
FPH: Efficient Non-Commutativity Analysis of
Feature-Based Systems

Marsha ChechikORCID:0000−0002−6301−35171, Ioanna Stavropoulou1, Cynthia
Disenfeld1, and Julia RubinORCID:0000−0001−7280−16142

1 University of Toronto, Canada, {chechik,ioanna,disenfeld}@cs.toronto.edu
2 University of British Columbia, Canada, mjulia@ece.ubc.ca

Abstract. Feature-oriented software development (FOSD) is a promis-
ing approach for developing a collection of similar software products from
a shared set of software assets. A well-recognized issue in FOSD is the
analysis of feature interactions: cases where the integration of multiple
features would alter the behavior of one or several of them. Existing ap-
proaches to feature interaction detection require a fixed order in which
the features are to be composed but do not provide guidance as to how
to define this order or how to determine a relative order of a newly-
developed feature w.r.t. existing ones. In this paper, we argue that clas-
sic feature non-commutativity analysis, i.e., determining when an order
of composition of features affects properties of interest, can be used to
complement feature interaction detection to help build orders between
features and determine many interactions. To this end, we develop and
evaluate Mr. Feature Potato Head (FPH) – a modular approach to non-
commutativity analysis that does not rely on temporal properties and
applies to systems expressed in Java. Our experiments running FPH on
29 examples show its efficiency and effectiveness.

1 Introduction

Feature-oriented software development (FOSD) [3] is a promising approach for
developing a collection of similar software products from a shared set of software
assets. In this approach, each feature encapsulates a certain unit of functionality
of a product; features are developed and tested independently and then inte-
grated with each other; developed features are then combined in a prescribed
manner to produce the desired set of products. A well-recognized issue in FOSD
is that it is prone to creating feature interactions [13,28,22,2]: cases where inte-
grating multiple features alters the behavior of one or several of them. Not all
interactions are desirable. E.g., the Night Shift feature of the recent iPhone did
not allow the Battery Saver to be enabled (and the interaction was not fixed for
over 2 months, potentially affecting millions of iPhone users). More critically,
in 2010, Toyota had to recall hundreds of thousands of Prius cars due to an
interaction between the regenerative braking system and the hydraulic braking
system that caused 62 crashes and 12 injuries.

Existing approaches for identifying feature interactions either require an ex-
plicit order in which the features are to be composed [6,26,8,19,18] or assume

presence of a “150%” representation which uses an implicit feature order [12,15].
Yet they do not provide guidance on how to define this order, or how to deter-
mine a relative order of a newly-developed feature w.r.t. existing ones.

A classical approach of feature non-commutativity detection, defined by Plath
and Ryan [25], can be used to help build a composition order. The authors defined
non-commutativity as “the presence of a property, the value of which is differ-
ent depending on the order of the composition of the features” and proposed
a model-checking approach allowing to check available properties on different
composition orders. E.g., consider the Elevator System [25,14] consisting of five
features: Empty – to clear the cabin buttons when the elevator is empty; Ex-
ecutiveFloor – to override the value of the variable stop to give priority to the
executive floor (not stopping in the middle); TwoThirdsFull – to override the
value of stop not allowing people to get into the elevator when it is two-thirds
full; Overloaded – to disallow closing of the elevator doors while it is overloaded;
and Weight – to allow the elevator to calculate the weight of the people inside
the cabin. Features TwoThirdsFull and ExecutiveFloor are not commutative
(e.g., a property “the elevator does not stop at other floors when there is a
call from the executive floor” changes value under different composition orders),
whereby Empty and Weight are. Thus, an order between Empty and Weight is
not required, whereas the user needs to determine which of TwoThirdsFull or
ExecutiveFloor should get priority. Thus, feature non-commutativity guarantees
a feature interaction, whereas feature commutativity means that order of compo-
sition does not matter. Both of these outcomes can effectively complement other
feature interaction approaches.

In this paper, we aim to make commutativity analysis practical and appli-
cable to a broad range of modern feature-based systems, so that it can be used
as “the first line of defense” before running other feature interaction detections.
There are three main issues we need to tackle. First of all, to prove that features
commute requires checking their composition against all properties, and captur-
ing the complete behavior of features in the form of formal specifications is an
infeasible task. Thus, we aim to make our approach property-independent. Sec-
ond, we need to make commutativity analysis scalable and avoid rechecking the
entire system every time a single feature is modified or a new one is added. Fi-
nally, we need to support analysis of systems expressed in modern programming
languages such as Java.

In [25], features execute “atomically” in a state-machine representation of the
system, i.e., they make all state changes in one step. However, when systems are
represented in conventional programming languages like Java, feature execution
may take several steps; furthermore, such features are composed sequentially,
using superimposition [5]. Examining properties defined by researchers studying
such systems [6], we note that they do not refer to intermediate states within the
feature execution, but only to states before or after running the feature, effec-
tively treating features as atomic. In this paper, we use this notion of atomicity to
formalize commutativity. The foundation of our technique is the separation be-
tween feature behavior and feature composition and efficiently checking whether

different feature compositions orders leave the system in the same internal state.
Otherwise, a property distinguishing between the orders can be found, and thus
they do not commute. We call the technique and the accompanying tool Mr.
Feature Potato Head (FPH), named after the kids’ toy which can be composed
from interchangeable parts.

In this paper, we show that FPH can perform commutativity analysis in
an efficient and precise manner. It performs a modular checking of pairs of fea-
tures [17], which makes the analysis very scalable: when a feature is modified, the
analysis can focus only on the interactions related to that feature, without need-
ing to consider the entire family. That is, once the initial analysis is completed,
a partial order between the features of the given system can be created and used
for detecting other types of interactions. Any feature added in the future will be
checked against all other features for non-commutativity-related interactions to
define its order among the rest of the features, but the existing order would not
be affected. In this paper, we only focus on the non-commutativity analysis and
consider interaction resolution as being out of scope.

Contributions. This paper makes the following contributions: (1) It defines
commutativity for features expressed in imperative programming languages and
composed via superimposition. (2) It proposes a novel modular representation
for features that distinguishes between feature composition and behavior. (3)
It defines and implements a modular specification-free feature commutativity
analysis that focuses on pairs of features rather than on complete products or
product families. (4) It instantiates this analysis on features expressed in Java.
(5) It shows that the implemented analysis is effective for detecting instances of
non-commutativity as well as proving their absence. (6) It evaluates the efficiency
and scalability of the approach.

The rest of the paper is organized as follows. We provide the necessary back-
ground, fix the notation and define the notion of commutativity in Sec. 2. In
Sec. 3, we describe our iterative tool-supported methodology for detecting fea-
ture non-commutativity for systems expressed in Java. We evaluate the effective-
ness and scalability of our approach in Sec. 4, compare our approach to related
work in Sec. 5 and conclude in Sec. 63.

2 Preliminaries

In this section, we present the basic concepts and definitions and define the
notion of commutativity used throughout this paper.

Feature-Oriented Software Development (FOSD). In FOSD, products
are specified by a set of features (configuration). A base system has no features.
While defining the notion of a feature is an active research topic [11], in this
paper we assume that a feature is “a structure that extends and modifies the
structure of a given program in order to satisfy a stakeholder’s requirement, to
implement a design decision and to offer a configuration option” [5].

3 The complete replication package including the tool binary, case studies used in our
experiments and proofs of selected theorems is available at https://github.com/

FeaturePotatoHead/FPH.

https://github.com/FeaturePotatoHead/FPH
https://github.com/FeaturePotatoHead/FPH

Fig. 1: Java Code Snippet of the Feature ExecutiveFloor.

Superimposition. Superimposition is a feature composition technique that
composes software features by merging their corresponding substructures. Based
on superimposition, Apel et al. [5] propose a composition technique where dif-
ferent components are represented using a uniform and language independent-
structure called a feature structure tree (FST). An FST is a tree T = 〈(Terminal Node) |
(Non Terminal Node) (Tree T)+〉, where + denotes “one or more”. A Non Ter-

minal Node is a tuple 〈name, type〉 which represents a non-leaf element of T with
the respective name and type. A Terminal Node is a tuple 〈name, type, body〉
which represents a leaf element of T . In addition to name and type, each Ter-
minal Node has body that encapsulates the content of the element, i.e., the
corresponding method implementation or field initializer. A feature is a tuple
f = 〈name, T 〉, where name is a string representing f ’s name and T is an FST
abstractly representing f .

Each feature describes the modifications that need to be made to the base
system, also represented by an FST, to enable the behavior of the feature. While
FSTs are generally language-independent, in this paper we focus on features
defined in a Java-based language. For example, consider the Java code snippet
in Fig. 1, which shows the ExecutiveFloor. This feature makes one of the floors
“an executive one”. If there is a call to or from this floor, it gets priority over any
other call. This feature is written in Java using a special keyword original [5]
(line 9). Under this composition, a call from the new method to every existing
method with the same name is added, in order to preserve the original behavior.
Without original, new methods replace existing ones.

The feature ExecutiveFloor in Fig. 1 is represented by the tuple 〈executive, T 〉,
where T is the FST in Fig. 2. ElevatorSystem is a Non Terminal Node that rep-

resents the ElevatorSystem package with the tuple 〈ElevatorSystem, package〉,
and stopRequestedInDirection is a Terminal Node represented by 〈stopRequested
InDirection, method, body〉, where body is the content of the stopRequested-
InDirection method in Fig. 1 (lines 8-9). Another Non Terminal Node is Elevator,
whereas executiveFloor, isExecutiveFloor, isExecutiveFloorCalling and
stopRequestedAtCurrentFloor are Terminal. For Java-specified features, Ter-
minal Nodes represent methods, fields, import statements, modifier lists, as well
as extends, implements and throws clauses whereas directories, files, packages
and classes are represented by Non Terminals.

Superimposition Process. Given two FSTs, starting from the root and
proceeding recursively to create a new FST, two nodes are composed when they
share the same name and type and when their parent nodes have been composed.
For Terminal Nodes which additionally have a body, if a Node A is composed
with a Node B, the body of A is replaced by that of B unless the keyword

Fig. 2: FST Representation for the Feature ExecutiveFloor.

Fig. 3: Simplified Composition of ExecutiveFloor and the Base Elevator System.

original is present in the body of B. In this case, the body of A is replaced by
that of B and the keyword is replaced by A’s body. Since the original keyword
is not used for fields, the body of the initial field is always replaced by that of
the new one.

Fig. 3 gives an example of a composition of a simplified ExecutiveFloor fea-
ture with the elevator base system. Terminal Nodes that have been overridden
by the feature are with dashed outline and new fields and methods added by the
feature are shown as shaded nodes. For example, the method stopRequested,
which is part of the base system, is overridden by the feature, whereas the field
executiveFloor, which is only part of the feature, is added to the base system.

Commutativity. We define commutativity w.r.t. properties observable be-
fore or after features finish their execution (as those in [6]). A state of the system
after superimposing a feature is the valuation of each variable (or array, object,
field, etc. [24]) of the base system and each variable (or array, etc.) introduced
by the feature. We also add a new variable inBase which is true iff this state is
not within a method overridden by any feature. In the rest of the paper, we refer
to states where inBase is true as inBase states. A transition of the system is an
execution of a statement, including method calls and return statements [24].

Then we say that two features commute if they preserve valuation of prop-
erties of the form G(inBase =⇒ φ), where φ is a propositional formula defined
over any system state variables. That is, they do not commute if there is at least
one state of the base system which changes depending on the order in which the
features are composed. For example, the property “the elevator does not stop at
other floors when there is a call from the executive floor”, used in Sec. 1 to iden-
tify non-commutativity between features TwoThirdsFull and ExecutiveFloor, is
G(inBase =⇒ ¬(isExecutiveFloorCalling ∧ stopped ∧ floor 6=executiveFloor)).

3 Methodology

Our goal is to provide a scalable technique for determining whether features
commute by establishing whether the two different composition orders leave the

system in the same internal state. The workflow of FPH is shown below. The first
step of FPH is to transform each feature from an FST into an FPH represen-
tation consisting of a set of fragments. The base
is transformed in the same way as the indi-
vidual features. Each fragment is further split
into feature behavior and feature composition
– see Sec. 3.1. Afterwards, we check for non-
compositionality. If there do not exist feature
fragments that have shared location of composi-
tion, i.e., whose feature composition components
are the same, then the features commute. Oth-
erwise, check the pairs of feature fragments for
behavior preservation, i.e., when the two features are composed in the same lo-
cation, the previous behavior is still present and can be executed. If this check
succeeds, we perform the shared variables check – see Sec. 3.2.

3.1 Separating Feature Behavior and Composition

We now formally define the FPH representation of features that separates the be-
havior of features and location of their composition and provide transformation
operators between the FPH and the FST representations.

Definition 1. An FPH feature is a tuple 〈name, fragments〉, where name is
the feature name and fragments is the list of feature fragments that comprise the
feature. Let a feature f be given. A Feature Fragment fg is a tuple 〈fb, fc〉, where
fb is a feature behavior defined in Def. 2 and fc is a feature composition defined
in Def. 3.

Definition 2. Feature Behavior fb of a feature fragment fg is a tuple 〈name, type,
body, bp, vars〉, where name, type and body represent the name, type and con-
tent, respectively, of the element represented by fg. bp is a boolean value which is
set to true if the feature preserves the original behavior, i.e., when the keyword
original is present in the body and not within a conditional statement. vars is
a list of variable names read or written within fg.

Definition 3. Feature composition fc of a feature fragment fg is represented by
〈location〉 which is the path leading to the terminal node represented by fg.

The Separate operator (see Fig. 4a) transforms features from the FST to the
FPH representation by creating a new fragment for each Terminal Node in the
given FST. For the behavior component of the fragment, its name, type and body
attributes come from the respective counterparts of the FST Terminal Node.
The bp field is true if every path within body contains the keyword original;
otherwise, it is false. For the composition component, the location field gets its
value from the unique path to the Terminal Node from the root of the FST. vars
are the parameters of the method and the fields that are used within it.

E.g., consider creating the FPH representation for ExecutiveFloor feature in
Fig. 2. Since there are five Terminal Nodes, five fragments will be created to rep-
resent each node. In the fragment created for the stopRequestedInDirection

(a) (b)

(c)

Fig. 4: Algorithms Separate, Join and CheckCommutativity.

node, the information in fb about name, node and type is derived from the infor-
mation stored in the node, fb = 〈stopRequestedInDirection,method, [body]〉,
where body consists of lines 8-9 of Fig. 1. bp is false since the keyword original

is within an if statement and vars consists only of the method parameters since
the method does not use any global fields. After separating, the feature compo-
sition is fc = ElevatorSystem.Elevator.stopRequested-InDirection.

To transform features from FPH back to FST, we define the Join operator.
It takes as input a list of feature fragments and returns an FST (see Fig. 4b). It
creates a new Terminal Node to be added to the FST for each feature fragment
in the given feature. The name, type and body attributes of the node are filled
using the corresponding fields in the feature behavior component of the fragment.
Then, starting from the root node, for every node in the location path of the
feature composition component, if the node does not exist in the FST, it is
added; otherwise, the next node of the path is examined. The information about
bp and vars is already contained in the body of the Terminal Node and is no
longer considered as a separate field. E.g., joining the ExecutiveFloor feature
that we previously separated yields the FST in Fig. 2, as expected.

Theorem 1. Let n be the number of features in a system. For every feature F
which can be represented as (fb, fc), Join and Separate are inverses of each
other, i.e., Join(Separate(F)) = F and Separate(Join(fb,fc)) = (fb,fc).

3.2 Compositional Analysis of Non-Commutativity

We now formally present the algorithm check commutativity, a sequence of
increasingly more precise, and more expensive, static checks to perform non-

(a) (b)
Fig. 5: Two Features of the Elevator System.

commutativity analysis. These are called shared location, behavior preservation
and shared variables – see Fig. 4c. Additionally, we prove soundness and cor-
rectness of the FPH methodology, i.e., that our checks guarantee feature com-
mutativity as defined in Sec. 2.

Check Shared Location. The first check examines whether F1 and F2 have
any fragments that can be composed in the same location (line 3). Clearly, when
F1 and F2 are applied in different places, e.g., they change different methods,
inBase states are the same independently of their order of composition, and
thus the features commute. Otherwise, more precise checks are required. E.g.,
ExecutiveFloor (see Fig. 2) and Empty (see Fig. 5a) do not share methods or
fields and thus can be applied in either order.

Theorem 2. If features F1 and F2 are not activated in the same location, any
inBase state resulting from first composing F1 followed by F2 (denoted F1;F2) is
the same as for F2;F1.

Check Behavior Preservation. Suppose one pair of feature fragments of
F1 and F2, say, f1 and f2, can be composed in the same location. Then we
examine whether the original behavior is preserved or overridden (indicated by
the fb field of each fragment). If bp of f1 and f2 is true, an additional check for
shared variables is applied. Otherwise, i.e., when bp of either f1 or f2 is false, we
report an interaction. Clearly, this check can introduce false positives because
we do not look at the content of the methods but merely at the presence of the
original keyword. E.g., two methods may happen to perform the exact same
operation and yet not include the original keyword. In this case, we would
falsely detect an interaction4.

Check Shared Variables. If F1 and F2 are activated at different places and
both preserve the original behavior, commutativity of their composition depends
on whether they have shared variables that can be both read and written. This
check aims to detect that. E.g., both features Empty (see Fig. 5a) and Weight
(see Fig. 5b) modify the leaveElevator method and preserve the original be-
havior. Since no variables between them are shared, the order of composition
does not affect the execution of the resulting system.

Extracting shared variable information requires not only identifying which
variable is part of each feature behavior, but also running points-to analysis
since aliasing is very common in Java. Moreover, a shared variable might not
appear in the body of the affected method but instead in the body of a method
called by it. Yet existing frameworks for implementing interprocedural points-to
analyses [21] may not correctly identify all variables read and written within
a method. Moreover, even if two features do write to the same location, this

4 But this does not happen often – see Sec. 4.

may not manifest a feature interaction. E.g., they may write the same value. For
these reasons, our shared variables check may introduce false positives and false
negatives. We evaluate its precision in Sec. 4.

Theorem 3. Let features F1 and F2 activated at the same place and preserving
the behavior of the base be given. If the variables read and written by each feature
are correctly identified and independent of each other (F1.vars ∩ F2.vars = ∅),
then any inBase state resulting from composing F1;F2 is the same as that of
composing F2;F1.

When two features merely read the same variable, it does not present an inter-
action problem. We handle this case in our implementation (see Sec. 4).

Theorem 4 (Soundness). Given features F1 and F2, if variables read and
written by them are correctly identified, Algorithm in Fig. 4c is sound: when it
outputs Success, F1 and F2 commute.

Complexity. Let |F | be the number of features in the system and let M be
the largest number of fragments that each feature can have. For a pair of feature
fragments, checking shared location and checking behavior preservation are both
done in constant time, so the overall complexity of these steps is O((|F |×M)2).
In the worst case, all features affect the same set of methods and thus the shared
variables check should be run on all of them. Yet, all fragments in a feature are
non-overlapping, and thus the number of these checks is at most |F |2 × M .
The time to perform a shared variable check, which we denote by SV , can vary
depending on an implementation and can be as expensive as PSPACE-hard.
Thus, the overall complexity of non-commutativity detection is O((|F | ×M)2 +
SV × |F |2 ×M).

4 Evaluation

In this section, we present an experimental evaluation of FPH, aiming to answer
the following research questions: (RQ1) How effective is FPH in performing
non-commutativity analysis of feature-based systems? (RQ2) How accurate is
FPH’s non-commutativity analysis? (RQ3) How efficient is FPH compared to
state-of-the-art tools for performing non-commutativity analysis? (RQ4) How
well does FPH scale as the number of fragments increases?

Tool Support. We have implemented our methodology (Sec. 3) as follows.
The Separate process is implemented on top of FeatureHouse’s composition op-
erator in Java. We use the parsing process that was provided in FeatureHouse [4]
to separate features to the FPH representation and added about 200 LOC.

The main process to check commutativity is implemented as a Python script
in about 250 LOC. The first two parts of the commutativity check are directly
implemented in the script. The third one, Check shared variables, requires con-
sidering possible aliases of feature-based Java programs. For this check, we have
implemented a Java program, FPH varsAnalysis, that calls Soot [21] to build the
call graph and analyze each reachable method. FPH varsAnalysis is an interpro-
cedural context insensitive points-to analysis that, given two feature fragments

that superimpose the same method, checks whether a variable of the same type
is written by at least one of them and read or written by the other. Since fea-
ture fragments cannot be compiled by themselves (and thus Soot cannot be used
on them), in order to do alias analysis, our program requires a representation
that consists of the base system and all possible features. This representation
is readily available for systems from the SPLVerifier repository since it uses a
family-based approach to analysis. We generate a similar representation for all
other systems used in our experiments.

Models and Methods. We have applied FPH to 29 case studies written in
Java. In the first five columns of Table 1, we summarize the information about
these systems. The first six have been considered by SPLVerifier [6] – a tool
for checking whether a software product line (SPL) satisfies its feature spec-
ifications. SPLVerifier includes sample-based, product-based and family-based
analyses and assumes that the order in which features should be composed is
provided. The SPLVerifier examples came with specifications given by aspects
woven at base system points, with an exception thrown if the state violates an
expected property. The rest of our case studies are SPLs from the FeatureHouse
repository [4].

We were unable to identify other techniques for analyzing feature commu-
tativity of Java programs. Plath and Ryan [25] and Atlee et. al. [8] compare
different composition orders but handle only state machines. SPLVerifier [6] rep-
resents state of the art in verification of feature-based systems expressed in Java,
but it is not designed to do non-commutativity analysis. In the absence of alter-
native tools, we adapted SPLVerifier to the task of finding non-commutativity
violations to be able to compare with FPH.

We conducted two experiments to evaluate FPH and to answer our research
questions. For the first, we ran SPLVerifier on the first six systems (all properties
that came with them satisfied the pattern in Sec. 2 and thus were appropriate
for commutativity detection) presented in Table 1 to identify non-commutativity
interactions. Since SPLVerifier is designed to check products against a set of spec-
ifications, we have to define what a commutativity check means in this context.
For a pair of features, SPLVerifier would detect a commutativity violation if,
upon composing these features in different orders, the provided property pro-
duces different values. During this check, SPLVerifier considers composition of all
other features of the system in all possible orders and thus can identify two-way,
three-way, etc. feature interactions, if applicable. We measured the time taken
by SPLVerifier and the number of interactions found.

For the second experiment, we checked all 29 systems using FPH to identify
non-commutativity interactions. We measured the number of feature pairs that
required checking for shared variables, the time the analysis took and the preci-
sion of FPH in finding interactions. We were unable to establish ground truth for
non-commutativity analysis in cases where FPH required the shared variables
check due to our tool’s reliance on Soot’s unsound call graph construction [7].
Thus, we measured precision of our analysis by manually analyzing the validity
of every interaction found by FPH. We also calculated SPLVerifier’s relative re-

System LOC # Feat. # Frag. Description # Comm SV FPH SPLV SPLV
Interactions Pairs Precision Precision Rel. Recall

Elevator 799 5 19 Our running example 1 1 1 1 1
Email 938 8 55 Email communication suite 3 9 1 - 0
Minepump 425 6 10 Water pump in mining operation 3 0 1 1 0.67
GPL 2510 17 109 Graph product line 2 38 0.1 - 0
AJStats 15311 19 128 Statistics for AspectJ 26 136 1 - 0
ZipMe 5479 12 229 Zip compression library 5 0 1 - 0

BerkeleyDB 64652 98 2667 Embedded database engine 198 1 1
ChatSystem/Burke 614 7 51 Network client and server 2 14 0.33
ChatSystem/Dreiling 938 5 78 Network client and server 3 0 1
ChatSystem/Becker 651 6 42 Network client and server 5 2 1
ChatSystem/Weiss 931 9 23 Network client and server 4 5 0.75
ChatSystem/Schink 873 6 50 Network client and server 4 1 1
ChatSystem/Rehn 862 6 58 Network client and server 14 2 1
ChatSystem/Thuem 544 7 34 Network client and server 1 2 1
EPL 99 10 22 Arithmetic expression evaluator 0 1 -
GameOfLife 1656 14 154 Computer game 5 0 1
Graph 467 4 26 Graph library 0 6 -
Notepad/Quark 1397 11 106 Text editor 20 21 1
Notepad/Delaware 1654 5 122 Text editor 10 0 1
Notepad/Wellington 1522 3 38 Text editor 0 0 -
Notepad/Svetoslav 1627 5 83 Text editor 0 0 -
Notepad/Wehrman 1716 4 83 Text editor 6 6 1
Notepad/Guimbarda 1586 14 229 Text editor 91 0 1
Notepad/Robison 1404 9 90 Text editor 0 0 -
PKJab 4994 7 99 Chat network client 2 0 1
Raroscope 428 4 18 Compression library 0 0 -
Sudoku 1850 6 103 Computer game 5 4 1
TankWar 3184 19 213 Computer game 71 27 0.97
Violet 9789 87 912 UML model editor 35 28 1

Table 1: Overview of Case Studies.

call, i.e., the ratio of non-commutativity-related interactions detected by FPH
that were also detected by SPLVerifier. We did not encounter any interactions
that were detected by SPLVerifier but not by FPH.

When the shared variables check is not necessary, our technique is sound.
In such cases, if we inform the user that two features are commutative, they
certainly are, and there is no need to define an order between them. As shown
below, soundness was affected only for a small number of feature pairs. Moreover,
advances in static analysis techniques may improve our results for those cases in
the future. Our experiments were performed on a 2 GB RAM Virtual machine
within an Intel Core i5 machine dual-core at 1.3 GHz.

Results. Columns 6-10 of Table 1 summarize results of our experiments,
including, for the first six examples, SPLVerifier’s precision and (relative) recall.
“SV pairs” capture the number of feature pairs for which the shared variables
check was required. A dash in the precision columns means that the measurement
was not meaningful since no interactions were detected. E.g., SPLVerifier does
not detect any non-commutativity interactions for Email, and FPH does not find
any non-commutativity interactions for EPL. FPH found a number of instances
of non-commutativity such as the one between ExecutiveFloor and TwoThirds-
Full in the Elevator System. Only one SV check was required (while checking
Empty and Weight features). Without our technique, the user would need to
provide order between the five features of the Elevator System, that is, specify
20 (5 × 4) ordering constraints. FPH allows us to conclude that ExecutiveFloor
and TwoThirdsFull do not commute, that Empty and Weight likely commute
but this is not guaranteed, and that all other pairs of features do commute.
Thus, only two feature pairs required further analysis by the user.

(a) (b)

(c)
Fig. 6: (a) Number of FPH varsAnalysis Calls per System; (b) Time Spent by
FPH varsAnalysis per System; (c) Percentage of Non-commutativity Checks
where BP or SV Analyses were Applied Last.

The Minepump system did not require the shared variable check at all and
thus FPH analysis for it is sound, and all three of the found interactions were
manually confirmed to be “real” (thus, precision is 1). ChatSystem/Weiss has
nine features which would imply needing to define the order between 72 (9× 8)
feature pairs. Four non-commutativity cases were found, all using the shared
variables check, but only three were confirmed as “real” via a manual inspection
(thus, precision is 0.75). We conclude that FPH is effective in discovering non-
commutativity violations and proving their absence (RQ1).

We now turn to studying the accuracy of FPH w.r.t. finding non-commutativity
violations (RQ2). From Table 1, we observe that for the Elevator System, both
FPH and SPLVerifier correctly detect a non-commutativity interaction. For the
Minepump system, SPLVerifier only finds two out of the three interactions found
by FPH (relative recall = 0.67). For the Email system, AJStats, ZipMe, and GPL
the specifications available in SPLVerifier do not allow detecting any of the non-
commutativity interactions found by FPH (relative recall = 0).

GPL was a problematic case for FPH, affecting its precision. The graph algo-
rithms in this example take a set of vertices and create and maintain an internal
data structure (e.g., to calculate the vertices involved in the shortest path or in
a strongly connected component). With this data structure, our analysis found
a number of possible shared variables and incorrectly deemed several features
as non-commutative. E.g., the algorithms to find cycles or the shortest path be-
tween two nodes access the same set of vertices but change different fields and
thus are commutative. One way of avoiding such false positives would be to im-
plement field-sensitive alias analysis. While more precise, it will be significantly
slower than our current shared variables analysis.

For the remaining systems, either FPH’s reported interactions were “real”,
or, in cases where it returned some false positives (ChatSystemBurke, ChatSys-
temWeiss, and TankWar), it had to do with the precision of the alias analysis.
Thus, given SPLVerifier’s set of properties, FPH always exhibited the same or
better precision and recall than SPLVerifier. Moreover, for all but three of the
remaining systems, FPH exhibited perfect precision. We thus conclude that FPH
is very accurate (RQ2).

We now turn to the efficiency of our analysis (RQ3). The time it took to
separate features into behavior and composition was usually under 5 seconds.
The outlier was BerkeleyDB, which took about a minute, due to the number of
features and especially fragments (BerkeleyDB has 2667 fragments whereas Vi-
olet has 912 and the other systems have at most 229). In general, the time taken
by FPH’s commutativity check was highly influenced by the number of calls to
FPH varsAnalysis. Fig. 6a shows the number of calls to FPH varsAnalysis as
the number of features increases. E.g., BerkeleyDB has 98 features and required
only one call to FPH varsAnalysis, while AJStats has 19 features and required
136 of these calls. More features does not necessarily imply needing more of
these checks. E.g., Violet and BerkeleyDB required fewer checks than AJStats,
TankWar, and GPL, and yet they have more features.

Fig. 6b shows the overall time spent by FPH varAnalysis per system being
analyzed. NotepadQuark and Violet took more time (resp., 1192 sec. and 1270
sec.) than GPL (1084 sec.) since these systems have calls to Java GUI libraries
(awt and swing), thus resulting in a larger call graph than for GPL. A similar
situation occurred during checking TankWar (1790 sec.) and AJStats (1418 sec.).
It took FPH under 200 seconds in most cases and less than 35 minutes in the
worst case to analyze non-commutativity (see Fig. 6b). FPH was efficient because
FPH varAnalysis was required for a relatively small fraction of pairs of feature
fragments. We plot this information in Fig. 6c. For each analyzed system, it
shows the percentage of feature fragments for which behavior preservation (BP)
or shared variables (SV) was the last check conducted by FPH (out of the possible
100%). We omit the systems for which these checks were required for less than
1% of feature pairs. The figure shows that the calls to FPH varsAnalysis (to
compute SV, in blue) were not required for over 96% of feature pairs.

To check for non-commutativity violations, SPLVerifier needs to check all
possible products which is infeasible in practice. So we set the timeout to one
hour during which SPLVerifier was able to check 110 products for Elevator, 57 for
Email, 151 for Minepump, 3542 for GPL, 2278 for AJStats and 1269 for ZipMe.
For each of these systems, a different check is required for every specification,
thus the same product is checked more than once if more than one specification
exists. Even though GPL, AJStats and ZipMe are larger systems with more fea-
tures, they have fewer properties associated with them and therefore we were
able to check more products within one hour. Thus, to answer RQ3, FPH was
much more efficient than SPLVerifier in performing non-commutativity analysis.
SPLVerifier was only able to analyze products containing the base system and
at most three features before reaching a timeout. Moreover, FPH can guaran-

tee commutativity, while SPLVerifier cannot because of it being based on the
properties given.

Our experiments also allow us to conclude that our technique is highly scal-
able (RQ4). E.g., the percentage of calls to FPH varsAnalysis is shown to be
small and increases only slightly with increase in the number of fragments (see
Fig. 6a and 6b).

Threats to Validity. Our results may not generalize to other feature-based
systems expressed in Java. We believe we have mitigated this threat by run-
ning our tool on examples provided by FeatureHouse. They include a variety of
systems of different sizes which we consider to be representative of typical Java
feature-based systems. As mentioned earlier, our use of SPLVerifier was not as
intended by its designers. We also had no ground truth when the shared vari-
able check was required. For those few cases, we calculated SPLVerifier’s relative
instead of actual recall.

5 Related Work

In this section, we survey related work on modular feature definitions, feature
interaction detection and commutativity-related feature interactions.

Modular feature definitions. A number of approaches to modular feature
definitions have been proposed. E.g., the composition language in [8] includes
states in which the feature is to be composed (similar to our fg.location) and the
feature behavior (similar to our fb.body). Other work [4,9,10] uses superimposi-
tion of FSTs to obtain the composed system. In [14,25], new variables are added
or existing ones are changed with particular kind of compositions (either execut-
ing a new behavior when a particular variable is read, or adding a check before a
particular variable is set). These approaches treat the feature behavior together
with its composition specification. Instead, our approach automatically separates
feature definition into the behavioral and the composition part, enabling a more
scalable and efficient analysis.

Feature interaction detection. Calder et. al [13] survey approaches for
analyzing feature interactions. Interactions occur because the behavior of one
feature is being affected by others, e.g., by adding non-deterministic choices that
result in conflicting states, by adding infinite loops that affect termination, or by
affecting some assertions that are satisfied by the feature on its own. Checking
these properties as well as those discussed in more recent work [8,19,15,18] re-
quires building the entire SPL. Additionally, all these approaches consider state
machine representations which are not available for most SPLs, and extracting
them from code is non-trivial. SPLLift [12] is a family-based static analysis tool
not directly intended to find interactions. Any change in a feature would require
building the family-based representation again, whereas we conduct modular
checks between features. Spek [26] is a product-based approach that analyzes
whether the different products satisfy provided feature specifications. It does
not check whether the features commute.

Non-commutativity-related feature interactions. [5] and [8] also looked
at detecting non-commutativity-related feature interactions. [5] presents a fea-

ture algebra and shows why composition (by superimposition) is, in general, not
commutative. [8] analyzes feature commutativity by checking for bisimulation,
and the result of the composition is a state machine representing the product.
Neither work reports on a tool or applies to systems expressed in Java.

Aspect-Oriented Approaches. Storzer et. al. [27] present a tool proto-
type for detecting precedence-related interactions in AspectJ. Technically, this
approach is very similar to ours: it a) detects which advice is activated at the
same place; b) checks whether the proceed keyword and exceptions are present;
and c) analyzes read and written variables. Yet, the focus is on aspects, and
often many aspects are required to implement a single feature [23]. This implies
that for m features with an average of n aspects each, the analysis in [27] needs

to make O
(

(m · n)
2
)

checks, while our approach requires O
(
m2

)
checks. There-

fore, the approach in [27] might be significantly slower than FPH. [1] analyzes
interactions of aspects given by composition filters by checking for simulation
among all the different orderings in which advice with shared joinpoints can be
composed. As the number of advice with shared joinpoints increases, that ap-
proach considers every possible ordering, while we keep the analysis pairwise.
[16] and [20] define modular techniques to check properties of aspect-oriented
systems. [16] uses assume-guarantee reasoning to verify and detect interactions
even when aspects can be activated within other aspects. It does not require
an order but does require specifications to detect whether a certain composition
order would not satisfy these. [20] uses the explicit CTL model-checking algo-
rithm to distribute global properties into local properties to be checked for each
aspect. This yields a modular check. In addition to requiring specifications, this
technique assumes AspectJ’s ordering of aspects.

6 Conclusion and Future Work

In this paper, we presented a compositional approach for checking non-commutativity
of features in systems expressed in Java. The method is based on determining
whether pairs of features can write to the same variables and thus the order in
which features are composed to the base system may determine their valuation.
The method is complementary to other feature interaction detection approaches
such as [6,12] in that it helps build an order in which features are to be composed.
When two features commute, they can be composed in any order. In addition,
this method helps detect a number of feature interactions. The method is im-
plemented in our framework FPH – Mr. Feature Potato Head. FPH does not
require specifying properties of features and does not need to consider the en-
tire set of software products every time a feature is modified. By performing
an extensive empirical evaluation of FPH, we show that the approach is highly
scalable and effective. In the future, we plan to further evaluate our technique,
handle languages outside of Java and experiment with more precise methods for
determining shared variables.

Acknowledgements. We thank anonymous reviewers for their helpful com-
ments. This research has been supported by NSERC.

References

1. M. Aksit, A. Rensink, and T. Staijen. A Graph-Transformation-Based Simulation
Approach for Analysing Aspect Interference on Shared Join Points. In Proc. of
AOSD’090, pages 39–50, 2009.

2. S. Apel, J. Atlee, L. Baresi, and P. Zave. Feature Interactions: The Next Generation
(Dagstuhl Seminar 14281). Dagstuhl Reports, 4(7):1–24, 2014.

3. S. Apel and C. Kästner. An Overview of Feature-Oriented Software Development.
J. Object Technology, 8(5), 2009.

4. S. Apel, C. Kastner, and C. Lengauer. FeatureHouse: Language-Independent, Au-
tomated Software Composition. In Proc. of ICSE’09, pages 221–231, 2009.

5. S. Apel, C. Lengauer, B. Möller, and C. Kästner. An Algebra for Features and
Feature Composition. In Proc. of AMAST’08, pages 36–50, 2008.

6. S. Apel, A. Von Rhein, P. Wendler, A. Groslinger, and D. Beyer. Strategies for
Product-Line Verification: Case Studies and Experiments. In Proc. of ICSE’13,
2013.

7. S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. Flowdroid: Precise Context, Flow, Field, Object-
sensitive and Lifecycle-aware Taint Analysis for Android Apps. ACM SIGPLAN
Notices, 49(6):259–269, 2014.

8. J. Atlee, S. Beidu, U. Fahrenberg, and A. Legay. Merging Features in Featured
Transition Systems. In Proc. of MoDeVVa@MODELS’15, pages 38–43, 2015.

9. D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. IEEE
TSE, 30(6):355–371, 2004.

10. S. Beidu, J. Atlee, and P. Shaker. Incremental and Commutative Composition of
State-machine Models of Features. In Proc. of MiSE@ICSE’15, pages 13–18, 2015.

11. T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker, M. Chechik,
and K. Czarnecki. What is a Feature?: A Qualitative Study of Features in Industrial
Software Product Lines. In Proc. of SPLC’15, pages 16–25, 2015.

12. E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, and M. Mezini. SPLLift:
Statically Analyzing Software Product Lines in Minutes Instead of Years. In Proc.
of PLDI’13, pages 355–364, 2013.

13. M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec. Feature Interaction: A
Critical Review and Considered Forecast. Computer Networks, 41(1), 2003.

14. A. Classen, M. Cordy, P. Heymans, A. Legay, and P.-Y. Schobbens. Formal Seman-
tics, Modular Specification, and Symbolic Verification of Product-line Behaviour.
Sci. Comput. Program., 80:416–439, 2014.

15. M. Cordy, A. Classen, P.-Y. Schobbens, P. Heymans, and A. Legay. Managing
Evolution in Software Product Lines: A Model-Checking Perspective. In Proc. of
VaMoS’02, pages 183–191, 2012.

16. C. Disenfeld and S. Katz. A Closer Look at Aspect Interference and Cooperation.
In Proc. of AOSD’12, pages 107–118. ACM, 2012.

17. A. Fantechi, S. Gnesi, and L. Semini. Optimizing Feature Interaction Detection.
In FMICS-AVOCS17, volume 10471 of LNCS, pages 201–216, 2017.

18. D. Guelev, M. Ryan, and P.-Y. Schobbens. Model-Checking the Preservation of
Temporal Properties upon Feature Integration. STTT, 9(1):53–62, 2007.

19. P. Jayaraman, J. Whittle, A. Elkhodary, and H. Gomaa. Model Composition in
Product Lines and Feature Interaction Detection Using Critical Pair Analysis. In
Proc. of MODELS’07, pages 151–165, 2007.

20. S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying Aspect Advice Modu-
larly. In ACM SIGSOFT SEN, volume 29, pages 137–146. ACM, 2004.

21. P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The Soot Framework for Java
Program Analysis: A Retrospective. In Proc. of CETUS’11, volume 15, page 35,
2011.

22. J. Liu, D. Batory, and S. Nedunuri. Modeling Interactions in Feature Oriented
Software Designs. In Proc. of ICFI’05, 2005.

23. R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for Features in
Advanced Modularization Technologies. In Proc. of ECOOP’05, pages 169–194,
2005.

24. T. Nipkow and D. Von Oheimb. Javalight is Type-Safe - Definitely. In Proc. of

PLDI’98, pages 161–170. ACM, 1998.
25. M. Plath and M. Ryan. Feature Integration using a Feature Construct. Sci.

Comput. Program., 41(1):53–84, 2001.
26. W. Scholz, T. Thüm, S. Apel, and C. Lengauer. Automatic Detection of Feature

Interactions Using the Java Modeling Language: An Experience Report. In Proc.
of SPLC’11, page 7, 2011.

27. M. Storzer and F. Forster. Detecting Precedence-Related Advice Interference. In
Proc. of ASE’06, pages 317–322, Sept 2006.

28. P. Zave. Feature Interactions and Formal Specifications in Telecommunications.
IEEE Computer, 26(8):20–29, August 1993.

	FPH: Efficient Non-Commutativity Analysis of Feature-Based Systems

