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Abstract

Troubleshooting regression failures is one of the most frequent
yet time-consuming development tasks. To help with this task,
numerous approaches aim to narrow down developers’ attention
to the subset of code statements relevant to the failure. The most
prominent of these approaches are based on program slicing, as
slicing not only identifies a subset of relevant statements but also
maintains the flow of information between these statements.

By surveying more than 50 practitioners from eight different
countries, we observe that existing dual-version slicing-based ap-
proaches have two main limitations: (a) to minimize the number
of statements presented to the developer, they omit contextual
information required to truly understand the failure and (b) to
keep information propagation between the statements in the slice
intact, they include lengthy computations that are not necessary
to understand the failure. We use these observations to define a
new dual-version slicing approach for regression scenarios, called
CoREX. We evaluate COREX on a large number of subjects, com-
paring it with other existing dual-version slicing approaches. The
results of our evaluation show that COREX outperforms these ap-
proaches both in the quantitative metrics used in prior work and in
alignment with developers’ expectations. We believe our work pro-
vides grounds for efficient integration of slicing-based approaches
into development workflows.
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1 Introduction

Regression failures occur when changes to software, e.g., to add
new features or fix security vulnerabilities, unintentionally break
existing functionality [3] (think, “it worked yesterday but does not
work today”). Debugging regression failures often demands signif-
icant time and effort, especially in large-scale software systems:
developers need to go over hundreds, if not thousands, lines of code
to understand which of the changes caused the failure and why.

Numerous fault localization approaches are designed to minimize
the quantity of code that needs to be inspected when debugging
such a failure. They can largely be divided into spectrum-based [1,
25], delta-debugging-based [69, 70], program-slicing-based [2, 32,
48, 50, 52, 56], and combinations of the above [10, 16, 36, 45, 48].

Spectrum- and delta-debugging-based approaches aim to pin-
point statements responsible for the failure. However, prior research
shows that focusing only on a set of responsible statements in iso-
lation, without capturing the connection between these statements
and their relationship to the failure itself, does not improve the
developers’ ability to understand and repair faults [23, 31, 40, 44,
64, 68]. In fact, Ko et al. [30] observed that, while debugging, de-
velopers not only rely on code search and relevant information
gathering but also perform dependency analysis.

Slicing-based approaches aim to address this need by capturing
the dependencies and flow of information between the produced
subset of statements, supporting the mental-model developers use
when debugging failures [5, 7, 13, 34, 45, 56, 64]. A variety of single-
program slicing approaches, such as dicing [56], chopping [16],
slicing with barriers [33], and thin slicing [46], aim at minimizing
the size of the slice developers need to inspect while ensuring it
contains the relevant information needed to analyze the failure.

DuALSLICE [438, 50, 52] and INPRESS [6] are dual-version slicing
techniques that target the space of regression failures. They ana-
lyze the base and regression versions of a program simultaneously,
retaining only the execution statements that lead to divergent exe-
cution behavior between the versions.

While both dual-version slicing techniques focus on shortening
the slice by excluding information identical in both program ver-
sions, we conjecture that not all such information is irrelevant and a
more nuanced distinction is necessary. Specifically, both techniques
omit contextual information needed to understand the divergent
behaviors between two program versions. Omitting such informa-
tion, in fact, eliminates one of the main benefits of slicing-based
techniques: focusing the developers’ attention on the sequence of
relevant program statements. Moreover, while INPRESS summa-
rizes the propagation of information in code that does not change
between two versions of the program, the practical usefulness of
such summarization has not been established.
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To gain further insights into what information developers deem
important when debugging regression failures, we started by con-
ducting a comprehensive study with 55 experienced software devel-
opers from eight different countries. The study gathered informa-
tion about developer needs and evaluated the appropriateness of de-
sign decisions made by existing dual-version slicing techniques. To
the best of our knowledge, this is the first such study conducted for
dual-version slicing. Moreover, among over 200 papers on slicing-
based debugging approaches, only very few and relatively older
papers [8, 12, 13, 29, 34, 54, 56] focused on its practical applicability.

The results of our study show, among other findings, that partic-
ipants indeed deemed contextual information omitted by existing
dual-version slicing approaches highly important for understand-
ing regression failures. They also found information summarized
by INPRESS relevant but with a lower level of importance.

Based on our observations, as well as earlier work showing that
developers tend to debug and analyze code iteratively, in multiple
phases [30, 34, 37, 40, 64], we designed a novel dual-version slicing
approach named CoREX. CoREX builds upon and extends existing
dual-version slicing techniques, making a more nuanced distinction
between primary statements essential for understanding the failure
and secondary statements of potentially lower relevance. Effectively,
the sets of primary and secondary statements produced by CoREX
do not overlap with those of DuALSLICE and INPRESS.

To evaluate COREX, we compared it with existing dual-version
slicing techniques on a set of 286 real-world Java regression failures
borrowed from Defects4] [26] and INPRESS [6] repositories. We
measured the length of slices each tool produces and the priori-
tization ratio — the fraction of statements in the slice out of all
statements in the trace (often also referred to as “reduction rate”).
These metrics are commonly used to evaluate slicing tools as they
are indicative of the number of “debugging steps” developers need
to take when inspecting a failure.

Our results show that, when considering primary statements
only, slices produced by CoREX are around x50 shorter than the
entire execution traces (665 vs. 33,884 statements on average) and
x3 shorter than those produced by DUALSLICE (665 vs. 2,007 state-
ments on average). While they contain x3.2 more statements than
slices produced by INPRESS (665 vs. 207 statements on average),
these additional statements are essential for preserving contextual
information, as demonstrated below.

When measuring the execution time of each tool, we observed
that the extra analysis performed by CoREX leads to an increased
execution time compared to both DuaALSLICE and INPRESS. Specifi-
cally, extra processing related to the added contextual information
results in a x1.5 and x1.15 overhead compared with INPRESS, on
the (smaller) Defects4] and (larger) INPRESS benchmarks, respec-
tively. While we believe this is acceptable given the increased tool
accuracy, additional performance improvements can be subject of
future work, especially in the underlying slicing components.

Finally, to “close the loop”, we assess the ability of the heuristics
employed by CoREX to produce slices that would be deemed rele-
vant by the developers of our original study, compared with other
dual-slicing tools. To this end, we computed the precision, recall,
and F-measure of each tool in identifying statements developers
selected as relevant to the failure on the six subjects they analyzed
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Py P,

11 | public static void main(String[] args){ 1! | public static void main(String[] args){
2! String format = “yyyyMMddHH:mm:ss”; 2! String format = “yyyyMMddHH:mm:ss”;
31 Date date = new Date(); 31 Date date = new Date();
4t date.year = “003”; 41 date.year = “003”;
51 date.month = “01”; 51 date.month = “01”;
6! date.day = “10”; 6! date.day = “10”;
7t date.time = “15 33 20”; 7t date.time = “15 33 20”;
8! | @assertEquals(format, getFormat(date)); 8! | @assertEquals(format, getFormat(date));
9t |} 9t |}
10'| public String getFormat(Date date){ 10!| public String getFormat(Date date){
11* if (date.year.length() == 2) 11'|  if (date.year.length() < 4)
12 121 year = “yy”;
131 else 13t
141 year = “yyyy”; 141
15! int tokenLen = date.month.length(); 15t int tokenLen = date.month.length();
16! result = year+getMonthFormat(tokenLen); 16! result = year+getMonthFormat(tokenLen);
17t tokenLen = date.day.length(); 17t tokenLen = date.day.length();
18! result = result+getDayFormat(tokenLen); 18! result = result+getDayFormat(tokenLen);
19! tokenLen = date.time.length(); 191 tokenLen = date.time.length();
20! result = result+getTimeFormat(tokenLen); 20t result = result+getTimeFormat(tokenLen);
211 return result; 21|  return result;
22'] ) 1[4

(@) Tp,. (b) Tp,.

Figure 1: Running Example: a Simplified Lang-18 Failure.

during the study. To the best of our knowledge, this is the first eval-
uation that focuses on the accuracy of the tools, in addition to the
prioritization ratio that they achieve. Our results show that CoREX
achieves 93% of alignment with developers’ opinion, compared with
63% of alignment for DUALSLICE and 74% - for INPRESS.

Summary of Contributions.

1. This paper presents the results of a comprehensive developer
study that investigates the relevance of different types of program
statements in understanding regression failures. The results ob-
tained through a number of complementary experiments show that
84% of developers find contextual information, omitted by existing
techniques, highly relevant. They found propagation information
preserved by DUALSLICE and summarized by INPRESS of secondary
importance (Section 4).

2. It implements and empirically evaluates a novel dynamic dual-
version slicing approach called CoREX, which incorporates the
results of the developer study. Our evaluation of COREX on 286 real-
world Java regressions shows that it achieves a prioritization ratio
comparable with existing techniques while focusing on statements
deemed more relevant by the developers (Sections 5 and 6).

3. It makes our implementation, study, and evaluation results pub-
licly available [49] to encourage further work in this area.

2 Running Example

Figure 1 shows the old (left) and the new (right) versions of the
Lang-18 program, taken from the popular Defects4] regression
dataset [11] and simplified for presentation purposes. The goal of
this code is to calculate the format of a given date. The assertion in
line 8 checks if the method getFormat outputs the same value as
in the variable format defined in line 2.

The expected result is successfully obtained in the old version,
but the assertion fails in the new version. That is because 3-digit
years were previously deemed to have the "yyyy" format: the if
statement in line 11 determines that 3 # 2 and the value of year
is then assigned in line 14 to be "yyyy". Due to the change in
line 11, in the new version, the if statement now evaluates to true
(3 < 4), which leads to the value of year being assigned in line 12
to be "yy". The remainder of the code (lines 15-21) further parses
the input date, extracting and returning its format. However, this
additional code has no effect on the failure.
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3 Background

We now provide the relevant background information about slicing
and introduce the two state-of-the-art dual-version slicing tech-
niques: DUALSLICE [52] and INPRESS [6].

3.1 Slicing Fundamentals

Code Representation. We assume a common Java-bytecode-style
programming language representation [76], with method calls and
return statements, assignments to local and global variables, condi-
tionals, i.e., ifs, and jumps. For the simplicity of the presentation,
we discuss our examples on the source-code level. However, slicing
is performed on Java bytecode; thus, all conditionals other than
ifs, such as for and while loops, are expressed in terms of if and
jump statements. We refer to a statement in line i of a program as
si, e.g., the if statement in line 11 of Figure 1a is denoted by s17.
Moreover, in dynamic analysis, each statement of a program can
be triggered multiple times during the program execution, e.g., in
multiple iterations of a loop or in different calls to the same method.
We refer to each individual execution of a statement as a statement
instance and denote the k' execution of a statement sj as s{‘ . We
refer to each statement instance as an execution-level statement or,
simply execution statement. A sequence of execution statements
(i.e., statement instances executed in a particular program run) con-
stitutes an execution trace. In fact, Figure 1 shows the execution
traces of the old and the new versions of the program.

We annotate if statements (e.g., s11) with a label showing whether

the if condition is evaluated to true or false in the dynamic execu-
tion. Gray lines indicate statements that are not executed because
they are encapsulated by an if statement that evaluates to false
(e.g., s12 in Figure 1a).
Classical Single-Version Program Slicing,. Classical slicing [53,
55] computes the set of statements that affect a particular variable
of interest, often referred to as a slicing criterion. Slicing can be per-
formed statically or dynamically [32]. While static slicing considers
all possible program paths leading to the slicing criterion, dynamic
slicing focuses on one concrete execution. The main idea behind
dynamic slicing is to first collect an execution trace of a program,
and then inspect the control and data dependencies of the trace
statements, identifying statement instances that affect the slicing
criterion and omitting the rest. A slicing criterion for an execution
trace is a tuple (c, V), where c is a statement instance and V is a set
of all variables of interest used in this statement instance [32]. If V
is omitted, it is assumed to include all variables used by c.

A backward dynamic slice [32] uses the notion of control- and
data-flow dependencies. A control dependency means that the ex-
ecution of the later statement (or statement instance) depends on
the outcome of the former, e.g., statements within the if block are
control-dependent on the if statement itself. There is a data-flow
dependency between two statements (or statement instances) if the
former defines a variable used in the latter. A slice is then defined
as the set of statement instances whose execution affects the slicing
criterion, i.e., the set of instances on which the slicing criterion is
control- or data-flow-dependent, either directly or transitively. We
denote by Sp, and Sp, the two slices of the corresponding traces
Tp, and Tp,, which were obtained by running the test T... Intuitively,
a dynamic slice corresponds to the sequence of steps developers
need to analyze when troubleshooting a failure.
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3.2 Dual-Version Slicing

For regression failures, it is valuable to consider both the old and
the new versions of the code simultaneously, as some faults could
be caused by omitting certain code in the new version. Working on
both versions simultaneously is the focus of dual-version slicing
techniques. In the rest of the paper, we refer to the old and the new
versions of the code as P; and Py, respectively; we denote a test
case that passes on P; and fails on P, by T.. We assume that the
execution of T is deterministic. We denote by Tp, and Tp, the two
traces that correspond to the execution of T, on versions P; and Py,
respectively, e.g., the traces shown in Figure 1.

The set of changes between the versions is denoted by A. A

includes statements that have to be added (A), removed (R), and
modified (M) to transform one version of the program to another.
In the example in Figure 1, A={M(s11)}. We boldface changed state-
ments in our examples and highlight them in red (line 11).
Trace Alignment. Trace alignment obtains as input two traces, Tp,
and Tp,, and identifies pairs of the corresponding trace statement
instances (s, s”), where s comes from Tp, and s” comes from Tp, [75].
When a statement instance s or s’ cannot be matched to any instance
in the other trace, it is considered unmatched. There are several trace
alignment techniques, which are based on string matching [43],
memory indexing [47], and structural indexing [50, 65].

For example, s% 4 in Figure 1a is unmatched as its corresponding

statement in P; is not executed (and thus grayed out in Figure 1b).
In contrast, s% is a matched statement instance. In our examples,
we annotate unmatched and matched statement instances with
triangles and squares, respectively (see Figure 1).
DUALSLICE is a symmetric slicing technique that works on two
traces simultaneously. It was first introduced for debugging concur-
rency bugs [52] and later used for regression failures [48, 50]. Its
goal is to produce a minimum sequence of statement instances that
are causally connected, leading from the root cause to the failure.

Given two execution traces, DUALSLICE first aligns the traces
and then separates matched statement instances into those that
produce the same vs. different data values. We annotate statement
instances that produce different values by filled squares, e.g., 5%6
in Figure 1a, where the variable result has a different value due
to the change in the value of year. Statements that produce the
same values are annotated by empty squares. The main idea of
the DUALSLICE technique is to focus only on differences between
executions, i.e., unmatched statements and matched statements
that produce different data values (triangles and filled squares).

Figure 2a shows the slices produced by DuALSLICE for the ex-
ample in Figure 1. As there is no divergence in the execution of
statement instances sé—s;, s}s, 3%7, and 5}9, DuaLSLICE concludes
that they are not part of these slices (and thus denoted by empty
lines in the figure) and are irrelevant for the failure.

Another key idea behind DUALSLICE is to compute the transitive
closure of dependencies across both traces: once a statement is
added to a slice in one of the traces, its corresponding aligned
statement is also added to the slice of the other trace. This is done
to incorporate information missing from the run, as that could
explain the reason for a failure.

INPRESS builds on top of DUALSLICE. The main idea behind IN-
PRESS is to look at code that is common vs. different between the
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Py P, Py P,
1! | public static void main(String|[] args){ 1! | public static void main(String[] args){ 1! | public static void main(String[] args){ 1! | public static void main(String[] args){
2! 2t 2t 21
3t 3t 31 31
41 a1 4 41
5t 5t 5t 5t
6! 6! 6! 6!
7" 7" 7" 7"
8! | @assertEquals(format, getFormat(date)); 8! | @assertEquals(format, getFormat(date)); 8! | @assertEquals(format, getFormat(date)); 8! | @assertEquals(format, getFormat(date));
9t |} 9t |} 9t 9t
10?| public String getFormat(Date date){ 10| public String getFormat(Date date){ 10| public String getFormat(Date date){ 10| public String getFormat(Date date){
11%  if (date.year.length() == 2) 11|  if (date.year.length() < 4) 11| if (date.year.length() == 2) 11| if (date.year.length() < 4)
121 121 year = “yy”; 121 12t year = “yy”;
13! else 13t 13! else 13t
141 year = “yyyy”; 141 141 year = “yyyy”; 141
151 15t 15t 15t
16!  result = year+getMonthFormat(tokenLen); 16| result = year+getMonthFormat(tokenLen); 16! 16
174 17t 17t 17t
18 result = result+getDayFormat(tokenLen); 18|  result = result+getDayFormat(tokenLen); 18t 18!
191 19! 19! 19!
20} result = result+getTimeFormat(tokenLen); 20t result = result+getTimeFormat(tokenLen); 20! result = Funcl(year); 20t result = Funcl(year);
214 return result; 211 return result; 21t return result; 211 return result;
221} 221} 221} 221}

(a) DuaLSLICE for P; and P,.

(b) INPRESS for P; and P».

Figure 2: DuaLSLICE and INPRESS Results for the Example in Figure 1.

versions. It postulates that matched common code, albeit producing
different data values, is not directly responsible for the test failure.
For example, 3%6, sig, and S%O are affected in the exact same manner
by the value of year (set in 5%4 in P; and 3%2 in P) and thus are of
less relevance when reasoning about the failure.

However, instead of removing such common code, INPRESS iden-
tifies and summarizes blocks of common code in the form of high-
level input-output functions, where outputs are variables needed for
later computations and inputs are their dependencies on variables
used earlier in the slice. This is done to keep the flow of information
within the slice, which developers might need when troubleshoot-
ing failures. Figure 2b shows the slices produced by INPRESS for
the same example, where a statement result = Funcl(year) in
line 20 captures the dependency between the year and the output
result. Such summaries eliminate (potentially very long) blocks of
internal computations, better focusing the developers’ attention on
the part directly responsible for the failure.

4 Study: Developers’ Needs for Debugging
Regression Failures

Despite the valuable insights and the effectiveness of both dual-
version slicing techniques in prioritizing the number of statements
developers need to examine, we observe two main limitations. First,
while INPRESS correctly points out that preserving the flow of
information in a slice is important for the developers’ ability to
build a correct mental model of the code [9, 40, 63], the slices
produced by both this approach and DUALSLICE miss contextual
information. For example, the variable format used in line 8 in
Figure 2b is never defined and it is unclear what this target format
is expected to be. Even more challenging, the value of date is also
omitted, which further complicates debugging (especially when
dealing with larger and more complex software [27]).

Second, the importance of neither such contextual information
nor statements hidden behind INPRESS summaries was ever evalu-
ated with real developers. That is, the validity of the assumptions on
which statements are relevant for the developer when debugging
regression failures was not yet evaluated with real users. Instead,

techniques are mostly evaluated on the prioritization ratio that they
achieve.

To address these issues, we conducted a large-scale randomized
study with 55 developers from eight countries, gathering their
opinions on the design decisions made by existing techniques and,
more generally, the information they need to efficiently debug
regression failures. The study was conducted through an interactive
online questionnaire, to reach a wide audience and explore a non-
trivial set of case study code snippets. Full details about the study,
including a copy of the questionnaire, are available online [49]. The
study was approved by the ethics board in our institution.

We discuss our study methodology and results next.

4.1 Methodology

Program Subjects. We started from the Defects4] [26] benchmark
(v1.5) — a large and popular collection of reproducible real-world
failures in Java programs. Like prior work that conducted user
studies using this benchmark [21, 63, 72] (for program repairs,
single-version analysis, etc.), we excluded two projects that rely on
domain-specific knowledge. We picked one failure at random from
the remaining four projects (chart, lang, math, and time). Addition-
ally, we selected two failures from the LibRench dataset, contributed
by INPRESS [6] - a set of real-world client-library project pairs with
at least one library upgrade failure. Table 1 presents our six selected
subjects, together with the failure id for the Defects4] projects, a
short description of each failure, and the number of study partic-
ipants who were assigned this subject. To prioritize depth over
breadth, each participant was assigned one subject only but studied
it from multiple dimensions, as described below.

As the size of the execution trace for these subjects ranges be-
tween 263 and 54,781 statements (20,125 on average), we shortened
and simplified code snippets, to ensure participants could fully
comprehend the code and answer numerous questions within a
reasonable time frame of about 30 minutes to one hour. The goal
of this simplification was to preserve the essence of the changes
and the failure (similar to the example in Figure 1) while removing
unnecessary implementation details. The simplification was per-
formed by the first author of the paper and reviewed by another
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Table 1: User Study Subjects

‘ Sub. ID H Project (Failure ID) ‘ Short Description ‘ # Part. ‘
#S1 || JFreeChart (8) Modifying “timeZone” variable reference| 9
#S2 || Commons-Lang (18) Modifying “year” format 9
#S3 Commons-Math (37) Deleting conditional calculations 9
#54  ||Joda-Time (8) Modifying arithmetic expression 9
#S5 || JacksonDataBind/OpenAPI| Removing reference shortcut 10
#S6 || Alibaba-Druid/Dble Modifying SQL Parsing 9

author, to ensure consistency with the original implementation.
The size of the resulting snippets ranged from 15 to 26 statements,
comparable to those used in similar debugging studies [44].
Study Questionnaire. After collecting optional background and
demographic information, Each study participant was assigned one
subject (out of 6), for which they answered 12 questions across
three main study parts. Also, to minimize bias, we randomized the
order of study parts presented to each participant and the order of
code snippets presented in each part, as described below.

Part 1: Information participants deem relevant when debugging
regression failures. To investigate this direction, we showed study
participants two program traces, similar to the example in Figure 1,
and asked them to first identify and describe the failure. Then,
we asked them to select statements that they deemed relevant for
identifying and explaining the failure, and provide a rationale for
their selection.

Part 2: Design decisions made by existing techniques. To comple-
ment the previous questions looking at the problem from a different
angle, we showed the participants three code pair views, similar
to the DuALSLICE and INPRESS views in Figure 2. Each view had
a different combination of statements describing the failure, i.e.,
statements selected by DUALSLICE, statements selected by INPRESS,
and one of the above views augmented with contextual information.
We asked participants to rank the views based on the following two
criteria: (1) Completeness: whether the view includes all essential
information needed to explain and debug the failure and (2) Con-
ciseness: whether the view excludes only the necessary information
needed to explain and debug the failure. We also asked partici-
pants to provide a written rationale for their ranking, detailing the
advantages and disadvantages of each view.

Part 3: Value of textual explanations. To further investigate ways
to assist developers in identifying and troubleshooting failures, we
studied how helpful textual summaries can be for the task. To initi-
ate such discussion, we provided line-by-line textual explanations
that correspond to the code and showed them to the participants in
an experiment similar to Part 2. We further asked the participants
to provide insights into whether a code or text version was more
helpful and why.

To generate textual explanations, we started from using GenAl
techniques and further refined the generated explanations manually,
as the initial GenAI-produced results were not fully satisfactory.
Specifically, the initial explanations were revised by the first author
of this paper and then peer-reviewed by the researchers in our
group and the second author, to produce complete and consistent
explanations across all case studies.

Finalizing. At the end of the questionnaire, respondents could op-
tionally submit free-text comments and suggestions on how to
improve fault localization and the survey itself.
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A copy of our questionnaire for each subject is available on-
line [49]. To minimize biases participants might have from viewing
full code before or after analyzing the views or from analyzing
the views in a particular order, we created multiple versions of the
questionnaire for each of the six subjects: “trace first” and “views
first” and, within each, different order of views. Each participant
was automatically assigned one questionnaire version, selected at
random from the version with the lowest number of responses.
Study Participants. As common with this kind of study [28], we
started with a pilot. It included six participants from our home
university. The goal of the pilot study was to test our survey design
and infrastructure, which allowed us to identify and address obvi-
ous issues at no additional cost. The pilot study was also used to
estimate the study duration and the necessary compensation. Our
pilot participants found the survey generally easy to understand
and provided feedback for further improvements, leading to minor
modifications. Responses from the pilot study were discarded. Based
on participant response times, we estimated the study duration to
be between 20 and 45 minutes.

To recruit a more diverse group of participants, we invited Com-
puter Science and Engineering graduate students at our university,
who have at least one year of prior hands-on full-time development
experience and who are familiar with code debugging tools. We
further reached out to our network of collaborators and colleagues
who, in turn, distributed a call for participation in their organiza-
tional and personal networks. All participants filled out a pre-study
questionnaire and signed a consent form. The study lasted about
two months, in late 2024. We randomly selected ten participants
who completed the study to receive a $30 Amazon gift card.

4.2 Results

We received 103 responses, of which 48 (47%) were incomplete and
we excluded them from our analysis. For the 55 complete responses,
nine responses each were for subjects #S1-#54 and #S6, and ten
responses were for subject #S5. The responses came from eight
countries across four continents: Canada, the United States, Ger-
many, Denmark, France, the Netherlands, Iran, and Brazil, with
Canada and Germany being the most represented. Among the par-
ticipants, 16 were under 25, 33 were aged 25-34, and 3 were aged
35-44. Most of them were students (26 PhD, 13 Master’s, and 11
Bachelor’s), with some having concurrent appointments in industry.
Additional five were professional software and testing engineers.
Around 40% of the participants had over three years of professional
industry experience, while most others have completed one or more
industrial internships (1-3 years experience: 18%, 3-5 years: 13%,
5-10 years: 53%, >10 years: 16%). More than 80% self-assessed their
programming skills as “Intermediate” and “Advanced”. We thus
believe our sample is diverse and representative.

Part 1: Statement Relevance. The majority of the participants (44
out of 55, 80%) deemed at least one of the context statements (empty
squares) essential for understanding the failure. In their free-form
answers, participants mentioned that «beside changes I want to see
what concrete values cause the failure in this test» (P10) and «illus-
trating which variables are involved in the process or are passed as
input can streamline things» (P9). On average, participants selected
56% of the context statements, with the highest selection at 80%
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Figure 3: View Scores.

of all such statements. We further discuss the different types of
context statements in Section 5, when we describe our proposed
slicing approach.

Of the remaining 11 participants who did not select any context
statements, nine had completed the trace first versions of the ques-
tionnaire. We conjecture that looking at complete traces first might
have caused them to overlook the importance of these statements.
As for the remaining two participants who completed the view first
version of the questionnaire, their replies differ from those of the
majority of participants who completed this version: 22 out of 24
trace first version participants (92%) selected at least one contextual
statement, leading us to the conclusion that contextual information
is important for participants who do not have access to full traces.

Focusing on propagation statements kept by DuALSLICE (full
squares), the majority of the participants (43 out of 55, 78%) did
not pick any of these statements as relevant. Nine (16%) selected a
subset of these statements; three participants (6%) selected all these
statements (as well as all other statements in the trace), saying that
«I need to track where the changed value is used and why these
places lead to the failure» (P38) and «I checked the content to see
how the variables were transformed» (P32). All such cases were
for subjects #S3 and #S5, where the change led to the execution of
code that was not executed in the old version of the program.
Part 2: Comparing Code Views. Consistently with Part 1 findings,
when comparing code views, 84% of participants (46 of 55) ranked
the view that contains contextual information as their top choice.
The remaining nine participants (16%) ranked it as their second
choice, with none ranking it third. In their justifications, many
noted that lack of context «requires some time to guess what the
failing input is» (P25), which is «not that suitable for a reviewer
who did not write the code» (P47).

Four of the participants (7%) selected summarization made by
INPRESS as their first choice and 21 (28%) as their second. They
noted that «collapsing the logic into a single function call makes it
easier to understand» (P16) and «[dual slices] might include extra-
neous information that is not immediately relevant to resolving the
failure» (P1). Yet, five participants (9%) preferred slices produced
by DUALSLICE as their first choice and 25 (46%) as a second as they
«want to choose myself what I want to see. So an optional collapse
would be more helpful for me» (P34).

To quantitatively compare three views, we used a simple scoring
mechanism: two points for the first-place ranking, one for second
place, and zero for last place. Figure 3 shows the scores for three
views for each of the six subjects and for all subjects combined (la-
beled as "All"). The overall scores are 101 for the slices with context,
compared with 35 and 29 for the slices produced by DuALSLICE and
INPRESS, respectively. The results indicate that the vast majority of
participants found contextual information important, while there is

Sahar Badihi and Julia Rubin

no clear consensus on whether and when to summarize the propaga-
tion of information, as done by INPRESS. The preference for a view
that contains contextual information was statistically significant;
however, we found no statistically significant differences between
DuaLStice and INPRESS rankings. More details about statistical
tests can be found online [49].

Part 3: Textual Explanations. When comparing textual explanations
(which either include or exclude descriptions of contextual and
propagation statements), participants again preferred explanations
that contain context, albeit to a smaller extent: 36 of the participants
(65%) ranked the view with context as their first and 16 (29%) — as
their second choice. The scores of explanations corresponding to the
slices produced by INPRESS were significantly higher (Wilcoxon test,
p < 0.05) than those for DUALSLICE because participants favored
shorter textual explanations that abstract away unnecessary details.

While none of the participants preferred textual explanations of

regression over code, more than half would like to see both code and
textual explanations combined: «if I debug code that 'm unfamiliar
with, I like as much explanation as possible, so both would be nice»
(P34) and «ideally, I would like to view the explanation first, then
look at the code for additional context» (P46).
Additional Feedback. In the open-ended questions, the most fre-
quently discussed issue (23 participants, 42%) was the integration of
the provided information into an IDE: «If it were integrated into the
IDE, I would likely use it» (P5). This aligns with earlier feedback
about recommendation tools [38], where participants emphasized
that to be useful, such tools must be embedded into their natural
workflows.

Overall, developers appreciated support directing their attention
to parts of the code that are more likely to be relevant to the fail-
ure but emphasized the need to have access to the entire code on
demand. Some study participants indicated that simultaneous code
and textual explanations would be effective. Others pointed to a
preference for on-demand explanations that do not clutter the code
view but are available, when needed. Interestingly, participants also
suggested to use textual explanations for summarized blocks. This
feedback and suggestions call for follow-up usability studies on the
desired integration into IDEs, e.g., how to visualize different types
of statements (via colors, highlighting, “collapsing” code parts, etc.)
and what format of the additional visual and contextual cues is
needed, which extends beyond the scope of this paper.

Summary: In a variety of experiments, we observed that the vast
majority of participants found some contextual information criti-
cally important for debugging regression failures. While slice sum-
marization performed by INPRESS is beneficial for some cases, sev-
eral participants favored access to the entire code. Finally, partici-
pants favored textual explanations that contain contextual infor-
mation and preferred integrating textual and code views.

5 CoREX: Context-Aware Refinement-Based
Slicing

Our study showed that contextual information is essential for un-

derstanding and debugging regression failures. Yet, it showed that

not all contextual information (e.g., not all empty squares in Fig-

ure 1) is equivalently important. We also observed that develop-

ers seek flexibility to decide whether and when to view certain
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Figure 4: Overview of Dual-version Slicing Techniques.

pieces of code. The last observation is also consistent with prior
studies, showing that developers often analyze and debug failures
iteratively [30, 34, 37], first quickly skimming through code and
information flows to determine which parts are relevant to the
failure and then following with a more in-depth investigation.

Based on these observations, we design a novel dual-version
slicing approach named CoREX, which refines and extends design
decisions made by prior work, to better align with developers’ needs.
Figure 4 shows the high-level workflow of DUALSLICE, INPRESS,
and CoReX and emphasizes the main differences between these
approaches and the novel ideas behind CoReX, which we discuss
next.

All three approaches obtain the same input: two versions of a
program, P; and P, and a test case T, which passes in P; and
fails in Py. They then run the test on each version of the program,
to produce execution traces Tp, and Tp, (step 1), perform trace
alignment to identify matched and unmatched statements (step 2),
and further divide matched statements into those with the same and
those with different data values (step 3), as discussed in Section 3.2.

We denote by Mp, p, the set of matched trace statements, which
are further divided into M;l P, and M;l p,’ Statements with the same
and different data values. In fact, M;l p, are statements that we
informally refer to as context earlier in the paper. We denote by
UMp, and UMp, the unmatched statements in Tp, and Tp,, respec-
tively. In Figure 1, M;l P, and M;l p, Statements are represented
by the empty and filled squares. The unmatched statements are
represented by triangles. The grayed-out lines, e.g., 3%2 in Figure 1b,
represent source code statements executed in one but not the other
program version and thus are not part of that version’s trace.
Slicing. The first major difference between CoREX and both DuAL-
Srick and INPRESS lies in how they compute a synchronized slice
over the traces (step 4): while both DuaLSLicE and INPRESS do not
include M;l P, statements in their produced slices, COREX does, as
shown in line 4 of Figure 4c. For our running example, the slice
produced by CoREeX in this step will, in fact, include the entire
trace in Figure 1, while slices produced by the two other tools will
exclude statements s;, s;, si, sé, sé, s;, 3%5, 5%7, and s}g.

At this stage, DUALSLICE stops and outputs the produced syn-
chronized slice, while both INPRESS and CoReX proceed to their
corresponding slice summarization steps.

Slice Summarization. As discussed in Section 3.2, the key idea
behind INPRESS is to summarize certain statements of the slice in
the form of high-level input-output functions, focusing specifically

on abstracting blocks of code that are unchanged between the two
versions of the program (steps 5 and 6 in Figure 4b). The rationale
behind such a summarization is to prioritize statements that de-
velopers inspect first, assuming that common code propagates the
effects of changes but is not directly responsible for the failure.

A straightforward idea at this stage would be to apply the original
INPRESS summarization algorithm on the slice augmented with
Mp, p, statements. We refer to such a solution as COREX! - an
initial version of COREX - and show its output in Figure 5a. In this
example, statement instances 3%5-350, which propagate the changed
value of the variable year through numerous calculations identical
between the versions, are summarized (as they are less important
to understand, at least for the “first debugging pass”). Statement
instances s% —s; are kept because each defines a variable used later
in the code (i.e., they are the context statements).

However, according to the study in Section 4, not all contextual
statements are equivalently important to developers. In fact, the
majority of our study participants have not selected statements like
s; -s% as important. More specifically, out of nine developers who
received this example in their questionnaire, five picked all three
statements s; —si as relevant and three picked statements s% and si;
none of the nine developers picked any of the statements s% —s;.

Analyzing the intuition behind this selection, we define the sum-
marization approach used by CoREX (step 6 in Figure 4c) to better
distinguish between primary statements, which are essential for
understanding the failure during the “first scan” and should be kept
in the slice as-is and secondary statements, which are potentially rel-
evant but not immediately crucial and thus should be summarized.
Unlike INPRESS or COREX!, when calculating input-output summa-
rization functions, COREX checks whether an input variable v used
in the summarized block is defined in a statement s from the M;l P,
set. If so, it effectively “moves” s inside the block, treating it as a
secondary statement; consequently, it also does not include v in the
signature of the summary function. Effectively, it treats as primary
the transitive closure of M;l p, Statements that flow into the changed
statements and the assertion itself (these primary statements are
s; —s‘i in our example); it treats as secondary the transitive closure
of M;1 p, Statements flowing into summarized blocks (statements
sé -s%). The output (primary statements) produced by CoREX on
our running example is shown in Figure 5b. Unlike DUALSLICE and
INPRESS, which do not include statements s; -si, CoREeX includes



ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

these statements in its output. Unlike COREX!, which keeps state-
ments s; -s% as primary, COREX deems them as secondary, making
it more aligned with the developers’ intention.

Implementation Details. COREX is implemented for Java version
8.1t utilizes the INPRESS implementation, which is based on the trace
alignment algorithm from ERASE [50] and Slicer4] Java slicer [4].

6 Evaluation

We quantitatively evaluate COREX by comparing it with other dual-
version slicing approaches, DUALSLICE and INPRESS; we also con-
duct an internal evaluation by comparing it with CoREX!. Our
evaluation is driven by the following research questions:

RQ1 (Prioritization Ratio): What is the size of the slice and the
prioritization ratio achieved by each tool?

RQ2 (Execution Time): What is the execution time of each tool?
RQ3 (Alignment): How well do the produced slices match the
developers’ preferences?

The goal of the first question is to investigate, on a large number
of real-world regressions, how effective the filtering implemented
by slicing is, compared with the size of the original execution trace.
The goal of the second question is to assess the tools’ performance.
Finally, in our third question, we aim to assess the ability of the
tools to produce not only concise but also relevant slices, w.r.t.
the preferences of the 55 developers who participated in the study
described in Section 4. To the best of our knowledge, this is the first
evaluation that focuses on the accuracy of the tools, in addition to
the prioritization ratio that they achieve.

6.1 Methods and Metrics

To answer RQ1 and RQ2, we borrow the INPRESS evaluation
dataset, which includes 278 failures from six projects of the pop-
ular Defects4] benchmark [26] and 8 large client-library project
pairs with upgrade failures from LibRench. Table 2 shows the list
of projects and the average lines of code (LoC) for each individual
subject within a project: both the passing and failing versions of the
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Table 2: RQ1 and RQ2 Evaluation Subjects

Avg. LoC
ID Project #Failures Ve 20
Py Py
Defects4]
D1 JFreeChart 23 96,522 96,517
D2 Closure Compiler 95 90,604 90,601
D3 Commons Lang 49 22,756 22,750
D4 Commons Math 63 85,623 85,617
D5 Mockito 26 37,281 37,277
D6 Joda-Time 22 28,428 28,422
Avg. - - 60,202 60,197
[ LibRench | Client-Libraries | 8 | 171,498 | 172426 |
[ Alavg | - \ [ 115848 | 116314 |

For RQ1, for each subject and tool, we calculate the prioritization
ratio (Rat.) — a metric commonly used by existing techniques as:
%TOOZ , where #T is the size of the trace and #Tool is the size of
the slice produced by each tool.

For RQ2, we report the average execution time for each tool,
where each case is executed five times. Our experiments are con-
ducted on an Ubuntu 18.04.4 Virtual Machine with 4 cores and 32
GB of RAM, running on an in-house Ubuntu server with 64 cores
and 512 GB of memory.

To answer RQ3, we re-consider code samples used in the study
described in Section 4 (see Table 1) and check how well the auto-
mated heuristics applied by CoREX fit the developers’ expectations,
compared with those of other dual-version slicing tools. To this
end, for each sample, we deem as Relevant statements selected by
at least 50% of the participants who evaluated this subject (i.e., at
least five participants). This is done to ensure a reasonable consen-
sus between developers and exclude outliers. We then calculate
the Precision (P), Recall (R), and F-Measure (F) for each tool, w.r.t.
their ability to include in the slice statements deemed relevant by
the developers. Specifically, Precision measures the proportion of
relevant statements included in the slice out of all slice statements:
P= %ﬂz?w X 100. Recall measures the proportion of rele-
vant statements included in the slice out of all relevant statements:
R = HRelevani 0 Tool) 44 p_measure is a harmonic mean aiming

code for a subject. The full list of subjects is available online [49]. #Relevant
Py P, Py P,
1! | public static void main(String[] args){ 1! | public static void main(String[] args){ 1! | public static void main(String[] args){ 1! | public static void main(String[] args){
2t String format = “yyyyMMddHH:mm:ss”; 2t String format = “yyyyMMddHH:mm:ss”; 2t String format = “yyyyMMddHH:mm:ss”; 2t String format = “yyyyMMddHH:mm:ss”;
3t Date date = new Date(); 3t Date date = new Date(); 3t Date date = new Date(); 3t Date date = new Date();
4t date.year = “003”; M| 4t date.year = “003”; 41 date.year = “003”; M| 41 date.year = “003”;"
& date.month = “01”; 5t date.month = “01”; 5t 5t
6! date.day = “10”; 6! date.day = “10”; 6! 6!
7t date.time = “15 33 20”; 7! date.time = “15 33 20”; 7t 7t
8! | @assertEquals(format, getFormat(date)); 8! | @assertEquals(format, getFormat(date)); 8! | @assertEquals(format, getFormat(date)); 8! | @assertEquals(format, getFormat(date));
9t |} b 9t |} 9t |}
10| public String getFormat(Date date){ 10*| public String getFormat(Date date){ 10?| public String getFormat(Date date){ 10*| public String getFormat(Date date){
11| if (date.year.length() == 2) 11!  if (date.year.length() < 4) 11| if (date.year.length() == 2) 11'| if (date.year.length() < 4)
121 umi] 191 year = “yy”; 121 um{| 191 year = “yy”;
131 else }UMZ 13! 131 else um] 13t
14% year = “yyyy”; 141 141 year = “yyyy”; 141
15t 15t 15! 15!
16 16! 161 16!
17* M| 17* 17t M| 17t
18! 18! 18! 18!
19t 19! 19! 19!
20|  result = Funcl(year, date.month, ...); 20| result = Funcl(year, date.month, ...); 20! result = Funcl(year); 20! result = Funcl(year);
21| return result; 21| return result; 21t return result; 21! return result;
221 } 221} 221 } 221}

(a) CoReX! for P; and P;.

(b) CoREeX for Py and P.

Figure 5: Comparing Slices Produced by COREX! and CoREX for the Example in Figure 1.
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Table 4: Execution Time (Minutes)

D2 || 92,663 || 45,796 | 50.58 || 3,341 | 96.39 || 164 | 99.82 || 779 | 99.16 || 395 | 99.57
D3 3,072 691 | 77.49 43 | 98.60 8 99.74 || 117 | 96.20 75 | 97.57
D4 8,801 2,812 | 68.04 || 738 | 91.61 39 1 99.55 || 165 | 98.13 || 121 | 98.63
D5 3,213 1,278 | 60.22 || 377 | 88.25 26 | 99.18 85 | 97.36 48 | 98.51
D6 || 13,064 || 5,312 | 59.34 || 519 | 96.03 31 | 99.77 84 | 99.36 50 | 99.62
Avg. || 36,025 || 17,156 | 52.38 || 1,398 | 96.12 72 | 99.80 || 341 | 99.05 || 185 | 99.49

LibRench
Avg. [ 31743 [[ 13,782 | 5658 [ 2.618] 9175 || 342 [ 98.92 [[1593] 94.98 [[ 1,145] 9639
All
Avg. || 33,884 [] 15,469 | 54.35 [[ 2,007 [ 94.07 [ 207 [ 9939 ]| 967 [ 97.15 ]| 665 | 98.04

to balance between precision and recall, calculated as F = 2 X lf,flg{

Precision, Recall, and F-Measure calculated for each developer’s
selection individually are in our online appendix [49].

6.2 Results

RQ1: Prioritization Ratio. Table 3 shows the sizes of the trace, the
synchronized slice SYNC.SLICE, and the slice produced by each of the
compared techniques. Here, we focus only on primary statements
produced by INPRESS, CoReX!, and COREX, to estimate the “first
pass” effort. By design, the combination of primary and secondary
statements for both COReX! and CoReX includes the entire slice,
as one of our main observations is that developers do not wish any
of the statements to be completely removed.

The table also shows the prioritization ratio for each technique
when compared with the size of the trace. The metrics in the table
are aggregated for all Defects4] faults in the same project and across
the eight projects in the LibRench benchmark, for both the old and
the new version of the program, combined. The last row of the
table shows the aggregated results for all projects combined. All
raw results from our evaluation are available online [49].

CoREX achieves a relatively high prioritization ratio for all sub-
ject programs: 98.04% on average. This means that, for an average
project, a developer would only need to inspect around 665 execu-
tion steps during a debugging session instead of 33,884.

CoREX produces slices that
are x23.3 shorter than the
full synchronized slice (665 vs.

SyNc. SLICE
(15,469)

15,469 statements, on average), By
attesting to its ability to reduce =

; ; CoReX! | x c REX) x3(  DuacStice
debugging overhead, i.e., when ?9‘;5?‘ L 5@ 3 P
slicing is integrated into the de-
bugging workflows of IDEs and INPRESS X

(207)

slices are manually inspected
by the developers during an in-
teractive debug session. More-
over, despite including contextual statements, it produces slices that
are x3 shorter than those of DUALSLICE (665 vs. 2,007 statements,
on average) and only x3.2 longer than those of INPRESS (665 vs. 207
statements, on average), placing it “in the middle area” between
these two tools. Finally, COREXs slices are x1.5 shorter than those
of CoRex! (665 vs. 967 statements, on average), demonstrating the

Figure 6: Sllce Sizes.

D T SYNC.SLICE DUALSLICE INPRESS CoReX! CoREX Benchmark ‘ DuALSLICE H INPRESS H CoReX! H CoREX ‘
Size ‘ Rat. || Size ‘ Rat. || Size ‘ Rat. || Size ‘ Rat. || Size | Rat. ‘Defects4]‘LibRenchHDefects4J‘LibRenchHDefectsth‘LibRenchHDefectsz;]‘LibRench‘
Defectsd] Slice Sync. 24.91 ‘ 364.94 24.91 364.94 39.25 398.06 39.25 398.06
D1 || 5913 || 2,506 | 57.62 || 61 [98.97 | 7 [99.88 ] 32 [99.46 || 19 | 99.69 Stice Sum. - 1099 | 5915 1984 | 9736 || 1569 | 8816
Total 24.91 ‘ 364.94 35.9 424.09 59.09 495.42 54.94 486.22

presence of a large number of secondary contextual statements in
real-world projects (between 1 and 2,677 statements).

RQ2: Execution Time. Table 4 shows the runtime measurements
for the four tools. We separate the tools’ runtime into that for the
synchronized slicing (steps 1-4 in Figure 4) and slice summariza-
tion (steps 5-6). We report the results separately for Defects4] and
LibRench, as projects within these benchmarks are of comparable
size and complexity.

CoREX’s overall runtime is x2.21 longer than that of DUALSLICE
and x1.53 longer than that of INPRESS for the Defects4] projects. For
larger LibRench projects, the difference is less pronounced: x1.33
and x1.15 for DuALSLICE and INPRESS, respectively. The longer
execution time is because COREX has to process longer slices, to
include statements from the M;1 p, Set.

Looking into details, we observe that the majority of execution
time is spent in the synchronized slicing stage, especially for larger
LibRench projects (our approach inherits performance bounds of
Slicer4], which we use as the underlying slicing implementation).
The overhead added by the summarization step on top of the slicing
time is relatively minor and is comparable in COREX and INPRESS
(14% for INPRESS vs. 18% for CoOREX on LibRench projects, as COREX
is processing longer slices). Moreover, while the synchronized slice
is, by definition, identical for COREX and CoREX!, COREX summa-
rization time is shorter as it excludes a number of Mlj p, Statements
from the block inputs, eliminating the need to bulld additional
blocks containing definitions of variables in these statements.

In practice, the COREX execution time can be accommodated by
integrating the most time-consuming parts of the tool, i.e., trace
alignment and slicing, into the testing workflow. Specifically, these
steps could be performed offline, as soon as a test fails. The resulting
slices could then be reused at any time in the follow-up analysis,
as necessary.

RQ3: Alignment. Table 5 shows the alignment values for each
tool w.r.t. the developer’s preferences for the six subjects from the
preliminary study. Our goal with this analysis is to “close the loop”
and confirm that the algorithm embedded in CoReX can indeed
successfully identify the contextual statements that developers
deemed important.

Overall, CoREX achieved the highest F-measure (93%) across all
subjects, with high precision (90%) and recall (98%), attesting to its
ability to identify the majority of statements deemed relevant by
the developers (R) while returning few irrelevant statements (P). In
fact, CoREX achieved a perfect recall of 100% in all but one subject,
#S5, where it deems as secondary a divergent execution statement,
which, albeit being unchanged between the program versions, is
executed in one version but not in the other. Future work should
look at whether and how to deal with such divergent execution
statements, given that not all of them are marked as relevant by
developers.
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Table 5: Alignment with Developers’ Selections

Sub. ID SYNC.SLICE DuaLSLICE INPRESS CoRex! CoREX

P%) [ R@ [ F@) [[P® [ R@ [ F@ [ P® [ R@ [ F@ [ P@ [ R® [ F@ [ Pe) | R® | F®)
#S1 43 100 60 67 67 67 100 67 80 75 100 86 100 100 100
#S2 39 100 56 71 71 71 100 71 83 78 100 88 100 100 100
#S3 37 100 54 50 86 63 67 57 62 64 100 78 70 100 82
#54 42 100 59 50 60 55 80 80 80 71 100 83 83 100 91
#S5 64 100 78 56 71 63 80 57 67 75 86 80 86 86 86
#S6 39 100 56 57 57 57 100 57 73 78 100 88 100 100 100
[avg [[ 44 [ 100 | 0 [[ 59 [ 6 | 63 [ s8 65 | 74 [ 73 [ 98 | sa [ o0 [ 98 [ 93 |

CoREXs recall matches that of CoREX!, as both tools retain
contextual statements deemed relevant by the developers and also
summarize secondary statements. However, CoReX! includes ad-
ditional irrelevant contextual statements flowing into secondary
statements, which reduces its precision to 73%. As INPRESS retains
fewer statements, it achieves a relatively high precision (88%), but it
sacrifices recall (65%) by missing some relevant context. DUALSLICE
achieves the lowest Precision and Recall of all tools in our study,
followed only by the full synchronized slice itself, which retains
all statements related to the failure, thus having perfect recall, but
very low precision.

Notably, more than 50% of the context is considered important for

effective debugging (Section 4.2) and CoREX can correctly identify
the relevant 50%.
Summary: Our results indicate that COREX achieves a high prior-
itization ratio, comparable with that of DuALSLICE and INPRESS.
Evaluating the heuristics applied by CoREX on the expected results
produced by developers during our study shows that COREX can
align with developers’ expectations better than its competitors. Bal-
ancing the inclusion of relevant statements while minimizing the
inclusion of irrelevant ones comes at the expense of an increase
in the execution time. We believe such an increase is acceptable,
considering the benefits of the tool.

7 Limitations and Threats to Validity

Limitations. The main limitation of our approach is its command-
line nature, which makes the produced traces difficult to inspect.
While this limitation is shared with other slicing techniques, our
study includes preliminary discussions on how such tools could
be integrated into IDEs to improve usability. A large user study
evaluating such integration would be useful. However, performing
such a study in a meaningful way is a non-trivial effort: one first
needs to engage a number of developers who are familiar with big
projects to-be-used as our case studies, making sure the developers
for each project have comparable skills (for the study and control
groups). Then, integrating CoOREX with the IDE debugger that the
developers are familiar with is necessary. We thus leave conducting
such a study, on projects of considerable size and complexity, for
separate future work.

Additional limitations of COREX are inherited from the limi-
tations of the underlying infrastructure: Soot and ERASE cannot
support Java versions beyond 9 and 8, respectively. Moreover, while
CoREX is not inherently restricted from analyzing executions of
concurrent programs, it relies on ERASE for trace recording and
alignment, which does not support concurrency.

External validity. As in many user studies in software engineering,
our research is inductive in nature and thus might not generalize
beyond our study context. Yet, the study includes a large and diverse
set of participants coming from varied geographical, educational,
and professional backgrounds. This gives us confidence that our
study represents central and significant views.

Another threat to validity concerns the representativeness of the
program subjects. While we had to minimize their size to allow the
study participants to spend substantial time analyzing different code
versions in detail, the subjects were heavily inspired by real faults
from both the popular Defects4] dataset and the LibRench dataset
of large real software systems. Understanding these programs did
not require domain-specific knowledge or advanced programming
skills, making them suitable for evaluating the impact of debugging
tools and code comprehension. We thus believe our subject selection
is representative and suitable for this study.

Similarly, the results of our tool evaluation (Section 6) may be

influenced by the subject selection and may not generalize to other
subjects not included in our study. Again, to mitigate this threat,
we relied on a popular externally created dataset from prior work:
Defects4] and LibRench. We believe that considering 286 case stud-
ies from 14 projects of significant size and complexity makes our
findings reliable.
Internal validity. To ensure the validity and effectiveness of our
user study, we conducted a pilot study and included several valida-
tion questions. These steps were taken to identify potential issues
in the study design, such as question ambiguity, and to refine the
questionnaire. As a related threat, we might have misinterpreted
participants’ answers or ideas they expressed. To mitigate this
threat, we made sure two authors of the paper performed data
analysis independently.

Finally, our evaluation of the tools’ accuracy and alignment with
developers’ expectations relies on the data collected in the study.
A follow-up external evaluation of our results on a set of different
subjects might be beneficial. To encourage such validation and
replication of our results, we have made all experimental data and
the tool implementation publicly available [49].

8 Related Work

The most related to ours are other slicing-based fault localization
techniques and user studies evaluating these techniques. We also
discuss additional fault localization approaches and their user stud-
ies. Finally, we discuss studies on developers’ debugging practices.
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Slicing-based Fault Localization. Following Korel and Laski’s
introduction of dynamic slicing [32], numerous slicing-based fault
localization techniques have been proposed [73, 74]. Most focus
on single-version programs and propose slicing variants, such as
chopping [16], dicing [56], relevant slicing [17], amorphous slic-
ing [18, 19], and memory-address dependence slicing [35], aiming
to minimize the number of statements developers need to inspect.
Dual-version slicing techniques, namely DUALSLICE [48, 50, 52] and
INPRESS [6] are already extensively discussed in this paper, as well
as how our approach differs.

User Studies Investigating Slicing-based Fault Localization.
A number of earlier studies were conducted, albeit with small pro-
grams and a small number of participants [13, 30, 34, 56]. Specifi-
cally, Weiser and Lyle [56] made the first comparison of debugging
with and without slicing, finding no significant improvement. In
early 2001, Francel and Spencer [13] reported improved perfor-
mance with slicing during debugging. Ko and Myers [29] found
that the slicing-based Whyline tool they developed helped develop-
ers locate bugs faster. These studies focused on a single program
version; there remains a lack of research on the usefulness of slicing
in regression scenarios, which our paper addresses.
Non-slicing-based Fault Localization Approaches. Spectrum-
based fault localization (e.g., Tarantula [25] and other related ap-
proaches [1, 39, 61, 62, 67]) uses probabilistic models to rank pro-
gram statements based on test results, identifying suspicious com-
ponents involved in failures. Improvements to the spectrum-based
fault localization methods integrate program analysis techniques,
including program slicing [36, 45, 59], to refine statement rankings.
Yet, these tools still focus on providing a ranked list of program
statements, without identifying the dependencies between them.
Other approaches rely on additional inputs, such as bug reports [58]
or version histories [57], framing fault localization as an informa-
tion retrieval task. Techniques based on delta debugging [69, 71]
isolate failure-inducing changes (faults) by systematically reverting
subsets of changes between the correct version and the faulty ver-
sion of the program to identify the smallest subset of responsible
changes (faults). While all these approaches primarily target local-
ization by identifying suspicious statements, our goal is to build a
comprehensive slice guiding the developer through a step-by-step
inspection of the failure.

Another line of work focuses on explaining the differences be-
tween the two executions, i.e., via trace comparison [20, 22, 24]
and symbolic analysis [41, 42, 66]. As this work does not focus
specifically on the failure-related analysis, our approach is both
orthogonal and complementary: we aim not only to find differ-
ences between executions but also to identify the parts specifically
relevant to the failure.

More recently, several LLM-based fault localization techniques
have been proposed. In a nutshell, they collect relevant information
from the generally-large code base (e.g., Widyasari et al. [60] rely
on spectrum-based fault localization for this purpose) and then
provide this information as input to an LLM, together with an ap-
propriately crafted prompt, to generate fault explanations. These
approaches are mostly orthogonal and complementary to ours. In
fact, prior studies show that developers rely on semantic dependen-
cies between statements when reasoning about code [40]. Instead of
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relying on LLM to “figure out” such semantic dependencies, future
work could explore using COREX output as an alternative input to
an LLM in this setting.

User Studies Investigating Non-slicing-based Fault Localiza-
tion Approaches. Parnin and Orso [40], and subsequent stud-
ies [15, 63, 64], found that simply presenting suspicious statements
without context or dependencies is not enough to aid developers as
they need explanations for the ranking. Similar conclusions were
drawn about the effectiveness of delta debugging [23, 68]. Wang
et al. [51] explored the effectiveness of information retrieval-based
techniques, finding that while more detailed bug reports helped de-
velopers identify faulty files faster, they did not improve the overall
fault localization process.

User Studies Investigating Developers’ Debugging Practices
and Expectations. Gilmore [14] argued that comprehension and
debugging are interconnected and developers engage in simultane-
ous code search, dependency analysis, and information gathering
during debugging [30]. In fact, developers perform systematic anal-
yses to track variable values to explain crashes [9], reflecting slicing
principles. Kochhar et al.[31] surveyed 386 practitioners and found
that practitioners expect a fault localization technique to satisfy
some criteria in terms of debugging data availability, granularity
level, trustworthiness (reliability), scalability, efficiency, ability to
provide rationale, and IDE integration. Recently, Soremekun et
al. [44] found that many developers view lab-based fault localiza-
tion assumptions as unsuitable for real-world debugging. We relied
on these findings and proposed a solution that aligns with the de-
velopers’ mental model and provides the information needed to
understand the code.

9 Conclusion

In this paper, we investigated the usefulness of existing dual-version
slicing-based techniques, namely DUALSLICE and INPRESS, in fo-
cusing developers’ attention on a subset of program statements
relevant to troubleshooting a regression failure. By conducting a
large-scale questionnaire study with 55 participants from eight dif-
ferent countries, we identified the main limitations of the existing
techniques and proposed a new slicing approach, called COREX,
which addresses these limitations. Our quantitative evaluation of
CoREX on more than 280 programs from the Defects4] and Li-
bRench benchmarks shows that its effectiveness in terms of prior-
itization ratio is comparable to those of DUALSLICE and INPRESS.
Yet, it achieves a better alignment with developers’ expectations
by selecting statements deemed relevant by developers. We believe
our work will inspire further research in this area, including future
developer studies, and will help promote the efficient integration
of slicing-based techniques into debugging workflows.
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