
Client-Specific Equivalence Checking
Federico Mora
Univ. of Toronto
Toronto, Canada

fmora@cs.toronto.edu

Yi Li
Univ. of Toronto
Toronto, Canada

liyi@cs.toronto.edu

Julia Rubin
Univ. of British Columbia

Vancouver, Canada
mjulia@ece.ubc.ca

Marsha Chechik
Univ. of Toronto
Toronto, Canada

chechik@cs.toronto.edu

ABSTRACT

Software is often built by integrating components created by differ-
ent teams or even different organizations. With little understanding
of changes in dependent components, it is challenging to maintain
correctness and robustness of the entire system. In this paper, we
investigate the effect of component changes on the behavior of
their clients. We observe that changes in a component are often
irrelevant to a particular client and thus can be adopted without any
delays or negative effects. Following this observation, we formulate
the notion of client-specific equivalence checking (CSE) and develop
an automated technique optimized for checking such equivalence.
We evaluate our technique on a set of benchmarks, including those
from the existing literature on equivalence checking, and show its
applicability and effectiveness.

CCS CONCEPTS

• Software and its engineering → Software evolution; Dy-
namic analysis;

KEYWORDS

Software change, equivalence checking, symbolic execution

ACM Reference Format:

Federico Mora, Yi Li, Julia Rubin, and Marsha Chechik. 2018. Client-Specific
Equivalence Checking. In Proceedings of the 2018 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering (ASE ’18), Septem-
ber 3–7, 2018, Montpellier, France. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3238147.3238178

1 INTRODUCTION

Software systems are often composed of multiple related but in-
dependently developed components. Specifications of such com-
ponents are usually limited to the description of their APIs. Yet,
even upgrades that do not alter APIs can hinder the stability of de-
pendent components [23]. Thus, dealing with component upgrades
becomes a time-consuming task. This paper addresses the problem
by investigating the impact of a change to a component (which we
refer to as a “library”) on its downstream consumers (which we
refer to as “clients”).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09.
https://doi.org/10.1145/3238147.3238178

1 int client1(int x) {

2 if (x > 10)

3 return x;

4 else

5 return lib1(x);

6 }

(a) client1.

1 int client2(int x) {

2 if (x > lib2(x))

3 return x;

4 else

5 return lib2(x);

6 }

(d) client2.

1 int lib1_old(int x) {

2 return x;

3 }

(b) lib1_old.

1 int lib2_old(int x) {

2 return x - 1;

3 }

(e) lib2_old.

1 int lib1_new(int x) {

2 if (x > 10)

3 return 9;

4 else

5 return x;

6 }

(c) lib1_new.

1 int lib2_new(int x) {

2 return x;

3 }

(f) lib2_new.

Figure 1: Two client-library pairs illustrating CSE.

Several existing techniques such as ModDiff [25], RVT [13],
SymDiff [17], and Rêve [8] can be used for validating behavioral
equivalence between two versions of a program or for identifying
the precise set of changes between them. Yet, these equivalence
checking techniques do not exploit the usage pattern of a particular
library component within its client. We argue that the equivalence
checking problem becomes more tractable when the usage pattern
is considered. In particular, reasoning about a library update with
respect to its impact on an (unmodified) client enables us to produce
a highly efficient and accurate analysis.

Our preliminary analysis of 66 real-life clients of four large open-
source libraries showed that, in 71% of the cases, the behavior of the
client component is completely unaffected by a commit to one of its
libraries (see Sec. 2 for more details). To illustrate, Fig. 1 shows two
simplified client-library pairs, namely, client1 which depends on
lib1 (Figs. 1a-c), and client2 which depends on lib2 (Figs. 1d-f). Each
of the libraries has two versions, “old” and “new” For simplicity,
we assume that all variables take arbitrary input values from the
unbounded integer domain, so there are no overflows or underflows.
For both client-library pairs, the changes in the libraries do affect
how the libraries behave, but do not affect the clients’ functional
behaviors. For instance, even though lib1_new returns different
values for inputs lesser than 10 compared to lib1_old, the behavior
of client1 remains exactly the same because of the way it calls the
library. We say that the two versions of the libraries are equivalent
with respect to this client.

441

https://doi.org/10.1145/3238147.3238178
https://doi.org/10.1145/3238147.3238178

ASE ’18, September 3–7, 2018, Montpellier, France Federico Mora, Yi Li, Julia Rubin, and Marsha Chechik

In this paper, we provide a method for the effective checking of
a special case of equivalence problems: whether two library com-
ponents are equivalent with respect to a particular client. We for-
malize the notion of Client-Specific Equivalence (CSE) and provide
implementation for efficiently establishing CSE. More specifically,
this paper contributes: (1) empirical evidence for the prevalence
of library changes that do not affect individual clients and, con-
secutively, for the applicability of our approach in practice; (2) a
generic framework for checking CSE with an effective implemen-
tation based on symbolic execution, Clever; and (3) an empirical
evaluation of Clever versus state-of-the-art equivalence checking
tools. Clever inherits the pitfalls of symbolic execution and the
current implementation is limited to integer data-types.

The rest of the paper is structured as follows. Sec. 2 describes a
preliminary study we conducted to assess the practical relevance
of the CSE problem. Sec. 3 presents the overview of our approach
on simple examples. Sec. 4 fixes notation and provides necessary
background. We formally define our client-specific equivalence
checking framework in Sec. 5. In Sec. 6, we describe our implemen-
tation and evaluate its effectiveness. Related work is discussed in
Sec. 7. Sec. 8 outlines possible future directions and concludes.

2 APPLICABILITY STUDY

In this section, we assess the practical relevance of the CSE problem
via manual analysis of 66 client-library function pairs. We found
these pairs by searching GitHub for popular projects that provide
functionality to other projects (libraries). We then identified sig-
nature preserving commits that modify the semantics of a library
method and checked how these modifications affect the clients.

The library functions come from popular open source projects:
Delorean, OpenSSL, Linux, and GMP. The first three projects have
been “starred” on GitHub over 1,000, 4,000 and 44,000 times re-
spectively, while GMP, which is not hosted on GitHub, has been
under active development for over 25 years. Six of the client-library
function pairs are written in Python, and the remaining 60 – in
C. The automated analysis of the Python examples is discussed in
Sec. 6.4. Here we briefly describe the libraries and clients.1

Delorean.__init__ (Delorean). TheDelorean.__init__ library func-
tion receives two parameters: datetype and timezone and returns
a Delorean object that provides users with the datetime manip-
ulation functionality. The behavior of the constructor is entirely
defined by the type of arguments it receives. That is, all condition-
als branch based on the type of datetime and timezone. There are
two changes of interest for this library (#679596a, #064bc8d). Both
changes, which concern the setting of an instance variable _tzinf o
(timezone info), occur inside a check for timezone and datetime
being None; the latter change occurs inside an additional check for
timezone being of type tzinfo. We found three client functions and
analyzed themwith both library updates. All six pairs are unaffected
by the library updates because they call the Delorean constructor
with values of datetime, or timezone that avoid the change.
BN_is_prime_fasttest_ex (OpenSSL). The library BN_is_prime_-
fasttest_ex receives four parameters: an integer a, an integer flag
do_trial_division, and two structs used for call back procedure and

1Full study details available at https://client-specific-equivalence-checker.github.io/

context that are irrelevant to the change. The function aims to
return 1 if a is prime, and 0 otherwise. do_trial_division specifies
whether the function should attempt to divide a by a constant list
of small primes. The change of interest (#6e64c560) fixes a bug in
which the original function considered small primes as composites
because they are evenly divisible by a prime (themselves). After
the commit, aptly titled “Small primes are primes too”, the function
checks that a candidate composite is not in the list of small primes.
We found 10 unique clients for this library: five of them call BN_-
is_prime_fastest_ex with do_trial_division = 0, avoiding the change.
RSA_check_key (OpenSSL). The RSA_check_key function takes
in a pointer to a RSA key and decides its validity. RSA keys are com-
posed of five integer fields:p,q,n, e , andd . The modification that we
considered (#534e5fa) adds a check that returns 0 (bad key) if any
of these five components are null. We found 27 clients that are un-
affected by this library change. 24 of these clients construct an RSA
key by calling either PEM_read_RSAPrivateKey, EVP_PKEY_get1_-
RSA, or RSA_generate_key and then call RSA_check_key with this
key. According to the documentation, these three helper functions
successfully populate the RSA fields with non-null values or return
null. Additionally there are three clients (#fbf15c7) that attempted
to access the fields before calling RSA_check_key. The change does
not affect these clients because they will cause a segmentation fault
before calling the library in the cases relevant to the change. We
also found five clients that are affected by this change. These clients
receive the RSA key as an input parameter or use an unknown
function to generate it (e.g., parse_pk_file(dudders/crypt_openssl.c),
and then call RSA_check_key.
gcd (Linux). The Linux project’s gcd function calculates the great-
est common denominator of two unsigned integer values using the
standard Euclidean algorithm. The original implementation of this
function was vulnerable to division by zero. To circumvent this
issue, an update (#e968756) was made to check that the smaller
of the two input values is not zero. We found 11 clients for this
library within the Linux project itself. Of these, three are unaffected
by the change. These clients either check that the inputs to gcd
are non-zero directly, or use provably strictly positive values. The
remaining eight clients call the gcd function with values set by
parameters and so may be affected by the change.
mpf_get_d_2exp (GMP). We also considered the function mpf_-
get_d_2exp. For a partial code listing, see Fig. 2. This change affects
the sign of the return when the input is negative. We found seven
unique clients, six of which were unaffected by the change. Three
of these six unaffected clients did not use the returned double, one
always called the library with positive values, and one, shown in
Fig. 3a, changed the sign of the return when necessary. The one
client affected by the change, shown in Fig. 3b, calls a function
that is undefined on negative inputs with the result returned by
mpf_get_d_2exp.
Summary. Table 1 summarizes the results of our analysis, listing
the overall number of clients of each library that we considered
and the number of which have been affected or unaffected by the
corresponding change. For 71% of the cases considered, clients
remain unaffected by the changes to libraries. We thus conclude
that the problem we are trying to address is of practical relevance.

442

https://client-specific-equivalence-checker.github.io/

Client-Specific Equivalence Checking ASE ’18, September 3–7, 2018, Montpellier, France

1 double mpf_get_d_2exp (signed long int *expptr,

2 mpf_srcptr src) {

3 mp_size_t size, abs_size;

4 mp_srcptr ptr;

5 int cnt;

6 + double d;

7

8 size = SIZ(src);

9 if (UNLIKELY (size == 0)) {

10 *expptr = 0;

11 return 0.0;

12 }

13

14 ptr = PTR(src);

15 abs_size = ABS(size);

16 count_leading_zeros(cnt, ptr[abs_size - 1]);

17 cnt -= GMP_NAIL_BITS;

18

19 *expptr = EXP(src) * GMP_NUMB_BITS - cnt;

20

21 - return mpn_get_d(ptr, abs_size, 0,

22 - -(abs_size * GMP_NUMB_BITS - cnt));

23 + d = mpn_get_d(ptr, abs_size, 0,

24 + -(abs_size * GMP_NUMB_BITS - cnt));

25 + return size >= 0 ? d : -d;

26 }

Figure 2: Simplified patch #17323 from the GMP library.

1 double F_mpz_poly_eval_horner_d_2exp(

2 long * exp, F_mpz_poly_t poly, double val) {

3 ...

4 res = mpf_get_d_2exp(exp, output);

5 // work around bug in earlier versions of GMP/MPIR

6 if ((mpf_sgn(output) < 0) && (res >= 0.0))

7 res = -res;

8 ...

9 }

(a) Client function F_mpz_poly_eval_horner_d_2exp from the FLINT

library [9].

1 REAL log_real(REAL x) {

2 double d;

3 double ln_app;

4 signed long int exp;

5

6 d = mpf_get_d_2exp(&exp, x.get_mpf_t());

7 ln_app = (double) exp *log(2.0) + log(d);

8 return ln_app;

9 }

(b) Client function log_real from the MPACK library [19].

Figure 3: An update and two sample clients of thempf_get_-
d_2exp library function.

3 OVERVIEW

In this section, we give an overview of our approach for determining
equivalences of libraries with respect to a particular client. We use
the examples in Fig. 1 to illustrate the approach: these examples
abstract the patterns observed in the applicability study of Sec. 2.

Example 3.1. Fig. 1a shows the source code of a client program;
Figs. 1b and 1c show the two versions of a library on which this
client could depend. The change introduced in the new version
is an if-statement which splits the single program path of the old
version into two: when the input value is greater than 10 and when
it is not. In this example, the behavior of lib1_old and lib1_new is

Table 1: Results of the applicability study.

Project Library Function #Clients #Affected #Unaffected

Delorean Delorean() 3 0 3
Delorean Delorean()[2] 3 0 3

OpenSSL BN_is_prime_fasttest_ex 10 5 5
OpenSSL RSA_check_key 32 5 27
Linux gcd 11 8 3
GMP mpf_get_d_2exp 7 1 6

different for any input x > 10: the old library will return x , and the
new library will always return a constant 9. Yet, the two library
versions are equivalent in the eyes of client1 because the library is
never called with x > 10 (Lines 2-4 in Fig. 1a). Thus, the change
in lib1_new is never exercised. In fact, the two library versions are
conditionally equivalent [15] under the condition x ≤ 10 and both
return x for any given input x . Since lib1 is only called by the client
under such a condition (Line 5 in Fig. 1a), we say that that library
versions are client-specific equivalent w.r.t. client_1.

Example 3.2. Fig. 1d shows another client, client2. Figs. 1e and 1f
show two versions of the library that client calls. The only change to
the old library version is the replacement of “x−1” by “x”. Although
the two library versions are obviously not equivalent, the difference
does not lead to a different client behavior: lib2_old always returns
a value which is smaller than the input x , leading client2 into the
if-branch (Lines 2-3 in Fig. 1d). As the result, the input value x is
returned by the client. The new version of the library, lib2_new,
returns the input itself, leading the execution of client2 into the
else-branch (Lines 4-5 in Fig. 1d); yet, input value x is returned by
client2 in this case as well.

Unlike Example 3.1, here the change in the library is exercised
by the client. Yet the two library versions are still client-specific
equivalent: the change on the library is “digested” by the client so
that the final output is unaffected. The example shown earlier in
Fig. 3a falls into the same category.

Client-Specific Equivalence (CSE). In both examples, changes
in the library programs do not affect the final return values of the
client. We characterize client-specific equivalence in terms of the
client’s observable behaviors: we ignore the internal execution steps
and only observe the input and output values of the client. This
definition of equivalence is also referred to as functional equiva-
lence [20].
Checking CSE.Now, we describe our general framework for deter-
mining client-specific equivalence. Fig. 4 overviews the architecture
of the framework. The framework accepts as input a client and two
versions of a library. We assume that library interfaces remain
unchanged since the change can be easily caught by a compiler.

The framework’s main components are a behavior explorer and
an equivalence verifier. The behavior explorer analyzes behaviors
of the libraries in terms of how they are used, and then it generates
equivalence assertions that must be satisfied for the libraries to
be CSE. The equivalence verifier checks the libraries against the
equivalence assertions and either declares them to be equivalent

443

ASE ’18, September 3–7, 2018, Montpellier, France Federico Mora, Yi Li, Julia Rubin, and Marsha Chechik

Client Lib Lib’Behavior Explorer

Equivalence
Verifier

Equivalence
Assertions

✔

�

Figure 4: Architecture of the client-specific equivalence

checking framework.

or provides a counter-example which demonstrates the behavioral
differences observed in the client.
Incremental Lazy Exploration. Comparing Examples 3.1 and
3.2, we identify two types of CSE: (1) inactive CSE – that holds
when changes are not exercised by the client and (2) active CSE –
that holds when changes are anticipated, exercised, and specially
handled by the client. The biggest distinction being that to show
inactive CSE, one does not need to reason about the semantics of
the libraries: a purely syntactic check on all feasible library paths
suffices to confirm that no change gets exercised. On the other
hand, to claim active CSE, one needs to analyze the input-output
relations of the libraries and their interplay with the client.

With this insight, we propose a CSE checking approach called
incremental lazy exploration which prioritizes establishing proof
arguments for inactive CSE while keeping the number of paths
explored to a minimum. It helps to eliminate the main source of
inefficiency of the generic CSE framework described above: fully
exploring both the client and library programs before generating
equivalence assertions based on the explored behaviors.

We call a path containing a call to the library an active path.
Whenever an active path is explored, we effectively obtain a client
context for the library call – a condition over client inputs under
which the path is taken. With this context, we perform a parallel
exploration of both library versions under the given context by
shadowing [5] one with the other. This is done by simultaneously
examining the same paths in both versions with symbolic execu-
tion [16]. This step produces a set of library path pairs, and for each
pair, two checks are performed: (1) is the path exercising changed
(added and removed) code? (2) does a concrete simulation on the
path pair reveal a counterexample? Both of these checks are rela-
tively cheap: check (2) can immediately reveal a counterexample
for CSE, and if check (1) fails for all client contexts, then we can
also conclude CSE without reasoning about the actual semantics of
the paths explored.

In Example 3.1, we begin by exploring the client and skip the first
path which does not involve library calls (row 1 in Fig. 5a). Then
we explore the second path, shown in row 2, and perform a parallel
exploration on both libraries with the client context ¬(x > 10). The
first rows of Figs. 5b and 5c show the only pair of library paths ex-
plored. We then perform the first check and realize that the change
is not active on this path; therefore, upon finishing the library ex-
ploration, we can conclude that the libraries are equivalent under
the current client context. Since no other client paths remain, we
identify the case of inactive CSE. We evaluate the relative efficiency
of incremental lazy exploration in Sec. 6.

Partition Effect Explored Active
1 x > 10 RET = x Yes No
2 ¬(x > 10) RET = lib1(x) Yes Yes

(a) client1.

Partition Effect Explored Active
1 True RET = x Yes No

(b) lib1_old.

Partition Effect Explored Active
1 ¬(x > 10) RET = x Yes No
2 x > 10 RET = 9 No No

(c) lib1_new.

Figure 5: Paths explored for Example 3.1.

4 BACKGROUND

In this section, we provide the necessary background on program
analysis that will be used in the remainder of the paper.
Programs.We restrict the presentation to a simple imperative pro-
gramming language where all operations are either assignments,
assumptions or function calls, and all variables range over inte-
gers. We assume that the type and number of input and output
parameters are statically known for each function.

A program P = (Fc , {Fl }i) consists of a client and a set of library
functions, such that the client calls the libraries. Each of the func-
tions can be represented as a control flow graph (L, l0, lf ,E,V),
where L is a finite set of program locations, with an initial location
l0 ∈ L and a final location lf ∈ L. The setV denotes a finite set
of variables, and E ⊆ L × Σ × L is the set of control-flow edges,
where Σ is the set of operations instantiated by one of the follow-
ing constructs: (1) an assignment v ← exp, where v ∈ V; (2) an
assumption of the form assume(b), where b is a Boolean expres-
sion over program variablesV; (3) calls to library functions, e.g.,
®x ← F (®y), where ®x and ®y are vectors of variables inV and F is a
function in {Fl }i .

We write l
σ
−→ l ′ instead of (l ,σ , l ′) ∈ E to denote an edge

from l to l ′ introduced by an operation σ ∈ Σ. We assume that all
executions of P terminate, but this assumption does not prevent P
from possibly having an infinite number of paths, such as in the
case where there is a loop whose number of iterations depends on
an unbounded variable.
Function Summaries. Given a program P and a function Fi , the
function summary of Fi is a first-order formula φi over vectors
of variables ®α , ®β such that ®α denotes Fi ’s input parameters and ®β
denotes its outputs. A function summary is complete if it is defined
for all possible inputs. We write P[φi] to denote the program with
every function call ®x ← Fi (®y) replaced by assume(φi [®x/ ®α , ®y/ ®β]). In
other words, P[φi] is like P but with every function call Fi replaced
by its function summary.

For example, the function summary for lib1_new in Fig. 1c is
φl ib1′ = ITE(X > 10, RET = 9, RET = X), where ITE is the if-then-
else operator,X is the input parameter, and RET is the output.φl ib1′
is also complete since it covers both the case when X > 10 and
when X ≤ 10.

444

Client-Specific Equivalence Checking ASE ’18, September 3–7, 2018, Montpellier, France

J·K : (V 7→ Z) 7→ (V 7→ Z)
Jx ← expK(v) = v[x 7→ JexpKv] assignment

Jassume(b)K(v) =
{
v if v |= b
⊥ otherwise assume

J®x ← F (®y)K(v) = Jassume(φF [®x/ ®α , ®y/ ®β])Kv function call

Figure 6: Semantics of operations.

Concrete, Abstract, and Observable Runs.We interpret seman-
tics of program executions using a Labelled Transition System (LTS),
(S, s0, sf , Σ,→) for each control-flow graph, where S = L×(V 7→
Z) is a set of program states, and s0 ∈ S and sf ∈ S are the initial
and final states, respectively. Let v : V 7→ Z be a valuation of the
variables at state s . We write (l ,v)

σ
−→ (l ′,v ′) to represent the tran-

sition from state s to s ′ if l
σ
−→ l ′ and (v,v ′) ∈ JσK (defined in Fig. 6).

A concrete run π = s0
σ0
−−→ · · ·

σk
−−→ sk of an LTS is an execution

path that starts with an initial state. The set of all concrete runs
is written as Π. An abstract run is a set of concrete runs π̂ = {πi }.
Let ω : Π 7→ Π be an observation function which maps a concrete
run π to an observable run ω(π), hiding unobservable states and
operations.

Recall client1 shown in Fig. 1a. With the values of x and RET
written compactly as a tuple, (2, (X ,⊤)) → (3, (X ,X)) is an abstract
run which subsumes all concrete runs going through the if-branch
of client1 (Lines 2 and 3), where ⊤ denotes an uninitialized value.
By hiding the values of x , the observable part of the same runs can
be written as simply (2,⊤) → (3,X).
Symbolic Execution. Symbolic execution [16] uses symbolic values
as input, instead of the actual data, and represents the values of
program variables as symbolic expressions. As a result, output
values computed by the program are also represented as symbolic
expressions. The state of a symbolically-executed program includes
the symbolic values of program variables, a path condition and a
program location. The path condition is a boolean formula over
the symbolic inputs corresponding to the accumulated constraints
along the path which are satisfiable if and only if the associated
path is feasible. A symbolic path corresponds to an abstract run
of the program, which can be instantiated to a concrete run by
computing a satisfying model of the path condition.

5 OUR APPROACH

In this section, we first formalize our client-specific equivalence
checking framework and then report on a specific instantiation
which leverages common patterns observed in inactive CSE cases
to speed up the checking process.

5.1 The CSE Checking Problem

Problem Definition. Let Fc be a client procedure, and let Fl and
F ′l be two versions of a library procedure such that they share
the same signature and can be called interchangeably from Fc . Let
ω be an observation function which maps a concrete run to an
observable run only considering the input and output values of the

client. Behav(F) denotes the set of all (concrete) runs of a procedure
F .

Definition 5.1 (Client-Specific Equivalence). We say Fl and F ′l are
client-specific equivalent w.r.t. Fc and ω, denoted by Fl ≡(Fc ,ω) F

′
l ,

if and only if {ω(π) | π ∈ Behav(Fc [Fl])} and {ω(π ′) | π ′ ∈
Behav(Fc [F

′
l])} are equal.

Client-specific equivalence of two library versions is defined in
terms of the observable behaviors of the client. Two concrete paths
π and π ′ are equivalent if they follow the exact same sequence of
state transitions. Two procedures F and F ′ are considered equiv-
alent when their sets of concrete runs are equal. We say that the
observable behaviors of F and F ′ are equivalent if they both have
the same set of observable runs defined by ω. Finally, two libraries
Fl and F ′l are client-specific equivalent when the observable behav-
iors of the composed programs, Fc [Fl] and Fc [F

′
l], are equivalent.

5.2 Checking Functional CSE

In most cases, there are infinite number of concrete runs and thus
checking client-specific equivalence by enumerating all runs of a
client (composed with both libraries) and explicitly comparing them
against each other is often infeasible. We show that it is possible
to reduce the CSE checking problem to the validity of first-order
formulas. We begin by describing a general algorithmic framework
– Clever,2 for checking functional CSE using symbolic execution.
The inputs to the algorithm are a client, Fc , and two related libraries
sharing the same interface, Fl and Fl ’.
Behavior Exploration. First, Clever explores behaviors of the
client through symbolic execution without considering the bod-
ies of the libraries. It does so via standard path exploration while
replacing each library call with an uninterpreted function place-
holder. Focusing only on the client program reduces the number
of paths and allows for modular checking of libraries. The abstract
runs returned from symbolic executing the procedure can be repre-
sented as a set of partition-effect pairs [20], namely, (pci ,obi), where
pci represents a path constraint and obi stands for an observable
effect constraint for a particular path π̂i . The path constraint is a
conjunction of relational expressions defined over constants and
input variables. The effect constraint is a conjunction of expressions
which equate a special return variable “RET” to expressions over
constants and input variables. Representing effects as symbolic
expressions over input variables allows us to reason about multiple
concrete runs together.

The set of abstract runs returned from exploring a procedure is
its summary. Summaries can be incomplete due to the limitations in
symbolic execution. For example, with the presence of unbounded
loops, it is only possible to get paths of limited length.
Equivalence Assertion Generation. Let the summaries for two
library versions produced in the previous step be Behav(Fc [Fl])
and Behav(Fc [F ′l]). Clever uses them to generate an equivalence
assertion ϕ – a first-order formula with uninterpreted functions as
placeholders for the libraries. The formula ϕ serves as a mutual
specification [18] for the two libraries – the observable behaviors
of the client are equivalent if and only if the library bodies respect

2Clever stands for CLient-specific EquiValence checkER.

445

ASE ’18, September 3–7, 2018, Montpellier, France Federico Mora, Yi Li, Julia Rubin, and Marsha Chechik

the equivalence assertion. Following the notion of logical method
summary [11], the observable behaviors of the client in this case
can be encoded as a disjunction over all symbolic paths, and the
resulting equivalence assertion is

ϕ :=
(∨
π̂i ∈Behav(Fc [Fl])

(pci ∧ obi) ⇔
∨

π̂ ′i ∈Behav(Fc [F ′l])
(pc′i ∧ ob

′
i)
)
,

where pci and obi are path and effect constraints of π̂i , respectively.
Equivalence Verification. Finally, ϕ is verified against the library
implementations Fl and F ′l . The verification task can be delegated
to a theorem prover based on the procedure summaries of the
libraries. We first generate procedure summaries for both library
versions. The summaries for Fl and F ′l are then used to constrain the
uninterpreted function placeholders in the equivalence assertion
ϕ. Finally, we check the validity of ϕ composed with the library
summaries. If a violation is found, we report a counterexample;
otherwise, if the generated summaries are complete, we proved
functional CSE.

Proposition 5.2. Given complete summaries of Fc , Fl and F ′l , the
equivalence assertion is valid if and only if Fl and F ′l are client-specific
equivalent w.r.t. Fc .

Proof Sketch. Since all summaries are complete, any concrete run of
the client is a model of the path constraints. From Def. 5.1, Fl and
F ′l are CSE since the equality between concrete runs is established
by the logical equivalence between composed summaries.

5.3 Incremental Lazy Exploration

It may not always be possible to compute complete summaries
of client and libraries due to limitations of symbolic execution
techniques. We now present an optimized behavior exploration
strategy, incremental lazy exploration, which prioritizes establishing
proof arguments for inactive CSE (see Sec. 3) and disproving CSE
through early discovery of counterexamples. This allows us to speed
up the CSE checking process and obtain partial results even if the
path exploration of some functions is not exhaustive.

A pseudo-code implementation of Cleverwith incremental lazy
exploration is given in Fig. 7 and the workflow for this technique –
in Fig. 8. The inputs to the algorithm, as before, are a client, Fc , and
two related libraries sharing the same interface, Fl and Fl ’. This
time, however, we are only interested in exploring and reasoning
about active paths. We call a summary consisting of only active
paths an active summary.

The while loop on Line 3 drives the lazy exploration: its body
is executed until the client is fully explored. Each iteration takes
a partition-effect pair, p, from the client’s summary and processes
the libraries modulo p, resulting in Behavp (Fl) and Behavp (F ′l),
respectively. If these summaries exercise the difference in the library
versions, checked on Line 6, then Clever does two things. First,
it finds a concrete value that satisfies p and checks whether it is a
counterexample. If affirmative, Clever reports that Fl and Fl ’ are
not client-specific equivalent. Second, Clever updates the active
summaries. If no active paths have been found after the client
has been fully explored, Clever reports equivalence. Otherwise,
Clever uses the active summaries to generate an assertion (Line 14),
and then check it (Line 15).

Require: Fc calls Fl and F ′l interchangebly
Ensure: If Fl ≡Fc F ′l then returns true, else returns false
1: procedure Clever(Fc , Fl , F ′l)
2: A← Initial ▷ Initialize active summaries of Fc , Fl , Fl ’
3: while p ∈ Explore(Fc [fl (®x)]) do
4: Behavp (Fl) ← Explore(Fl (®x) | ®x |= p)
5: Behavp (F

′
l) ← Explore(F ′l (®x) | ®x |= p) ▷ Summaries mod p

6: if p uses change then
7: if concrete value for p is a counterexample then
8: return false
9: end if

10: A.update(p,Behavp (Fl),Behavp (F ′l))
11: end if

12: end while

13: if Empty(A) then return true
14: ϕ ← AssertGen(A)
15: if Verify(ϕ, Fl , F ′l) then return true
16: else return false
17: end procedure

Figure 7: Algorithm for checking CSE based on symbolic ex-

ecution and lazy path exploration.

Context-Specific
Parallel
Library

Exploration

Is change
active?

Is concrete
CEX?

Yes

Client
Incremental

Client Exploration
Client

Context Lib

Lib’

CEX

No

Yes
NoActive Paths

(1)

(2)

Empty

Non-empty

Inactive
CSE

✔

VERIFY

Figure 8: Clever workflow with incremental lazy explo-

ration.

Proposition 5.3. Let complete active summary mean the max-
imal active subset of a complete summary. Given complete active
summaries of Fc , Fl and F ′l , the equivalence assertion is valid if and
only if Fl and F ′l are client-specific equivalent w.r.t. Fc .

Proof Sketch. Suppose the equivalence assertion defined over com-
plete active summaries is valid and the libraries are not client-
specific equivalent. By Proposition 5.2, the validity of the equiva-
lence assertion implies that the observable part of the active paths
are equal. Hence, there must exist an inactive path which cannot
be matched. This contradicts the fact that inactive path does not go
through any change and therefore stays the same in both versions.
The other direction is similar.

Finally, if we fail to discover counterexamples or fully explore
all client paths with limited resources, we are still able to partially
prove or disprove equivalence for the considered client contexts. A
different equivalence checking technique can be used in this case
to decide equivalence of the remaining explored contexts.
Clever Example.We now illustrate Clever using Example 3.2
from Fig. 1. In Example 3.2, the change is always active so we have
to go through both client contexts (Rows 1-2 in Fig. 9a). When
comparing active library paths which exercise changes, we oppor-
tunistically perform concrete simulation where a concrete input

446

Client-Specific Equivalence Checking ASE ’18, September 3–7, 2018, Montpellier, France

Partition Effect Explored Active
1 x > lib2(x) RET = x Yes Yes
2 ¬(x > lib2(x)) RET = lib2(x) Yes Yes

(a) client2.

Partition Effect Explored Active
1 True RET = x Yes No

(b) lib2_old.

Partition Effect Explored Active
1 ¬(x > 10) RET = x Yes No
2 x > 10 RET = 9 No No

(c) lib2_new.

Figure 9: Paths explored for Example 3.2.

satisfying the current client context is used to replay on the paths
from both library versions. In this example, we might use x := 0 as
a concrete input which turns out not to be a real counterexample.
After failing to quickly find a counterexample, we store the active
path for later use and return to search for a new path in the client.
In the case of client2, the next path that we find is shown in Row
2 of Fig. 9a. Having completed the exploration of the client, we
generate an equivalence assertion involving only the active paths
collected so far and try to prove its validity. This succeeds and thus
the case for active CSE is identified for client2.

6 EVALUATION

In this section, we describe our implementation of Clever, report
on an empirical evaluation, and present a case-study. We aim to
answer the following research questions: RQ1: how effective is
Clever compared to the state-of-the-art equivalence checking tech-
niques for checking CSE? RQ2: how significant is the impact of
incremental lazy exploration on effectiveness of Clever? RQ3: can
Clever be effectively applied to real software projects?

6.1 Implementation

Our implementation3 of Clever is built on top of PyExZ3 [2],
a symbolic execution engine for Python written in Python, and
PySMT [10], a Python interface to SMT solvers. As a consequence of
this combination, our tool is currently limited to integer reasoning.
The four key components of our software are summary generation,
support for uninterpreted functions, exploration modulo calling
context, and parallel exploration.

Summary generation is crucial to Clever’s equivalence assertion
generation. This feature symbolically executes programs returning
a set of partition-effect pairs, one for each explored symbolic path.
Support for uninterpreted functions enables the top-down genera-
tion of summaries by allowing client exploration irrespective of a
particular version of its library.

WhenClever encounters a call to a library, it uses the arguments
and current path condition as a context when exploring the two ver-
sions of the library. Our exploration modulo calling context feature
collects and subsequently uses this client context. Finally, the par-
allel exploration feature allows Clever to explore both versions of
the library while monitoring equivalence and discovering potential
3Code is available at https://client-specific-equivalence-checker.github.io/

counterexamples early. The feature is based on shadow symbolic
execution [5] but incorporates summary generation directly.

Finally, we implemented a driver which connects the above fea-
tures, logs execution information, and provides an interface for
running experiments. Our implementation changed 26 files in the
PyExZ3 project, modifying approximately 1,000 lines of code.

PyExZ3 was not the only choice of symbolic execution engine,
but its focus on extensibility and its combination of existing fea-
tures made it a natural choice. We also considered KLEE [4] which
can process C programs and implements shadow symbolic execu-
tion [5]. However, KLEE does not support uninterpreted functions
or summary generation and was not as amenable to the necessary
modifications as PyExZ3.

6.2 Comparison with Existing Tools

In this section, we report the results of comparing Clever with
well-established equivalence checking tools.
Existing Tools.We compared Clever, with four state-of-the-art
tools in equivalence checking and regression verification: RVT [13],
SymDiff [17], ModDiff [25], and Rêve [8]. All of these tools can
be used to prove partial equivalence of two related programs, i.e.,
producing the same outputs for all possible inputs given that both
programs terminate. Therefore, technically, they can also be used
to check functional CSE by considering the client-library pair as
a whole. However, since they are not designed for checking CSE
specifically, they would not be able to leverage the fact that the
clients are unmodified and the particular usage patterns observed
in the clients. A more detailed discussion of these approaches is
found in Sec. 7.
Subjects and Methods. We evaluated all tools on 60 benchmarks,
with each benchmark consisting of a pair of programs before and
after some changes in the library. We used 23 benchmarks from the
ModDiff suite [25] (in C). We excluded six ModDiff benchmarks
that do not perform updates to libraries. Some of the ModDiff
benchmarks are indexed, e.g. loopmult5 is related to loopmult10. We
augmented the suite with 16 additional benchmarks that continue
these indexed patterns. 21 benchmarks are examples extracted from
programs that we inspected during the applicability study (in C
or Python) and examples we constructed ourselves (in Python). In
total, 29 pairs were equivalent and 21 – inequivalent.

To run the different tools on the benchmark, we translated all of
the programs to C (required by RVT, ModDiff, Rêve), and Python
(required by Clever) manually; and to Boogie [3] (required by
SymDiff) with SMACK [22].

We performed the experiments on an Intel Core i7 4.00 GHz CPU
with 16 GB of memory running Windows 10 with Cygwin. For each
benchmark, we set a timeout of 300 seconds.
Results. Table 2 shows the results of comparing Clever with the
other four state-of-the-art equivalence checking tools. The exe-
cution times are measured in seconds and the winner for each
benchmark is in boldface. Clever solves the biggest number of
benchmarks and outperforms all of the other tools in the majority
of the cases. For Rêve, many instances that time out on our machine,
using the desktop distribution, terminate in seconds when run using

447

https://client-specific-equivalence-checker.github.io/

ASE ’18, September 3–7, 2018, Montpellier, France Federico Mora, Yi Li, Julia Rubin, and Marsha Chechik

Table 2: Run-time in seconds of Clever, ModDiff, Rêve,

RVT, and SymDiff, where “–” indicates that the tool either

times out or reports inconclusive results and “×” indicates

an error.

Benchmarks Clever ModDiff Rêve RVT SymDiff

Eq
ui
va
le
nt

divide 0.089 × – 5.870 –
factorial 0.295 – – – –
fib 0.268 × – – –
get_sign2 0.068 0.032 – – –
is_prime1 0.056 2.980 – – –
is_prime3 1.289 7.910 – – –
ltfive 0.108 0.792 – – –
multiple 0.077 0.070 – – –
order 0.035 0.122 – 5.000 –
pos2 – – – – ×

pos3 0.085 – – – –
oneN2 0.107 0.048 – – –
oneBound 0.089 0.008 – 4.800 –
add 0.063 0.010 < 1 4.257 8.480
const 0.062 0.024 < 1 4.118 8.760
loopunreach2 0.061 0.051 < 1 – –
loopunreach5 0.104 0.068 < 1 – –
loopunreach10 0.104 0.067 < 1 – –
loopunreach15 0.110 0.068 < 1 – –
loopunreach20 0.105 0.067 < 1 – –
unchloop 0.065 0.141 < 1 – –

N
on

-E
qu

iv
al
en
t

divide2 0.100 × < 5
factorial 0.081 0.089 –
fib 0.216 – –
get_sign 0.066 0.047 < 5
is_prime2 0.116 9.790 < 5
loopunreach2 0.062 0.117 < 1
loopunreach5 0.078 0.154 < 1
loopunreach10 0.078 0.156 < 1
loopunreach15 0.079 0.156 < 1
loopunreach20 0.075 0.143 < 1
odd – – –
pos – – –
oneN1 0.075 × < 5

the online version of the tool. To optimally capture Rêve’s capabili-
ties, we report categorical results collected from running the online
version: termination in < 1, and < 5 seconds, and non-termination
in over 300 seconds or returning unknown (–).

Since RVT and SymDiff are not designed for disproving equiva-
lence, we did not include them in the comparison for non-equivalent
cases. Similar to the experiment results reported in [25], RVT and
SymDiff only solved four and two benchmarks, respectively. SymD-
iff crashed with an unhandled exception for pos2 while ModDiff
reported an incorrect result for divide, fib, divide2, and oneN1 (all
marked by “×”). Rêve performs well on non-equivalent cases and
struggles on proving equivalence for benchmarks which require
non-trivial relational invariants, e.g., divide, factorial, ltfive, etc.
There are also a few cases, including pos2, odd, and pos, that no tool
could solve within the given time limit. The reason was that they
all have an unbounded loop with a non-trivial loop condition.

0 10 20 30 40 50

0

50

100

150

Paths

T
im

e
(s

)

Clever
ModDiff

Figure 10:Clever andModDiff execution times versus num-

ber of paths over fifteen client-specific equivalent problem

instances.

Looking at the equivalent cases, Clever performed significantly
better than the rest of the tools on divide, is_prime1, pos3, loopmult15
and loopmult20, which demonstrate the benefits of early detection
of inactive CSE. A common trait of these benchmarks is that the
analysis of a long-running loop in the library could be avoided if
the top-down analysis considered the specific range of input values
coming from the client. For instance, both of the library functions
in the loopmult examples both compute the product of two input
parameters, but in slightly different ways. In oder to prove that
they are equivalent, a bottom-up analysis of RVT and SymDiff
would need to establish a non-linear relational invariant between
the library functions, namely, (RET == x ×y) ∧ (RET ′ == y′ × x ′),
where x , y, x ′, and y′ are the input parameters. Yet Clever only
needs to consider the few cases defined by the particular inputs
provided by the clients.

For the non-equivalent cases, Clever was almost always the
best among the four. This shows the advantages of the parallel
exploration feature which disproves equivalence by discovering
counterexamples early on.

Overall, Clever and ModDiff were comparable in most of the
cases, and the differences in their run-times were often under a
second. In all of the cases where this difference was larger, the
performance of Clever was superior. This benefit is illustrated in
Fig. 10 which plots the execution times of Clever and ModDiff on
the set of equivalent loopmult instances. The first five instances,
loopmult{2,5,10,15,20}, were directly taken from the ModDiff suite.
We extended the pattern to analyze the growth of the execution
times. Fig. 10 shows results consistent with Table 2. When the in-
stance in question is simple (as measured in the number of paths),
the two tools perform similarly. As the difficulty increases, Mod-
Diff’s execution time goes up significantly while Clever’s grows
linearly. The non-equivalent loopmult instances show a similar
but more pronounced difference. This is because Clever is able to
ignore most library paths due to the client usage of the library.

Answer to RQ1: Yes, the comparison results suggest that our
technique is effective and efficient on deciding client-specific
equivalence, compared with the state-of-the-art.

448

Client-Specific Equivalence Checking ASE ’18, September 3–7, 2018, Montpellier, France

10−2 10−1 100 101 102
10−2

10−1

100

101

102

Time (s) by Clever-N

T
im

e
(s
)
ta
ke
n
b
y
C
l
e
v
e
r

100 101 102

100

101

102

#Path by Clever-N

#
P
at
h
b
y
C
l
e
v
e
r

Time
#Paths

Figure 11: Comparison of time andnumber of paths between

Clever-N and Clever.

6.3 Effect of Incremental Lazy Exploration

To evaluate the effect of incremental lazy exploration, we created a
version of our tool without this feature, named Clever-N, and com-
pared it to Clever on the set of benchmarks described in Sec. 6.2.

Fig. 11 shows the results over two metrics: the total number of
paths explored, and execution times. The axes are logarithmically
scaled. Each (blue) circle shows the comparison of the two tools in
terms of the number of paths explored for a particular benchmark
– the top and right axes represent the results by Clever-N and
Clever, respectively. There are more circles below the diagonal
line because Clever is often able to ignore paths in the libraries
when proving equivalence and paths in the client when finding
a counterexample. There are some circles above the diagonal line
because two different calling contexts can lead to the exploration of
the same library path, and because Clever does not avoid exploring
the same path multiple times (at the time of writing).

Similarly, each (red) cross shows the comparison of Clever-
N and Clever in terms of their execution time. The bottom and
left axes represent the running time of Clever-N and Clever,
respectively. Again, the crosses tend to be below the diagonal, sug-
gesting that Clever outperforms Clever-N in most of the cases.
The crosses lying on the right axis represent benchmarks where
Clever succeeded and Clever-N was unable to terminate. These
include most of the loopMult examples coming from the ModDiff
benchmarks. Exploiting the specific client contexts, Clever avoids
exploring the exponential number of paths for the while loops in
the libraries and thus saves the execution time.

Answer to RQ2: Incremental lazy exploration has a positive
and pronounced impact on the effectiveness of Clever both
in terms of running time and the number of paths explored.

6.4 Case Study

In Sec. 2, we described six Python client-library function pairs. In
this section, we report on the experience applying Clever to these
pairs, aiming to answer RQ3.

1 + SECOND = 1

2 + MINUTE = 2

3 def truncate(self, s):

4 - if s == ‘second’:

5 + if s == SECOND:

6 self._dt = self._dt.replace(microsecond=0)

7 - elif s == ‘minute’:

8 + elif s == MINUTE:

9 ...

Figure 12: Example string to integer transformation for De-
lorean.truncate.

Preparation. To prepare the examples as a valid input to Clever,
we (Step 1) made the necessary simplifications to external func-
tions; (Step 2) transformed string operations to integer operations;
and (Step 3) wrapped the client function with an entry point for
symbolic execution. We describe these in turn below.

Step 1. To illustrate the required simplifications to external func-
tions, consider the Python datetime function now(). It is intended
to return the time at invocation, but to avoid spurious counterex-
amples to client-specific equivalence, we simplified it to return a
fixed time.

Step 2. We illustrate a transformation from string operations
to integer operations in Fig. 12. This figure shows a snippet of a
Delorean method that reasons by cases on a single argument, and
the corresponding transformation. Because the original reasoning
is limited to checking equality against constant string values, we
transform the function to check integer constants, ensuring that the
mapping from string to integer constants is a bijection, the empty
string is mapped to 0, inputs are transformed accordingly, and the
changes are propagated to all dependent code.

Step 3.Wewrap client functions with an entry point for symbolic
execution so that all arguments and function returns are integers.
The wrapping function constructs the necessary objects to pass
into the client function, and then deconstructs the output.
Results. Since all six client-library method pairs are client-specific
equivalent (see Sec. 2), we added 10 modified examples intended to
break the equivalence. Clever correctly classified all 16 examples,
with an average execution time of 1.517 seconds.4

Answer to RQ3: Yes, our approach can be effectively applied
to real software projects. However, our current implementa-
tion requires some manual program preprocessing.

6.5 Threats to Validity

The applicability study in Sec. 2 relies on manual determination
of ground truth. To ensure internal validity, we had two authors
independently classify each client-library function pair, and a third
author settle conflicting cases.

We maintained three versions of the benchmarks used in Sec. 6.2
(Python, C, Boogie). To enable cross-language comparisons between
the tools, we limited the examples to subsets of the languages that
can be trivially translated: control flow, integer operations, and no

4All examples are available at https://client-specific-equivalence-checker.github.io/

449

https://client-specific-equivalence-checker.github.io/

ASE ’18, September 3–7, 2018, Montpellier, France Federico Mora, Yi Li, Julia Rubin, and Marsha Chechik

heap manipulations. Furthermore, since all the tools assume un-
bounded integers, C’s int data type corresponds directly to Python’s
for our comparisons. The conversion between C and Boogie was
done automatically, using SMACK [22].

Our encouraging results presented in the applicability study in
Sec. 2, in the comparisons in Sec. 6.2, and in the case-study in Sec. 2
may not generalize to all software projects. Yet we believe that our
selection process of the sample populations used in these sections
resulted in software representative of current best practice.

7 RELATEDWORK

Clever relates to several techniques reviewed below.
Program Equivalence Checking. Differential symbolic execution
(DSE) by Person et al. [20] is the closest work to ours. DSE performs
standard symbolic execution on both program versions, before and
after the change, and either reports that the two versions are equiv-
alent or characterizes the behavioral differences by identifying the
sets of inputs that cause different effects. It also introduced several
notions of behavioral equivalence, including partition-effect and
functional equivalence. However, these notions are defined over a
whole program, without separation between clients and libraries.
SymDiff [17] also checks for partial equivalence between pairs of
procedures in a program, and its notion of mutual summary [14]
can also be used to encode client-specific equivalence. For exam-
ple, SymDiff implements differential assertion checking (DAC) [18],
which defines program equivalence in terms of user-provided asser-
tions. Given two program versions P and P ′ and a set of assertions
s.t. all of them hold in P , DAC checks whether these assertions still
hold in P ′. Unlike DSE, behavioral preservation does not have to be
guaranteed across versions, and only a weaker form of equivalence
with respect to the assertions is checked. In principle, CSE can
be phrased as DAC by asserting that the input-output relations of
the client stay the same even when the library changes. However,
SymDiff can only prove equivalences, and not disprove them [25].
In addition, as shown by our experiments (see Sec. 6.2), SymDiff of-
ten fails to automatically infer mutual summaries which are strong
enough to conclude functional equivalence.

Regression verification [8, 13] aims to formally prove that two
programs are functionally equivalent. RVT [13] proves partial equiv-
alence of two related programs, i.e., that they produce same outputs
for all inputs given that both of them terminate, according to a set
of proof rules. Recursive calls are first abstracted as uninterpreted
functions, and then the proof rules for non-recursive functions
are discharged in a bottom-up fashion, which makes it difficult to
exploit specific calling contexts for specific clients. Rêve [8] targets
programs with complex arithmetic and control flows, and automat-
ically proves equivalence when “simple” coupling predicates over
linear arithmetic exist for the two programs. Trostanetski et al. [25]
recently proposed a modular demand-driven approach, ModDiff,
to improve the precision and scalability of such analysis. When
considering the client and library as a whole, CSE also falls into
the regression verification framework. However, our problem is
more specific in the sense that the change is restricted to the li-
brary part while the client is kept unchanged. In addition, there are
no circular dependencies from the libraries to the client, allowing
us to optimize equivalence checking by exploring the programs

top-down while significantly limiting the behaviors that need to be
considered.
Incremental Program Analysis. The work on incremental ver-
ification [6, 7, 24] aims to reuse results from prior verification as
programs evolve, assuming that properties (of the client) to be veri-
fied are given. For example, Sery et al. [24] uses a compositional
approach, implemented in a tool named eVolCheck, to summarize
the properties of each procedure and then check whether these
properties hold for the updated version of the program. Chaki et
al. [6] uses state machine abstractions to analyze whether every
behavior that should be preserved is still available (containment),
and whether added behaviors conform to their respectful properties
(compatibility). Fedyukovich et al. [7] offer an incremental verifica-
tion technique for checking equivalence w.r.t. program properties.
The primary focus of all these works is reusing prior verification
results as programs evolve while our work focuses on establishing
equivalence w.r.t. a particular client. Furthermore, our work does
not require specifications.
Symbolic Execution. Apart from DSE [20], there are a number
of other symbolic execution-based approaches which are related
to our work. Directed incremental Symbolic Execution (DiSE) [21]
builds on DSE by adding static impact analysis for finding possible
locations where the execution may vary. The insight of DiSE is to
leverage the information extracted from the cheaper change impact
analysis to enable more efficient symbolic execution of programs
as they evolve. This is similar to our optimizations of collecting
active paths which exercise changes, making subsequent analysis
focused only on potentially changed behaviors.

Godefroid et al. introduced demand-driven compositional sym-
bolic execution [1, 12], the key novelty being compositionality: the
search process is made compositional, and, consequently, exponen-
tially faster than the non-compositional one [11]. Although these
approaches do not address the problem of equivalence checking,
our context-specific library exploration is inspired by them.

8 CONCLUSION AND FUTUREWORK

In this paper, we defined the notion of Client-Specific Equivalence
(CSE) and presented an algorithm called Clever, which leverages
heuristics tailored for checking CSE. We implemented a prototype
for Clever and compared it with four state-of-the-art equivalence
checking tools on a set of non-trivial benchmarks.We also evaluated
our approach on a real-world case study, confirming its applicability
and efficiency.

As future work, we intend to apply Clever to more diverse sys-
tems, extending it to support other programming languages and
language constructs such as heap manipulations. We also intend to
add support for floating point numbers, strings, and objects com-
posed of these primitives. Beyond that, we are interested in explor-
ing other definitions of equivalence, such as path equivalence and
partition-effect equivalence [20], which give stronger guarantees but
might be more expensive to check. Finally, proposing desirable fixes
for the identified client-specific inequivalence is another fruitful
direction.

450

Client-Specific Equivalence Checking ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES

[1] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-Driven
Compositional Symbolic Execution. In Proc. of TACAS’08 (LNCS), Vol. 4963.
Springer, 367–381.

[2] Tom Ball and Jakub Daniel. 2015. Deconstructing Dynamic Symbolic Execution.
In Proc. of the 2014 Marktober Summer School on Dependable Software Systems
Engineering. IOS Press.

[3] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M.
Leino. 2006. Boogie: A Modular Reusable Verifier for Object-Oriented Programs.
In Proc. of FMCO’05, Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem-Paul de Roever (Eds.). Springer Berlin Heidelberg, 364–387.

[4] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tesets for Complex Systems Programs.
In Proc. of OSDI’08.

[5] Cristian Cadar and Hristina Palikareva. 2014. Shadow Symbolic Execution for
Better Testing of Evolving Software. In Proc. of ICSE NIER’14. 432–435.

[6] Sagar Chaki, Edmund Clarke, Natasha Sharygina, and Nishant Sinha. 2008. Veri-
fication of Evolving Software via Component Substitutability Analysis. Formal
Methods in System Design 32, 3 (2008), 235–266.

[7] Grigory Fedyukovich, Arie Gurfinkel, and Natasha Sharygina. 2016. Property-
Directed Equivalence via Abstract Simulation. In Proc. of CAV’16. Springer, 433–
453.

[8] Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer, and Mattias
Ulbrich. 2014. Automating Regression Verification. In Proc. of ASE’14. ACM,
349–360.

[9] Flint 2017. FLINT: Fast Library for Number Theory. http://www.flintlib.org.
[10] Marco Gario and Andrea Micheli. 2015. pySMT: a Solver-Agnostic Library for

Fast Prototyping of SMT-Based Algorithms. In SMT Workshop.
[11] Patrice Godefroid. 2007. Compositional Dynamic Test Generation. In Proc. of

POPL’07. ACM, 47–54.
[12] Patrice Godefroid, Shuvendu K. Lahiri, and Cindy Rubio-González. 2011. Stati-

cally Validating Must Summaries for Incremental Compositional Dynamic Test
Generation. In Proc. of SAS’11. Springer-Verlag, 112–128.

[13] Benny Godlin and Ofer Strichman. 2013. Regression Verification: Proving the
Equivalence of Similar Programs. J. Software Testing, Verification and Reliability
23, 3 (2013), 241–258.

[14] Chris Hawblitzel, Ming Kawaguchi, Shuvendu K. Lahiri, and Henrique Rebêlo.
2013. Towards Modularly Comparing Programs Using Automated Theorem
Provers. In Proc. of CADE’13. Springer-Verlag, 282–299.

[15] Ming Kawaguchi, Shuvendu Lahiri, and Henrique Rebelo. 2010. Conditional
Equivalence. Technical Report. Microsoft Research.

[16] James C. King. 1976. Symbolic Execution and Program Testing. Comm. of the
ACM 19, 7 (1976), 385–394.

[17] Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo.
2012. SYMDIFF: A Language-agnostic Semantic Diff Tool for Imperative Programs.
In Proc. of CAV’12. Springer-Verlag, 712–717.

[18] Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and Chris Hawblitzel.
2013. Differential Assertion Checking. In Proc. of ESEC/FSE’13.

[19] MPACK 2017. The MPACK: Multiple Precision Arithmetic BLAS (MBLAS) and
LAPACK (MLAPACK). http://mplapack.sourceforge.net.

[20] Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S. Pǎsǎreanu.
2008. Differential Symbolic Execution. In Proc. of SIGSOFT FSE’08.

[21] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. 2011. Directed
Incremental Symbolic Execution. In Proc. of PLDI’11. ACM, 504–515.

[22] Zvonimir Rakamarić and Michael Emmi. 2014. SMACK: Decoupling Source
Language Details from Verifier Implementations: Decoupling Source Language
Details from Verifier Implementations. In Proc. of CAV’14, Vol. 8559. Springer,
106–113.

[23] Julia Rubin and Martin Rinard. 2016. The Challenges of Staying Together While
Moving Fast: An Exploratory Study. In Proc. of ICSE’16. 982–993.

[24] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. 2012. Incremental
Upgrade Checking by Means of Interpolation-Based Function Summaries. In Proc.
of FMCAD’12. IEEE, 114–121.

[25] Anna Trostanetski, Orna Grumberg, and Daniel Kroening. 2017. Modular
Demand-Driven Analysis of Semantic Difference for Program Versions. In Proc.
of SAS’17. Springer, 405–427.

451

http://www.flintlib.org
http://mplapack.sourceforge.net

	Abstract
	1 Introduction
	2 Applicability Study
	3 Overview
	4 Background
	5 Our Approach
	5.1 The CSE Checking Problem
	5.2 Checking Functional CSE
	5.3 Incremental Lazy Exploration

	6 Evaluation
	6.1 Implementation
	6.2 Comparison with Existing Tools
	6.3 Effect of Incremental Lazy Exploration
	6.4 Case Study
	6.5 Threats to Validity

	7 Related Work
	8 Conclusion and Future Work
	References

