k.a. statistical parity [12], equal
acceptance rate [24], benchmarking [9]). A classifier satisfies
this definition if subjects in both protected and unprotected groups
have equal probability of being assigned to the positive predicted
class. In our example, this would imply equal probability for male
and female applicants to have good predicted credit score: P (d =
1|G =m) = P (d = 1|G = f ).

Actual – Positive Actual – Negative

Predicted –
Positive

True Positive (TP)
PPV = T P

T P+F P
TPR = T P

T P+FN

False Positive (FP)
FDR = F P

T P+F P
FPR = F P

FP+T N

Predicted –
Negative

False Negative (FN)
FOR = FN

TN +FN
FNR = FN

T P+FN

True Negative (TN)
NPV = T N

TN+FN
TNR = T N

TN+F P

Table 3: Confusion matrix

The main idea behind this definition is that applicants should
have an equivalent opportunity to obtain a good credit score, re-
gardless of their gender. In our case study, the probability to have a
good predicted credit score for married / divorced male and female
applicants is 0.81 and 0.75, respectively. As it is more likely for a
male applicant to have good predicted score, we deem our classi-
fier to fail in satisfying this definition of fairness. We record our
decision for each definition in the last column of Table 1.

3.1.2. Conditional statistical parity [11]. This definition ex-
tends the previous one by permitting a set of legitimate attributes
to affect the outcome. The definition is satisfied if subjects in both
protected and unprotected groups have equal probability of being
assigned to the positive predicted class, controlling for a set of
legitimate factors L. In our example, possible legitimate factors that
affect an applicant creditworthiness could be the requested credit
amount, applicant’s credit history, employment, and age. Consid-
ering these factors, male and female applicants should have equal
probability of having good credit score: P (d = 1|L = l ,G = m) =
P (d = 1|L = l ,G = f ).

In our case study, when controlling for factors L listed above, the
probability for married / divorced male and female applicants to
have good predicted credit score is 0.46 and 0.49, respectively. Unlike
in the previous definition, here a female applicant is slightly more
likely to get a good predicted credit score. However, even though the
calculated probabilities are not strictly equal, for practical purposes,
we consider this difference minor, and hence deem the classifier to
satisfy this definition.

3.2 Definitions Based on Predicted and Actual
Outcomes

The definitions in this section not only consider the predicated out-
come d for different demographic distributions of the classification
subjects, but also compare it to the actual outcome Y recorded in
the dataset.

3.2.1. Predictive parity [10] (a.k.a. outcome test [9]). A clas-
sifier satisfies this definition if both protected and unprotected
groups have equal PPV – the probability of a subject with posi-
tive predictive value to truly belong to the positive class. In our
example, this implies that, for both male and female applicants, the
probability of an applicant with a good predicted credit score to
actually have a good credit score should be the same:
P (Y = 1|d = 1,G =m) = P (Y = 1|d = 1,G = f ).

Mathematically, a classifier with equal PPVs will also have equal
FDRs: P (Y = 0|d = 1,G =m) = P (Y = 0|d = 1,G = f ).

The main idea behind this definition is that the fraction of correct
positive predictions should be the same for both genders. In our
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case study, PPV for married / divorced male and female applicants
is 0.73 and 0.74, respectively. Inversely, FDR for male and female
applicants is 0.27 and 0.26, respectively. The values are not strictly
equal, but, again, we consider this difference minor, and hence deem
the classifier to satisfy this definition.

3.2.2. False positive error rate balance [10] (a.k.a. predic-
tive equality [11]). A classifier satisfies this definition if both
protected and unprotected groups have equal FPR – the probability
of a subject in the negative class to have a positive predictive value.
In our example, this implies that the probability of an applicant
with an actual bad credit score to be incorrectly assigned a good
predicted credit score should be the same for both male and female
applicants: P (d = 1|Y = 0,G =m) = P (d = 1|Y = 0,G = f ).

Mathematically, a classifier with equal FPRs will also have equal
TNRs: P (d = 0|Y = 0,G =m) = P (d = 0|Y = 0,G = f ).

The main idea behind this definition is that a classifier should
give similar results for applicants of both genders with actual neg-
ative credit scores. In our case study, FPR for married / divorced
male and female applicants is 0.70 and 0.55, respectively. Inversely,
TNR is 0.30 and 0.45. This means that the classifier is more likely to
assign a good credit score to males who have an actual bad credit
score; females do not have such an advantage and the classifier
is more likely to predict a bad credit score for females who actu-
ally have a bad credit score. We thus deem our classifier to fail in
satisfying this definition of fairness.

3.2.3. False negative error rate balance [10] (a.k.a. equal
opportunity [14, 17]). A classifier satisfies this definition if both
protected and unprotected groups have equal FNR – the probability
of a subject in a positive class to have a negative predictive value.
In our example, this implies that the probability of an applicant
with an actual good credit score to be incorrectly assigned a bad
predicted credit score should be the same for both male and female
applicants: P (d = 0|Y = 1,G =m) = P (d = 0|Y = 1,G = f ).

Mathematically, a classifier with equal FNRs will also have equal
TPR: P (d = 1|Y = 1,G =m) = P (d = 1|Y = 1,G = f ).

The main idea behind this definition is that classifier should give
similar results for applicants of both genders with actual positive
credit scores. In our case study, the FPRs for married / divorced
male and female applicants are the same – 0.14. Inversely, TPR is
0.86. Like in the case of predictive parity (3.2.1), this means that
the classifier will apply equivalent treatment to male and female
applicants with actual good credit score.We thus deem our classifier
to satisfying this definition of fairness.

If the prevalence of a good credit score is the same for male and
female subjects in the entire population, this definition becomes
equivalent to the group fairness definition (3.1.1) which requires
equal probability for male and female applicants to have a good
predicted credit score. Yet, in general, the definitions are not equiv-
alent [8, 10, 16]. In our example, male applicants in the studied
population are more likely to have a good actual credit score. Thus,
the classifier is also more likely to assign a good predicted credit
score to male applicants. For that reason, our classifier satisfies the
equal opportunity but does not satisfy the group fairness definitions.

3.2.4. Equalized odds [14] (a.k.a. conditional procedure ac-
curacy equality [8] and disparate mistreatment [23]). This
definition combines the previous two: a classifier satisfies the def-
inition if protected and unprotected groups have equal TPR and

equal FPR. Mathematically, it is equivalent to the conjunction of
conditions for false positive error rate balance and false negative
error rate balance definitions given above. In our example, this
implies that the probability of an applicant with an actual good
credit score to be correctly assigned a good predicted credit score
and the probability of an applicant with an actual bad credit score
to be incorrectly assigned a good predicted credit score should both
be same for male and female applicants: P (d = 1|Y = i,G = m) =
P (d = 1|Y = i,G = f ), i ∈ 0, 1.

The main idea behind this definition is that applicants with a
good actual credit scope and applicants with a bad actual credit
score should have a similar classification, regardless of their gender.
In our case study, FPR for married / divorced male and female
applicants is 0.70 and 0.55, respectively and TPR is 0.86 for both
males and females. This means that the classifier is more likely to
assign a good credit score to males who have an actual bad credit
score, compared to females. Hence the overall conjunction does not
hold and we deem our classifier to fail in satisfying this definition.

If male and female applicants have different probabilities to be
in the actual positive class P (Y = 1|G = m) ̸= P (Y = 1|G = f ), a
classifier that satisfies predictive parity (3.2.1) cannot satisfy this
definition [10]. Our observations are consistent with that theoretical
result.

3.2.5. Conditional use accuracy equality [8]. Similar to the
previous definition, this definition conjuncts two conditions: equal
PPV and NPV – the probability of subjects with positive predictive
value to truly belong to the positive class and the probability of
subjects with negative predictive value to truly belong to the nega-
tive class: (P (Y = 1|d = 1,G =m) = P (Y = 1|d = 1,G = f )) ∧ (P (Y =
0|d = 0,G =m) = P (Y = 0|d = 0,G = f )).

Intuitively, this definition implies equivalent accuracy for male
and female applicants from both positive and negative predicted
classes. In our example, the definition implies that for both male
and female applicants, the probability of an applicant with a good
predicted credit score to actually have a good credit score and the
probability of an applicant with a bad predicted credit score to actu-
ally have a bad credit score should be the same. The calculated for
male and female applicants is 0.73 and 0.74, respectively. NPVs for
male and female applicants is 0.49 and 0.63 respectively. It is more
likely for a male than female applicant with a bad predicted score
to actually have a good credit score. We thus deem the classifier to
fail in satisfying this definition of fairness.

3.2.6. Overall accuracy equality [8]. A classifier satisfies this
definition if both protected and unprotected groups have equal pre-
diction accuracy – the probability of a subject from either positive
or negative class to be assigned to its respective class. The definition
assumes that true negatives are as desirable as true positives. In our
example, this implies that the probability of an applicant with an
actual good credit score to be correctly assigned a good predicted
credit score and an applicant with an actual bad credit score to be
correctly assigned a bad predicted credit score is the same for both
male and female applicants: P (d = Y ,G =m) = P (d = Y ,G = f ).

In our case study, the overall accuracy rate is 0.68 and 0.71 for
male and female applicants, respectively. While these values are
not strictly equal, for practical purposes we consider this difference
minor, and hence deem the classifier to satisfy this definition. This
means that the classifier has equal prediction accuracy for both
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s 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P (Y = 1|S = s,G =m) 1.0 1.0 0.3 0.3 0.4 0.6 0.6 0.7 0.8 0.8 1.0
P (Y = 1|S = s,G = f ) 0.5 0.3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Table 4: Calibration scores for different values of s

genders when particular classes of subjects (e.g., subjects with
positive predicted class) are not considered separately.

3.2.7. Treatment equality [8]. This definition looks at the ratio
of errors that the classifier makes rather than at its accuracy. A
classifier satisfies this definition if both protected and unprotected
groups have an equal ratio of false negatives and false positives.
In our example, this implies that the ratio of FP to FN is same for
male and female applicants: FNFP m = FN

FP f . This calculated ratios
are 0.56 and 0.62 for male and female applicants, respectively, i.e., a
smaller number of male candidates are incorrectly assigned to the
negative class (FN) and / or larger number of male candidates are
incorrectly assigned to the positive class (FP). We thus deem our
classifier to fail in satisfying this definition of fairness.

3.3 Definitions Based on Predicted
Probabilities and Actual Outcome

The definitions in this section consider the actual outcome Y and
the predicted probability score S .

3.3.1. Test-fairness [10] (a.k.a. calibration [10], matching
conditional frequencies [14]). A classifier satisfies this definition
if for any predicted probability score S , subjects in both protected
and unprotected groups have equal probability to truly belong to the
positive class. This definition is similar to predictive parity (3.2.1),
except that it considers the fraction of correct positive predictions
for any value of S .

In our example, this implies that for any given predicted prob-
ability score s in [0, 1], the probability of having actually a good
credit score should be equal for both male and female applicants:
P (Y = 1|S = s,G =m) = P (Y = 1|S = s,G = f ).

In our case study, we calculated the predicted score S for each
applicant in the test set, and binned the results in 11 bins, from
0.0 to 1.0. Table 4 shows the scores for male and female applicants
in each bin. The scores are quite different for lower values of S
and become closer for values greater than 0.5. Thus, our classifier
satisfies the definition for high predicted probability scores but
does not satisfy it for low scores. This is consistent with previous
results showing that it is more likely for a male applicant with a
bad predicted credit score (low values of S) to actually have a good
score (definition 3.2.5), but applicants with a good predicted credit
score (high values of S) have an equivalent chance to indeed have
a good credit score, regardless of their gender (definition 3.2.1).

3.3.2.Well-calibration [16]. This definition extends the previ-
ous one stating that, for any predicted probability score S , subjects
in both protected and unprotected groups should not only have
an equal probability to truly belong to the positive class, but this
probability should be equal to S . That is, if the predicted probability
score is s , the probability of both male and female applicants to
truly belong to the positive class should be s . P (Y = 1|S = s,G =
m) = P (Y = 1|S = s,G = f ) = s .

The intuition behind this definition is that if a classifier states
that a set of applicants have a certain probability s of having a

good credit score then approximately s percent of these applicants
should indeed have a good credit score. In our case study, scores
for male and female applicants calculated for each value of s are
binned and shown in Table 4. Our classifier is well-calibrated only
for s ≥ 0.6. We thus deem the classifier to partially satisfy this
fairness definition.

3.3.3. Balance for positive class [16]. A classifier satisfies this
definition if subjects constituting positive class from both protected
and unprotected groups have equal average predicted probability
score S . Violation of this balance means that one group of applicants
with good credit score would consistently receive higher probability
score than applicants with a good credit score from the other group.

In our example, this implies that the expected value of probability
assigned by the classifier to male and female applicant with good
actual credit score should be same: E(S |Y = 1,G = m) = E(S |Y =
1,G = f ). The calculated expected value of predicted probability
score is 0.72 for both males and females and we thus deem the
model to satisfy this notion of fairness. This result further supports
and is consistent with the result for equal opportunity (3.2.3), which
states that the classifier will apply equivalent treatment to male
and female applicants with actual good credit score (TPR of 0.86).

3.3.4. Balance for negative class [16]. In a flipped version of
the previous definition, this definition states that subjects consti-
tuting negative class from both protected and unprotected groups
should also have equal average predicted probability score S . That
is, the expected value of probability assigned by the classifier to
male and female applicant with bad actual credit score should be
same: E(S |Y = 0,G =m) = E(S |Y = 0,G = f ).

In our case study, the expected value of having bad predicted
credit score is 0.61 and 0.52 for males and females, respectively. This
means that, on average, male candidates who actually have bad
credit score receive higher predicted probability scores than female
candidates. We thus deem our classifier to fail in satisfying this
definition of fairness. This result further supports and is consistent
with the result for predictive equality (3.2.2), which states that the
classifier is more likely to assign a good credit score to males who
have an actual bad credit score (TNR of 0.30 and 0.45 for males and
females, respectively).

4 SIMILARITY-BASED MEASURES
Statistical definitions largely ignore all attributes of the classified
subject except the sensitive attribute G. Such treatment might hide
unfairness: suppose the same fraction of male and female applicants
are assigned a positive score. Yet, male applicants in this set are
chosen at random, while female applicants are only those that have
the most savings. Then, statistical parity will deem the classifier
fair, despite a discrepancy in how the applications are processed
based on gender [13]. The following definitions attempt to address
such issues by not marginalizing over insensitive attributes X of
the classified subject.

4.1. Causal discrimination [13]. A classifier satisfies this def-
inition if it produces the same classification for any two subjects
with the exact same attributes X. In our example, this implies that a
male and female applicants who otherwise have the same attributes
X will either both be assigned a good credit score or both assigned
a bad credit score: (Xf = Xm ∧Gf != Gm ) → df = dm .
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To test this definition for our case study, for each applicant in
our testing set, we generated an identical individual of the opposite
gender and compared the predicted classification for these two
applicants. We found that for 8.8% married / divorced male and
female applicants, the output classification was not same. We thus
deem our classifier to fail in satisfying this definition.

4.2. Fairness through unawareness [17]. A classifier satisfies
this definition if no sensitive attributes are explicitly used in the
decision-making process. In our example, this implies that gender-
related features are not used for training the classifier, so decisions
cannot rely on these features. This also means that the classification
outcome should be the same for applicants i and j who have the
same attributes X: Xi = X j → di = dj .

To test this definition for our case study, we trained the logis-
tic regression model without using any features derived from the
gender attribute. Then, for each applicant in the testing set, we gen-
erated an identical individual of the opposite gender and compared
the predicted classification for these two applicants. Our results
show that the classification for all “identical” individuals that only
differ in gender was identical. We thus deem the classifier to satisfy
this definition. This result also indicates that no other feature of the
dataset is used as a proxy for gender; otherwise, the classifier would
have shown similar results as in case of causal discrimination.

4.3. Fairness through awareness [12]. This definition is a
more elaborated and generic version of the previous two: here,
fairness is captured by the principle that similar individuals should
have similar classification. The similarity of individuals is defined
via a distance metric; for fairness to hold, the distance between
the distributions of outputs for individuals should be at most the
distance between the individuals. Formally, for a set of applicants
V , a distance metric between applicants k : V ×V → R, a mapping
from a set of applicants to probability distributions over outcomes
M : V → δA, and a distance D metric between distribution of
outputs, fairness is achieved iff D(M(x ),M(y)) ≤ k(x ,y).

For example, a possible distance metric k could define the dis-
tance between two applicants i and j to be 0 if the attributes in X (all
attributes other than gender) are identical and 1 if some attributes
in X are different. D could be defined as 0 if the classifier resulted
in the same prediction and 1 otherwise. This basically reduces the
problem to the definition of causal discrimination (4.1), and the
same result holds: for 8.8% of the applicants the fairness constraint
is violated.

As another example, the distance metric between two individuals
could be defined as the normalized difference of their ages: the age
difference divided by the maximum difference in the dataset (56
in our case). The distance between outcomes could be defined as
the statistical difference between the outcome probabilities for two
applicants: D(i, j) = S(i) − S(j).

To test this definition, for each applicant in the testing set, we
generated five additional individuals, with ages different by 5, 10, 15,
20 and 25 years, and identical otherwise. Our results in Table 5 show
that the distance between outcomes (column 3) grew much faster
than the distance between ages (column 3). Thus, the percentage of
applicants who did not satisfy this definition (column 4) increased.
That is, for a smaller age difference, the classifier satisfied this
fairness definition, but that was not the case for an age difference
of more than 10 years. This result also shows that a distance metric

Age difference k Avg. D % violating cases
5 0.09 0.02 0.0
10 0.18 0.05 0.5
15 0.27 0.10 1.8
20 0.36 0.2 4.5
25 0.45 0.3 6.7

Table 5: Fairness through awarenesswith age-based distance

is of fundamental importance when applying this definition and
should be chosen with care.

5 CAUSAL REASONING
Definitions based on causal reasoning assume a given causal graph:
a directed, acyclic graphs with nodes representing attributes of
an applicant and edges representing relationships between the at-
tributes. Causal graphs are used for building fair classifiers and
other ML algorithms [15, 17, 19, 20]. Specifically, the relations be-
tween attributes and their influence on outcome is captured by a set
of structural equations which are further used to provides methods
to estimate effects of sensitive attributes and build algorithms that
ensure a tolerable level of discrimination due to these attributes.

While it is impossible to test an existing classifier against causal
definitions of fairness, we demonstrate them on a simple causal
graph we built for our dataset for illustration purposes.

Figure 1: Causal graph example

Our graph (see Fig-
ure 1) consists of
the protected at-
tributeG , the credit
amount, employment
length, and credit
history attributes,
and the predicted outcome d .

In causal graphs, a proxy attribute is an attribute whose value
can be used to derive a value of another attribute. In our example,
we assume that employment length acts as a proxy attribute for
G: one can derive the applicants’ gender from the length of their
employment.

A resolving attribute is an attribute in the causal graph that
is influenced by the protected attribute in a non-discriminatory
manner. In our example, the effect ofG on the credit amount is non-
discriminatory, which means that the differences in credit amount
for different values ofG are not considered as discrimination. Hence,
the credit amount acts as a resolving attribute for G in this graph.

5.1. Counterfactual fairness [17]. A causal graph is counter-
factually fair if the predicted outcome d in the graph does not
depend on a descendant of the protected attributeG . For the exam-
ple in Figure 1, d is a dependent on credit history, credit amount,
and employment length. Employment length is a direct descendant
of G, hence, the given causal model is not counterfactually fair.

5.2. No unresolved discrimination [15]. A causal graph has
no unresolved discrimination if there exists no path from the pro-
tected attributeG to the predicted outcome d , except via a resolving
variable. In our example, the path from G to d via credit amount is
non-discriminatory as the credit amount is a resolving attribute; the
path via employment length is discriminatory. Hence, this graph
exhibits unresolved discrimination.

6
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5.3. No proxy discrimination [15]. A causal graph is free of
proxy discrimination if there exists no path from the protected
attribute G to the predicted outcome d that is blocked by a proxy
variable. For the example in Figure 1, there is an indirect path from
G to d via proxy attribute employment length. Thus, this graph
exhibits proxy discrimination.

5.4. Fair inference [19]. This definition classifies paths in a
causal graph as legitimate or illegitimate. For example, it might
make sense to consider the employment length for making credit-
related decision. Even though the employment length acts as a
proxy for G, that path would be considered as legitimate. A causal
graph satisfies the notion of fair inference if there are no illegitimate
paths from G to d , which is not the case in our example as there
exist another illegitimate path, via credit amount.

6 DISCUSSION AND LESSONS LEARNED
We observed that a logistic regression classifier trained on the
German Credit Dataset is more likely to assign a good credit score
to male applicants in general (3.1.1) and male applicants who have
an actual bad credit score in particular (3.2.2 and 3.2.4). Females
do not have such an advantage and the classifier is more likely
to predict a bad credit score for females who have an actual bad
credit score (3.2.2 and 3.2.4). Yet, the classifier applies equivalent
treatment to male and female applicants with actual good credit
score (3.2.3). It is also accurate in the sense that the probability of
an applicant with an actual good (bad) credit score to be correctly
assigned a good (bad) predicted credit score is the same for both
male and female applicants (3.2.6). At the same time, it is more
likely for a male applicant with a bad predicted score to have an
actual good credit score (3.2.5), so the classifier disadvantages some
“good” male applicants. Our results also show that the outcome for
otherwise “identical” male and female applicants was not the same
(4.1), but this problem disappears when the classifier was trained
without considering gender-related attributes (4.2).

So, is the classifier fair? Clearly, the answer to this question
depends on the notion of fairness one wants to adopt. We believe
more work is needed to clarify which definitions are appropriate to
each particular situation. We intend to make a step in this direction
by systematically analyzing existing reports on software discrim-
ination, identifying the notion of fairness employed in each case,
and classifying the results.

A statistical notion of fairness as described in Section 3 is easy
to measure. However, it was shown that statistical definitions are
insufficient [8, 10, 12, 16]. Moreover, most valuable statistical met-
rics assume availability of actual, verified outcomes. While such
outcomes are available for the training data, it is unclear whether
the real classified data always conforms to the same distribution.

More advanced definitions discussed in Section 4 and 5 require
expert input and opinion, e.g., to establish a distancemetric between
individuals. Not only are these definitions more difficult to measure,
they can still be biased given implicit biases of the expert.

Finally, testing several definitions, such as fairness through aware-
ness, relies on availability of “similar” individuals. Generating all
possible data for testing such definition is clearly impractical as
the search space could be very large (e.g., the global population).
More work to narrow down the search space without impeding the
accuracy of the analysis is needed.

7 CONCLUSIONS
In this paper, we collected most prominent definitions of fairness
for the algorithmic classification problem.We explained and demon-
strated each definition of a single unifying example of an off-the-
shelf logistic regression classifier trained on the German Credit
Dataset. The main contribution of this paper lies in the intuitive
explanation of each definition and identification of relationships
between the definitions. We discussed lessons learned from our
experiments and proposed directions for possible future work.
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