
Analyzing the Analyzers: FlowDroid/IccTA, AmanDroid, and
DroidSafe

Lina Qiu
University of British Columbia,

Vancouver, Canada
lqiu@ece.ubc.ca

Yingying Wang
University of British Columbia,

Vancouver, Canada
wyingying@ece.ubc.ca

Julia Rubin
University of British Columbia,

Vancouver, Canada
mjulia@ece.ubc.ca

ABSTRACT

Numerous static analysis techniques have recently been proposed
for identifying information flows in mobile applications. These
techniques are compared to each other, usually on a set of syn-
tactic benchmarks. Yet, configurations used for such comparisons
are rarely described. Our experience shows that tools are often
compared under different setup, rendering the comparisons ir-
reproducible and largely inaccurate. In this paper, we provide a
large, controlled, and independent comparison of the three most
prominent static analysis tools: FlowDroid combined with IccTA,
Amandroid, and DroidSafe. We evaluate all tools using common
configuration setup and on the same set of benchmark applications.
We compare the results of our analysis to the results reported in
previous studies, identify main reasons for inaccuracy in existing
tools, and provide suggestions for future research.

CCS CONCEPTS

• Software and its engineering → Software verification and

validation; Empirical software validation;

KEYWORDS

Static analysis, information flow analysis, mobile, empirical studies

ACM Reference Format:

Lina Qiu, Yingying Wang, and Julia Rubin. 2018. Analyzing the Analyz-
ers: FlowDroid/IccTA, AmanDroid, and DroidSafe. In Proceedings of 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’18). ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3213846.3213873

1 INTRODUCTION

Numerous static taint analysis techniques have recently been pro-
posed for identifying information flows in mobile applications [7,
11–13, 19, 24, 27, 37]. The authors of these tools compare them to
each other, typically on a set of existing benchmarks for evaluat-
ing taint analysis techniques, such as DroidBench [1] and ICC-
Bench [2]. Several surveys also offer independent qualitative and
quantitative comparisons of the tools [21, 30].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00
https://doi.org/10.1145/3213846.3213873

Our experience, however, shows that the tools are often com-
pared under different setups, making the comparison inaccurate.
The goal of this work is, therefore, to conduct a controlled and inde-
pendent study for comparing static taint analysis tools to each other,
focusing specifically on the three most-popular open-source tools:
FlowDroid combined with IccTA (FlowDroid+IccTA), Aman-
droid, and DroidSafe. We perform a large-scale experiment eval-
uating the tools on more than 130 benchmark applications, report
on the results of our study, compare them with the results in ear-
lier reports, and discuss the implications of our findings. As our
team is not involved in the development of these tools, our analysis
is completely independent. Moreover, we make the results of our
analysis, the set of benchmarks we used, and our configuration
setup available to the community, making our study replicable and
reproducible.

Our work aims at answering the following research questions:
RQ1: What are the accuracy and performance of the tools when
compared under common configuration setup?
RQ2: Can we reproduce results of earlier experiments?
RQ3: What are the main strengths and weaknesses of each tool?

To answer RQ1, we extracted the configuration setup used in the
empirical evaluation of FlowDroid+IccTA [19], Amandroid [37,
38], and DroidSafe [13]. We learned that none of the reports pro-
vide detailed information on all of the following: (a) the parameters
used for configuring the tools; (b) the list of the sources and sinks
used; (c) the exact set of apps (from the DroidBench and ICC-
Bench benchmarks) selected for the evaluation.

For example, FlowDroid has 43 configuration parameters and
DroidSafe has 57; the exact values of even the most significant of
those parameters are not reported. While the DroidSafe authors
provided precise information about the set of sources and sinks they
used, they did not list the names of the benchmark applications used
for evaluation. Both FlowDroid+IccTA and Amandroid listed the
names of the benchmark applications; yet, we were unable to map
those names to the applications in the current version of the bench-
mark due to naming inconsistency. We thus performed our own
experiments, evaluating each tool with a common configuration
setup we have chosen, on the same set of applications, and using
the same set of sources and sinks. We used the DroidBench and
ICC-Bench benchmark suites, and extended them with our own
benchmark applications, UBCBench [23], which we developed to
extract more accurate and detailed information.

For RQ2, our findings show that the accuracy of the tools in our
experiment often differs from the results reported in earlier studies.
For instance, the authors of Amandroid report an F-measure of

176

https://doi.org/10.1145/3213846.3213873
https://doi.org/10.1145/3213846.3213873
https://doi.org/10.1145/3213846.3213873

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Lina Qiu, Yingying Wang, and Julia Rubin

81% [37] and 96% [38] when executed on the DroidBench bench-
mark suite; yet, we were unable to reproduce these results, observ-
ing an F-measure of 68% for our experimental setup.

We manually analyzed all false positive (FP) and false negative
(FN) results reported by each tool (RQ3). In a nutshell, we observed
that FlowDroid+IccTA fails to accurately parse and track ICC
Intents involving complex string analysis and list management
operations; Amandroid does not accurately handle field sensitiv-
ity and location-related flows, and also overestimates ICC-related
flows; and DroidSafe has problems reporting the correct entry
method of the detected leaks and, as also reported by the authors,
handling flow sensitivity.

To summarize, this paper makes the following contributions:
• It provides the first in-depth independent analysis that com-
pares static taint analysis tools for Android applications [19,
30, 37, 38] under a similar setup and puts the results in con-
text of reports from earlier studies.

• It identifies the main strengths and weaknesses of each tool.
• It provides detailed information about the chosen configura-
tion setup, selected sources and sinks, and applications used
for analysis, making the results replicable and reproducible.

• It extends the benchmarks used for comparing Android-
specific static taint analysis tools.

The remainder of this paper is structured as follows: Section 2
provides the necessary background on taint analysis. Section 3
outlines our study design, including the selection and configuration
of the tools, selection of benchmarks, and our definition of expected
results. Section 4 presents the results and Section 5 discusses lessons
learned. In Section 6 we describe the limitations of our approach and
threats to the experiment validity. We finalize the paper with the
discussion of related work in Section 7 and conclusions in Section 8.

2 BACKGROUND: TAINT ANALYSIS

We now introduce the basic concepts of static taint analysis – a
popular information flow analysis technique which tracks the flow
of sensitive information from a set of sensitive sources to sensi-
tive sinks. In our context, sources define the information we want
to protect on a mobile device (e.g., phone number, contacts, lo-
cation, and unique device identifiers) and sinks define points of
unwanted information release (e.g., methods related to internet and
SMS transmission). If data from a sensitive source reaches a sink,
taint tracking identifies the path from the source to the sink as an
instance of data leakage.

Taint analysis can be implemented both statically and dynam-
ically; this paper focuses on static taint analysis techniques, i.e.,
those that track taint propagation by analyzing the code of an
Android application without ever running it. Examples of tools im-
plementing static taint analysis include FlowDroid, Amandroid,
and DroidSafe. The tools mostly differ in design decisions they
take for making the analysis accurate and scalable at the same time.
Below, we briefly discuss four main dimensions for such decisions.
1. Sensitivities. To handle aliasing and virtual dispatch constructs,
typical static analysis for Java programs applies some degree of
context, object, and field sensitivity; flow and path sensitivities are
used to control the order of statements and their correspondence
to branches of the program:

A context-sensitive analysis considers the calling context, i.e., a
sequence of call sites, when analyzing the target of a method call.
Specifically, in a k-call-site-sensitive analysis, the context of a called
method includes the current call site of the method and the call
sites of the caller methods, up to a pre-defined depth k [34]. For the
example in Listing 1, foo() and bar() are two different call sites
for the method call sink(), which are used by a context-sensitive
analysis to differentiate the flows to this method.

An object-sensitive analysis uses object abstractions, i.e., alloca-
tion sites, as context [34]. Specifically, the analysis qualifies the
method local variables with the allocation site of the receiver object
of the method call. For the example in Listing 1, object sensitive
analysis uses the heap addresses of objects a1 and a2 to differ-
entiate the calls to sink(). That is, context- and object-sensitive
analyses use different program elements – call sites vs. allocation
sites – as differentiating contextual information.

A field-sensitive analysis distinguishes different fields of the same
abstract object, instead of lumping all fields together [28, 34].

A flow-sensitive analysis takes the order of statements into ac-
count [40]. For example, for a list of statements x=1; y=x+1; x=2,
a flow-sensitive analysis will be able to determine that y=2, whereas
a flow-insensitive analysis will conclude that y=2 or y=3.

A path-sensitive analysis collects path information which indi-
cates feasibility of a path. For instance, for a branch condition x >

0, the analysis would assume x > 0 on the target of the branch
and x <= 0 on the fall-through path.

1class A{
2void sink(String){}
3}
4void foo() {
5A a1 = new A(); a1.sink("tainted");
6}
7void bar() {
8A a2 = new A(); a2.sink("untainted");
9}

Listing 1: Context and Object Sensitivity

2. Implicit flows. Implicit flows are flows in which sensitive data
indirectly impacts the observed output by affecting which branch
to take in the control flow [31]. A typical example is: if taint

then output = 1 else output = 0, where taint would af-
fect which branch to take, then further affect the value of the vari-
able output. Conceptually, an implicit flow tracker taints all data
items that are dependent on the taint from the conditional, hence
can result in large numbers of false-positives.
3. Java-specific features. As Android applications are generally
written in Java, analysis tools need to handle Java-specific fea-
tures, such as reflection and exceptions. Reflection refers to the
ability to dynamically access members and type information of an
object, often based on string representations of the member’s or
type’s name. Android developers heavily rely on reflection, e.g.,
for backward compatibility, generality, and sometimes for hiding
sensitive information flows [22]. Accurately resolving reflective
calls poses a challenge to the soundness of static analysis. To ad-
dress this problem, some tools consider all possible resolutions for a
reflective call. Others restrict the resolution by type of the variable,
its scope, etc. [8].

177

Analyzing the Analyzers: FlowDroid/IccTA, AmanDroid, and DroidSafe ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Exceptions can be thrown by a statement or expression, and then
read by the catch code block either within the method or up in
the call stack. As exceptions can be loaded dynamically and the
type of exception determines the code block to execute, precisely
handling exceptions is challenging [15]. Some classic frameworks
like Spark [18] and Paddle [39] use an over-approximation ap-
proach to handle exceptions, assigning all exceptions thrown in the
program to a single global variable; the variable is then read at the
exception catch site. That is, this approach assumes that all possible
exceptions are thrown and ignores the information about what
exceptions can propagate to a catch site [16]. Other frameworks,
such as Soot [36], remove unrealizable exception edges from the
intraprocedural control flow graphs [15].
4. Android-specific features. Even though Android applications
are often written in Java, several Android-specific features should
be taken into account to achieve accurate results.

Android modeling: To track taint when an Android application in-
teracts with Android execution environment, tools typically either
(a) conservatively assume that the return value of all framework
methods is tainted if any of the arguments is tainted or (b) pre-
cisely model (a subset of) the framework methods. The latter is
performed either manually or by automated analysis of Android
binary distribution libraries [6].

Application lifecycle: An Android application is composed of four
types of components, namely, Activity, Service, Broadcast Receiver,
and Content Provider. Each component has its own lifecycle meth-
ods, which are called by the Android system to start/stop/resume
the component. Static analysis tools model this lifecycle to ensure
correct propagation of taint. To extract the set of lifecycle methods
and callbacks, the tools rely on information from the Android Open
Source Project and also analyze application code and configuration
files, such as manifest and layout XML.

Inter-component communication (ICC): The multi-component
model of Android allows different components to communicate
with each other and exchange information, usually via explicit or
implicit Intents. The former explicitly define target components to
be invoked while the latter rely on Android to find the components
which implement the requested functionality. ICC handling is a
challenge due to the difficulty to precisely match the invoked com-
ponents in a static manner [10]. Tools like Epicc [27] and IC3 [26]
extract ICC information, enabling ICC-aware information flow anal-
ysis. PRIMO [25] overlays a probabilistic model of ICC on top of
these static analysis results, further improving the accuracy of ICC
detection.

Inter-app communication (IAC): Similar to ICC, IAC looks into
how sensitive data is transferred between components of different
applications installed on the same device. Tools such as ApkCom-
biner [20] aim at reducing an IAC problem to an ICC problem
by combining different applications into a single APK on which
existing tools can perform inter-app analysis.

3 STUDY DESIGN

In this section, we describe ourmethod for selecting and configuring
the static taint analysis tools for the study. We also list the selected
subject applications, sources and sinks that we used, and outline
our specification of expected results.

Table 1: Selected Tools

Tool Name Citations Version

FlowDroid 547 2017-Oct-10
IccTA 129
Amandroid 148 2017-May-07
DroidSafe 100 2016-Jun-22

3.1 Tool Selection

Li et al. [21] performed a systematic literature review and identified
38 static taint analysis tools for Android applications. From this
list, we selected all open-source tools cited more than 100 times on
Google Scholar1 as of June 2017. The names and citation counts for
the selected tools – FlowDroid, IccTA, Amandroid, and Droid-
Safe, are listed in the first two columns of Table 1. The last column
of the table lists the release date of the latest publicly available
version of each tool as of October 2017; we used this version in our
experiments. Starting from release 2.0, FlowDroid is integrated
with IccTA and leverages it for processing ICC flows. We thus per-
formed our experiments with the combined version, referring to it
as FlowDroid+IccTA. Experimental data for running FlowDroid
without IccTA, as well as experiments with older versions of these
tools, are available in our online appendix [23]. Next, we briefly
describe each of the analyzed tools.

FlowDroid [7] is a flow-, context-, field-, and object-sensitive
static analysis tool for Android applications, which is built on top of
Soot [36] and Dexpler [9]. It precisely models the Android lifecycle
and handles data propagation via callbacks of UI objects. It also
provides a precise model of the most common Android framework
methods. For the remaining ones, it applies a conservative strat-
egy, tainting all parameters and return values of methods with at
least one tainted parameter. To improve performance, FlowDroid
allows users to manually specify packages and methods that they
want to include/exclude for analysis [6]. FlowDroid can only re-
solve reflective calls whose arguments are constant strings; it bases
its exception handling mechanism on that of Soot. In the original
design, the tool did not support implicit flow tracking [7], but newer
versions of FlowDroid are able to handle implicit flow [6]. Fur-
thermore, FlowDroid conducts inter-procedural data flow analysis
and thus cannot handle ICC or IAC.

IccTA [19] extends FlowDroidwith the analysis of inter-compo-
nent communication. It leverages existing ICC extraction tools,
specifically, Epicc and IC3, augmenting them with application-level
instrumentation of ICC-related methods for extracting precise ICC
flows. It also leverages APKCombiner [20], which generates an
integrated APK for two or more applications. As a result, IccTA
builds a complete intra-component, inter-component, and inter-
application model. In our experiments, we use FlowDroid+IccTA
version 2.0 from October 20172.

Amandroid [37, 38] implements a flow- and context-sensitive
intra-component data flow analysis. On top of an inter-procedural
control flow graph and data flow graph, Amandroid builds a data-
dependency graph for each component and then generates a sum-
mary table documenting possible component communication con-
nections. Like FlowDroid, Amandroid precisely models a subset
1https://scholar.google.com
2https://github.com/secure-software-engineering/soot-infoflow-android/tree/
FlowDroid_2.0

178

https://scholar.google.com
https://github.com/secure-software-engineering/soot-infoflow-android/tree/FlowDroid_2.0
https://github.com/secure-software-engineering/soot-infoflow-android/tree/FlowDroid_2.0

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Lina Qiu, Yingying Wang, and Julia Rubin

Table 2: Configuration Decisions of FlowDroid+IccTA, Amandroid, and DroidSafe

Configuration Selected Configuration FlowDroid +IccTA Amandroid DroidSafe
Default Configurable Default Configurable Default Configurable

Sensitivty

field ✓ ✓ yes ✓ no ✓ no
context ✓ ✓ yes ✓ yes ✓(static method only) yes
object ✓ ✓ no ✓ no ✓ yes
flow ✓ ✓ yes ✓ no × no
path × × no × no × no

Implicit flows × × yes × no × yes
Reflection ✓ × yes ✓ no ✓ no
Exception ✓ ✓ yes ✓ no ✓ yes
ICC ✓ × yes ✓ no ✓ no
IAC × × yes (ApkCombiner) ✓ no × yes
UI elements detection × ✓ yes - no - no

of Android framework methods and applies a uniform conserva-
tive model for the remaining ones. Based on proprietary inter-
component and inter-application flow analysis, Amandroid pro-
vides support for both ICC and IAC detection. However, Aman-
droid has limited capacity to handle exceptions and reflection,
and it cannot handle implicit flows [37, 38]. In our study, we used
version 3.1.1 of Amandroid released on May 07, 20173.

DroidSafe [13] implements an object-sensitive and flow-insen-
sitive analysis. It builds a comprehensive Android execution model
that contains analysis stubs for most of Android framework and na-
tive methods. This allows the tool to precisely track flows through
Android APIs. For reflection, DroidSafe uses string analysis to
replace reflective calls with direct calls to the target method, when
possible. Yet, the tool does not have fully-sound handling of re-
flection. It uses a proprietary model to handle ICC and IAC flows.
Implicit flows were not supported in the original version of the
tool [13], but latest version of the source code contains an option
to enable implicit flows. The DroidSafe authors officially stopped
supporting the tool since June 22, 2016. Therefore, in our study, we
considered the latest version that was available as of June 20164.
3.2 Configuration Parameters

Each of the tools provides numerous configuration parameters:
FlowDroid+IccTA has 43 parameters, Amandroid has 11, and
DroidSafe has 57. Because the results of the analysis largely de-
pend on the tuning of each tool, comparing tools with different
configuration setup is not meaningful.

We investigated the tool documentation and configuration setup
used in previous studies [13, 19, 37, 38], to align the tools along the
main configuration dimensions. We observed that most of the stud-
ies do not document the selected configuration parameters, making
the comparison inaccurate and irreproducible. We also observed
that for some tools, a number of important design decisions are
hard-coded and cannot be configured at all, e.g., object-sensitivity
of FlowDroid+IccTA, and that some configuration choices are not
documented, e.g., field sensitivity of DroidSafe and Amandroid.

In our attempt to align the tools around the same parameters, we
created and ran tests to identify the design choice implemented by
each tool and align different tools to apply the same decisions, when
possible. Our final set of configuration choices is described below.

3https://bintray.com/arguslab/maven/argus-saf/3.1.1
4https://github.com/MIT-PAC/droidsafe-src

1. Sensitivities. The first five rows of Table 2 list five types of
sensitivity-related configurations, namely, field, flow, object, con-
text, and path sensitivities; we document our decisions in the second
column of Table 2. The remaining columns of the table describe the
default sensitivity choice implemented by each tool and whether
this choice can be configured by the user.

As some tools do not provide an option to enable/disable certain
sensitivity types, we had to pick their default, arriving at field-
sensitive, object-sensitive, and path-insensitive analysis. Flow sen-
sitivity (line 4) can only be configured in FlowDroid+IccTA;Aman-
droid supports flow sensitivity and DroidSafe does not. As such,
we were unable to fully align the tools for this configuration option.
Moreover, DroidSafe is context-sensitive for static methods only
(line 2). We still opted for enabling context sensitivity, even though
other tools provide context sensitivity for all rather than only static
methods, as this option is central for obtaining accurate analysis
results. For both FlowDroid+IccTA and Amandroid, we used a
context sensitivity depth of five; DroidSafe does not allow to set
this parameter.
2. Implicit flows. FlowDroid+IccTA and DroidSafe support
implicit flow tracking; this option is disabled by default in both
tools. Amandroid does not document whether it supports implicit
flow tracking or not. In our communication with the Amandroid
authors, they confirmed that the tool cannot handle implicit flow.
Therefore, we disabled implicit flow tracking for all tools (line 6).
3. Java-specific features. FlowDroid+IccTA, Amandroid, and
DroidSafe all explicitly report that they do not have a fully-sound
handling of reflections. Moreover, support for resolving reflective
calls differs among tools. Yet, handling reflection is enabled in
Amandroid and DroidSafe by default, and we enabled this option
in FlowDroid+IccTA as well (line 7).

For FlowDroid+IccTA and DroidSafe, exception handling is
enabled by default, though it can be disabled. Amandroid reports
on a limited capability to handle exceptions and provides no con-
figuration parameter regarding exception handling. As exception
tracking is an important property of static analysis and all tools
enabled this option by default, we proceed with that choice (line 8).
4. Android-specific features. We configured FlowDroid+IccTA
to use IC3 model for ICC flow extraction: according to earlier stud-
ies, this model has higher accuracy than Epicc [26]. We did not
use PRIMO because it relies on statistical similarity between the

179

https://bintray.com/arguslab/maven/argus-saf/3.1.1
https://github.com/MIT-PAC/droidsafe-src

Analyzing the Analyzers: FlowDroid/IccTA, AmanDroid, and DroidSafe ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

analyzed applications, which is absent in the benchmark suites. In
addition, by default, the FlowDroid+IccTA version that we used
applies “purification” of ICC-related flows. This means that the tool
deviates from the standard taint analysis semantics and implements
additional logic when handling sinks involved in ICC communi-
cation, such as startActivity(). After running a number of
experiments, we confirmed that the purification functionality is not
fully implemented and aligned with its documented behavior. In
our communication with the FlowDroid+IccTA authors, they ad-
vised us to disable this functionality using noiccresultspurify
parameter and evaluate the tool against the standard taint flow
semantics. We thus switched the ICC purification off. Amandroid
and DroidSafe both implement proprietary ICC handling mecha-
nisms and do not provide any configuration options. We relied on
the default behavior of these tools for our study (line 9).

FlowDroid+IccTA can detect inter-application flows when com-
bined with ApkCombiner [20]. DroidSafe can also detect IAC
flows, but that option is disabled by default. Amandroid is the
only tool that enables inter-app leakage detection by default. As
the benchmark suite we used contains only three IAC cases, we
focused our study on intra-application leakages and disabled IAC
tracking in all tools (line 10).

Finally, FlowDroid+IccTA is able to detect flows from sensitive
UI elements, such as password fields. However, Amandroid and
DroidSafe do not implement the corresponding feature. We thus
disabled it in FlowDroid+IccTA (line 11).
5. Other configuration parameters. Upon reviewing additional
configuration parameters, we observed that the remaining Aman-
droid options control input location in the file system, debug
choices, and other parameters that do not affect the core flow de-
tection functionality. Most of the remaining FlowDroid+IccTA
and DroidSafe parameters deal with disabling advanced analysis
functionality (which we decided to keep) and provide supportive
functions, such as an option to generate .json reports in DroidSafe.
We left the default values for all these parameters.

3.3 Subject Applications

DroidBench and ICC-Bench are often used for comparing the
tools [7, 13, 19, 30, 37, 38]. These benchmarks are publicly avail-
able; FlowDroid, IccTA, and DroidSafe teams contributed to the
DroidBench test suite, and Amandroid team created ICC-Bench.
As all teams participated in the creation of these benchmarks and
also used them for evaluating their tools, this selection does not
unintentionally benefit any of the tools.

We chose DroidBench version 2.0 [1], which covers numerous
categories of Android analysis problems, including intra-component
and inter-component communication, handling of reflection, sen-
sitivity types and more. We excluded 10 applications from this
suite that focus on testing configuration options that we disabled,
i.e., tracking of implicit flows, sensitive UI elements detection, and
inter-application flow detection, arriving at 109 benchmark apps.
Excluded benchmarks are: ImplicitFlow1-4, PrivateDataLeak1-2,
SendSMS, StartActivityForResult1, Echoer, and VirtualDispatch4.

The ICC-Bench test suite containing 24 benchmarks was origi-
nally developed by the Amandroid team to test ICC-related capa-
bilities of taint analysis tools. We used ICC-Bench v2.0 [2]. Our test

Table 3: A list of source and sink methods

Signature

So
ur
ce
s

android.telephony.TelephonyManager: java.lang.String getDeviceId()
android.telephony.TelephonyManager: java.lang.String getSimSerialNumber()
android.location.Location: double getLatitude()
android.location.Location: double getLongitude()
android.telephony.TelephonyManager: java.lang.String getSubscriberId()

Si
nk

s

android.telephony.SmsManager: void
sendTextMessage(java.lang.String,java.lang.String,java.lang.String,
android.app.PendingIntent,android.app.PendingIntent)
android.util.Log: int i(java.lang.String,java.lang.String)
android.util.Log: int e(java.lang.String,java.lang.String)
android.util.Log: int v(java.lang.String,java.lang.String)
android.util.Log: int d(java.lang.String,java.lang.String)
java.lang.ProcessBuilder: java.lang.Process start()
android.app.Activity: void startActivityForResult(android.content.Intent,int)
android.app.Activity: void setResult(int,android.content.Intent)
android.app.Activity: void startActivity(android.content.Intent)
java.net.URL: java.net.URLConnection openConnection()
android.content.ContextWrapper: void sendBroadcast(android.content.Intent)

suite thus consists of 133 applications in total from DroidBench
(109) and ICC-Bench (24), covering 11 DroidBench categories
and 4 ICC-Bench categories. The full list of the applications we
analyzed is available online [23].
Android SDK Version. ICC-Bench applications require Android
version 7.1.1 and above (API level 25). We thus configured both
FlowDroid+IccTA and Amandroid to work with this API level.
However, the latest API level supported by DroidSafe is 19. We
thus did not run DroidSafe on ICC-Bench. All DroidBench appli-
cations are compatible with the API level 19 and thus DroidSafe,
as well as other tools, runs on these applications successfully.

3.4 Sources and Sinks

In previous studies, Arzt et al. [7] and Li et al. [19] used the list of
sources and sinks generated by the SuSi project [29]; the authors of
Amandroid confirmed that they used the sources and sinks marked
in each of the benchmarks [38]. The list of sources and sinks in
DroidSafe is not configurable without modifying the source code
of the tool; Gordon et al. [13] thus ran the experiments with all
sources and sinks hard-coded in the tool (4, 051 sources and 2, 116
sinks in total).

In our experiments, we inspected the headers and comments of
all 133 benchmark applications and extracted the sources and sinks
used in these applications (5 sources and 11 sinks listed in Table 3).
We configured both FlowDroid+IccTA and Amandroid to use
this unified list. For DroidSafe, we confirmed that these sources
and sinks are the subset of sources and sinks considered by the tool.
Furthermore, for a fair comparison between the tools, we ignored
flows related to other sources and sinks, if such flows were reported
by DroidSafe.

3.5 Expected Results

With our unified configuration setup, the expected flows for each
benchmark application might deviate from the result specified by
the benchmark designers, e.g., because we disabled implicit flows
or because a source extracted from one benchmark application
could affect another application. We thus manually analyzed each
of the benchmark applications, extracting all flows expected under

180

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Lina Qiu, Yingying Wang, and Julia Rubin

Table 4: Differences in expected results forDroidBench and

ICC-Bench

Category Benchmarks # of Expected
flows

Orig. Ours
DroidBench

1. Aliasing Merge1 0 1

2. Android-Specific ApplicationModeling1 1 0
PrivateDataLeak3 2 1

4. Callbacks LocationLeak3 1 2
5. Emulator
Detection

IMEI1 2 0

8. Inter Component
Communication

ActivityCommunication2 1 2
ActivityCommunication3 1 2
ActivityCommunication4 1 2
ActivityCommunication5 1 2
ActivityCommunication6 1 2
ActivityCommunication7 1 2
ActivityCommunication8 1 2
BroadcastTaintAndLeak1 1 2
ComponentNotInMani-
fest1

0 1

IntentSource1 2 0
UnresolvableIntent1 2 3

ICC-Bench

1. Icc Handling

icc_explicit_src_nosink 0 1
icc_explicit_src_sink 1 2
icc_stateful 3 2
icc_explicit1 1 2

3. Mixed icc_rpc_comprehensive 3 2

our configuration setup. To ensure validity, the manual analysis
was performed independently and in parallel by two authors of
this paper. Any observed differences were discussed in a meeting
with all the authors, towards reaching a common resolution. In rare
cases a resolution could not be achieved, we contacted the authors
of the benchmarks and commonly identified the correct expected
result.

A full list of all expected flows is available online [23]. Only in 21
cases listed in Table 4 our expected results deviated from those docu-
mented in the benchmark itself. For example, in benchmarkActivity-
Communication2, one additional flow is expected because of an addi-
tional sink, void startActivity(android.content.Intent),
whichwas added as it appeared inmultiple benchmarks, e.g.,Droid-
Bench IntentSink2; in benchmark IMEI1, no flows are expected
because we disabled implicit flow tracking for all tools. It should be
noted that, as discussed in Section 3.3, we excluded from our analy-
sis benchmarks that were solely designed to check the features we
disabled, e.g., Implicit1-4 that examine implicit flows tracking.

3.6 Runtime Environment

We ran all analyses on Amazon AWS Ubuntu m4.4xlarge instance,
with 16 vCPU, 64GB memory, and 2,000 Mbps bandwidth5.

4 RESULTS

We now answer the research questions introduced in Section 1.

5https://aws.amazon.com/ec2/instance-types/

4.1 RQ1: What is the accuracy and

performance of the tools when compared

under common configuration setup?

To answer RQ1, we ran FlowDroid+IccTA,Amandroid, andDroid-
Safe, on the 133 benchmark apps using the configuration setup
described in Section 3. Similar to the process of establishing the
ground truth for our experiments, two authors of this paper manu-
ally inspected the flows identified by each tool, comparing them
to the expected results. The goal of this analysis was to identify
expected flows detected correctly by a tool: true positives (TP);
unexpected flows mistakenly identified by the tool: false positives
(FP); and expected flows missed by a tool: false negatives (FN). The
differences in the results of this analysis were, again, resolved in a
discussion involving all authors of this paper and, when required,
the authors of the tools.

We then calculated the precision, recall, and F-measure for each
tool, as described below.

• Precision: the fraction of correctly reported flows out of the
total number of reported flows, calculated as TP

TP+FP × 100%.
• Recall: the fraction of correctly reported flows out of the total
number of expected flows, calculated as TP

TP+FN × 100%.
• F-measure: the weighted harmonic mean of the Precision and
Recall, calculated as 2×Precision×Recall

Precision+Recall .
The first row of Table 5 summarizes the precision, recall, and

F-measure obtained in our experiments, which we report separately
forDroidBench and ICC-Bench. We also extracted the correspond-
ing numbers from previous experiments [13, 19, 37, 38], and list
them in rows 2-5 of Table 5.

For performance evaluation, we measured the execution time
of each tool on the DroidBench applications only, as DroidSafe
does not run on ICC-Bench. We averaged execution time from five
consecutive runs, and further averaged the execution time for all
analyzed benchmarks. To ensure a fair comparison, we configured
FlowDroid+IccTA and Amandroid to use the same set of sources
and sinks that DroidSafe uses6. Our results show that all the
analyzed tools processed benchmark applications within a relatively
short time, with FlowDroid+IccTA being the fastest: 9 seconds,
followed by Amandroid: 18 seconds, and DroidSafe: 137 seconds.

4.2 RQ2: Can we reproduce results of earlier

experiments?

In our experiments, FlowDroid+IccTA achieves the highest accu-
racy on the DroidBench benchmarks (F-measure of 85%), followed
by DroidSafe (80%7) and Amandroid (68%). Yet, Amandroid per-
forms better on ICC-Bench: 92% vs. 87% for FlowDroid+IccTA8.

Li et al. [19] report a much higher accuracy of 97% for Flow-
Droid+IccTA in their experiment. The difference stems from our
study covering a substantially larger set of benchmarks (133 apps
vs. 22 selected ICC-related apps from DroidBench and 9 apps from
ICC-Bench). With more benchmarks, we observed more failures,
i.e., those related to the intra-component flow detection, tracking

6The set of sources and sinks in DroidSafe cannot be configured, as discussed in
Section 3.4.
7The adjustments we made to arrive at 92% accuracy are discussed in Section 4.3.
8We did not run DroidSafe on this benchmark, as discussed in Section 3.3.

181

https://aws.amazon.com/ec2/instance-types/

Analyzing the Analyzers: FlowDroid/IccTA, AmanDroid, and DroidSafe ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Table 5: Comparisons of Precision, Recall, and F-measures

Source Benchmark Tool Precision (%) Recall (%) F-measure (%)

Ours

DroidBench (109 apps from v2.0)
FlowDroid+IccTA 90 81 85
Amandroid 67 69 68
DroidSafe 76 85 80 (92)

ICC-Bench (24 apps from v2.0)
FlowDroid+IccTA 100 76 87
Amandroid 85 100 92
DroidSafe - - -

Li et al. [19] DroidBench (22 apps developed by
IccTA’s authors) and ICC-Bench (9 apps)

FlowDroid+IccTA 97 97 97
Amandroid 79 52 63

Wei et al. [37] DroidBench (39 apps) Amandroid 87 75 81
ICC-Bench (16 apps) Amandroid 100 100 100

Wei et al. [38]

DroidBench (18 apps, about ICC)
FlowDroid+IccTA 86 83 85
Amandroid 96 96 96
DroidSafe 85 96 90

ICC-Bench (24 apps)
FlowDroid+IccTA 97 90 93
Amandroid 97 100 98
DroidSafe 10 3 5

Gordon et
al. [13]

DroidBench
(94 apps from v1.2) FlowDroid+IccTA 73 81 76

DroidSafe 88 94 91
(40 apps developed by
DroidSafe authors)

FlowDroid+IccTA 79 35 48
DroidSafe 100 100 100

Intents through list operations, handling of remote procedure calls
(RPC), and more (see Section 4.3 for a detailed discussion of all
observed failures).

The results for FlowDroid+IccTA reported by Wei et al. [38]
on DroidBench are comparable with ours (85% in both cases).
Yet, the reported accuracy on ICC-Bench is slightly higher than
the accuracy that we observed in our experiments (93% vs. 87%).
The differences are mainly related to the changed Intent matching
mechanism introduced in the FlowDroid+IccTA version that we
used. We also observed several tool crashes when building call
graphs involving RPC communications.

Gordon et al. [13] reported a lower accuracy for FlowDroid+IccTA
than the results obtained in our experiments (76% for 94 Droid-
Bench apps from v1.2 and 48% for the 40 apps DroidSafe team
developed vs. 85% for DroidBench apps in our experiments). In
addition to the differences in the experimental setup that include dif-
ferent sets of benchmark apps and source / sink selection, that work
evaluated an older version of FlowDroid+IccTA. In fact, the results
reported by Gordon et al. in 2015 are consistent with our evaluation
of the FlowDroid+IccTA version from 2015-May-31 [23], implying
that the accuracy of FlowDroid+IccTA improved over time.

For Amandroid, our results on ICC-Bench, i.e., an F-measure
of 92%, are lower but comparable with the reports of Wei et al.
in both experiments: 100% and 98% in [37] and [38], respectively.
The differences mainly stem from additional apps exposing Aman-
droid’s overestimation of ICC flows and inaccurate handling of
field sensitivity. Yet, the results on DroidBench differ substantially:
in our study, Amandroid achieved the F-measure of 68%, compared
with 81% and 96% in previous reports. As our study covered a much
larger set of DroidBench apps (109 in our case vs. 39 and 18 in pre-
vious reports), more failures occurred, including those mentioned

above. Our results are consistent with 63% accuracy forAmandroid
reported by Li et al. [19].

Finally, for DroidSafe, we could not directly reproduce the re-
sults reported in the original experiments (91% on 94 DroidBench
apps from v1.2 and 100% on the 40 apps the DroidSafe team devel-
oped), arriving at an accuracy of 80%. The differences are mainly
due to DroidSafe’s strategy for reporting flow sources. Adjusted
for flow sources, we arrived at 92% accuracy, consistent with the
results reported by the authors. A detailed description of the flow
source problem and other failures of the tool is presented in the
next section.

To summarize, we were unable to reproduce most accuracy-
related results reported in previous experiments. In some cases, the
differences can be explained by us using a newer and more accurate
version of a tool. However, in the majority of cases, the differences
relate to the narrow selection of the benchmark applications, con-
figuration choices, and the considered sets of sources and sinks,
leading to the underestimation of failures in previous studies.

With respect to the performance evaluation, our results are con-
sistent with other reports showing that FlowDroid+IccTA is faster
than Amandroid, which is, in turn, faster than DroidSafe [13, 19].
We do not perform numerical comparison of execution times with
other experiments, as these experiments were performed using a
different hardware setup, such as CPU and RAM size, and different
configuration selections.

4.3 RQ3: What are the main strengths and

weaknesses of each tool?

Each of the DroidBench and ICC-Bench benchmark applications
is designed to test a particular aspect of taint analysis, which we

182

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Lina Qiu, Yingying Wang, and Julia Rubin

Table 6: FP/FN breakdown by goals, at benchmark level

AppCategory Tool # of
FP

FP-breakdown # of
FN

FN-breakdown

DroidBench
FlowDroid +IccTA 10 1x DB3.1 ; 1x DB3.2 ; 1x DB3.5 ; 1x DB3.6 ; 1xDB4.14 ;

1x DB6.7 ; 1x DB7.4 ; 1xDB7.19 ; 1xDB7.20 ; 1xDB7.21 ; 20

1x DB2.8 ; 1xDB2.10 ; 1x DB7.8 ; 1xDB7.11 ; 1xDB7.13 ;
1xDB7.14 ; 1x DB8.2 ; 1x DB8.3 ; 1x DB8.6 ; 1x DB8.8 ;
2xDB8.16 ; 1x DB9.5 ; 1xDB9.11 ; 1xDB9.14 ; 1xDB9.17 ;
1x UBC1 ; 3x UN

Amandroid 37
1x DB3.1 ; 1x DB3.2 ; 1x DB3.5 ; 1x DB3.6 ; 4xDB4.11 ;
4xDB4.12 ; 1xDB4.14 ; 14x DB6.1 ; 1x DB7.4 ; 1xDB7.19 ;
1x DB8.2 ; 3x UBC3 ; 10x UBC2 ; 3x UN

34

1x DB2.7 ; 1x DB2.8 ; 1x DB3.3 ; 1x DB3.4 ; 1x DB4.4 ;
1x DB4.5 ; 2xDB4.13 ; 1x DB7.5 ; 1x DB7.8 ; 1xDB7.10 ;
1xDB7.14 ; 2xDB8.16 ; 1xDB8.17 ; 1x DB9.5 ; 1x DB9.6 ;
1x DB9.7 ; 1x DB9.8 ; 1xDB9.11 ; 1xDB9.17 ; 1xDB10.3 ;
1x UBC1 ; 10x UBC2 ; 1x UN

DroidSafe 28
1x DB3.1 ; 1x DB3.2 ; 1x DB3.5 ; 1x DB3.6 ; 2xDB4.12 ;
1xDB4.14 ; 2x DB6.4 ; 1x DB6.7 ; 1x DB7.4 ; 16x UBC4 ;
1x UN

15 1x DB2.6 ; 13x UBC4 ; 1x UN

ICC-Bench
FlowDroid +IccTA 0 none 8 1x ICC2.4 ; 1x ICC2.5 ; 6x UN

Amandroid 6 3x DB6.1 ; 1x ICC2.2 ; 2x UBC3 0 none
DroidSafe NA NA NA NA

refer to as the target criterion of the benchmark. For example, the
AccessArray1 benchmark application tests whether the analysis
distinguishes between different array positions. We mark this crite-
rion with the index of its corresponding benchmark, i.e., DB3.1 9.
A particular benchmark application can evaluate multiple target
criteria, e.g., both reflection and location handling. Moreover, we
identified four additional failure criteria not covered by existing
benchmarks. We marked them UBC1 - UBC4 and added the cor-
responding benchmark applications to UBCBench. In total, we
extracted 129 target criteria from our 133 benchmark applications.

Each benchmark application contains none to multiple expected
flows. In our suite, there are 142 expected flows – 108 for 109
DroidBench apps and 34 for 24 ICC-Bench apps. Table 6 presents
the number of false positive and false negative results reported by
each tool, when evaluated against the set of expected flows. We
aggregated the results for each tool on a particular benchmark suite
by their failing criteria. That is, we inspected each FP and FN flow
observed in our experiment, to find the reason for the failure, and
indexed it with the appropriate criterion.

As mentioned earlier, we observed that a tool can fail on a bench-
mark for reasons different than the benchmark’s target criterion.
For example, in benchmark EventOrdering1 the designers tested
whether the analysis tool is able to take into account different
repeating runs of the same activity. At the end of the first run,
they stored the tainted variable in SharedPreferences and then
retrieved it in the next run. While FlowDroid+IccTA and Aman-
droid both failed for this app, the underlying reason is not that
they cannot track the repeating runs of an activity but rather that
the tools cannot model SharedPreferences. We confirmed this
observation with separate test cases which we added to UBCBench.

In 15 cases, we were unable to recover the reason for the failure
or the tool crashed on the benchmark with an exception. These
cases are indicated by UN in Table 6.

The full indexed list of benchmarks, failing criteria for each
benchmark and tool, and the UBCBench test suite are available
online [23]. We now discuss main reasons for failures of each tool.

9Numbers prefixed with DB and ICC indicate target criteria extracted from Droid-
Bench and ICC-Bench suites, respectively.

FlowDroid+IccTA has 6 failures in the ICC category (DB8.*),
which are related to Intent tracking through list operations, using
complex operations like string manipulations for defining Intents
and their actions, conservative Intent matching mechanism, and
SharedPreferences problems discussed above. The tool also fails
to handle advanced ICC involving URIs and MIME format (2 fail-
ures in ICC2.4 and ICC2.5). The remaining failures relate to the
intra-component flows: 8 failures are in the General Java category
(DB7.*); 4 failures in Lifecycle (DB9.*); 4 in Arrays and Lists
(DB3.*). Other, less frequent failures include Callbacks, Field and
Object Sensitivity, and Android-Specific categories. We also discov-
ered that the tool failed to propagate taint through setHint() and
getHint() methods of Android widgets (UBC1).
Amandroid has several major reasons for failures: in 17 cases,
the tool failed to handle field sensitivity accurately (DB6.1). It also
has 13 failures handling Callbacks (DB4.*), 6 failures in Lifecycle
(DB9.*), 6 in the Arrays and Lists category (DB3.*), and 6 in Gen-
eral Java (DB7.*). Additional failures are in the Android-specific,
Reflection, ICC, and Shared Preferences categories. Similarly to
FlowDroid +IccTA, the tool also failed to handle taint propagation
through setHint() and getHint() methods of Android widgets
(UBC1).

Amandroid also reported 10 FPs and 10 FNs that stem from
handling location-related flows. This is because the tool hard-codes
the Location parameter of the onLocationChanged() callback as a
source, and does not consider location sources specified by the user
like getLatitude() and getLongitude(). We confirmed this with an
additional test case that we added to UBCBench, and mark this
failure as UBC2 . For the example in Listing 2, Amandroidwill not
report the expected flow from the specified source getLatitude()
to the sink Log.d() in line 9, but will report a (false-positive) flow
from the callback parameter location of onLocationChanged()
(line 7) to the sink Log.d(). This behavior is troublesome because
there are cases where the Location object is accessed, but the
retrieved data is not sensitive, e.g., location.getTime(); hence,
Amandroid’s conservative handling of location sources will result
in many FP flows.

Likewise, Amandroid always considers Intent parameters of
callbacks as sources. For the example in Listing 3, Amandroid

183

Analyzing the Analyzers: FlowDroid/IccTA, AmanDroid, and DroidSafe ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

considers the Intent parameter resultData as a source, and then
propagates a flow to the sink in line 5, which is incorrect. We mark
this issue as UBC3 in Table 6; it led to 5 FP results.

1class MainActivity extends Activity {
2LocationManager locManager;
3LocationListener locListener = new

LocationListener() {
4double lat;
5
6@Override
7void onLocationChanged(Location location) {
8lat = location.getLatitude(); // source
9Log.d("taints", "Latitude: " + lat); // sink,

leak
10}
11};
12...
13}

Listing 2: UBC2 – Location-Related Flow.

1class MainActivity extends Activity {
2...
3@Override
4void onActivityResult(int requestCode, int

resultCode, Intent resultData) {
5Log.d("taints", resultData); // sink, no leak
6}}

Listing 3: UBC3 – Callback Intent Handling.

1class ActivityWithRunnable extends Activity {
2
3@Override
4void onCreate(Bundle state) {
5...
6TelephonyManager tpm = (TelephonyManager)

getSystemService(TELEPHONY_SERVICE);
7Executors.newCachedThreadPool().execute(new

MyRunnable(tpm.getDeviceId())); // source
8}
9class MyRunnable implements Runnable {
10String deviceId;
11MyRunnable(String deviceId) {
12this.deviceId = deviceId; }
13@Override
14void run() {
15Log.d("ActivityWithRunnable", deviceId); } //

sink, leak
16}}

Listing 4: UBC4 –Report Correct Entry Method.

DroidSafe has 4 failures related to handling of Arrays and Lists
(DB3.*), 3 failures related to handling Callbacks (DB4.*), and
3 failures related to flow insensitivity, which is due to the tool’s
design (DB6.*). Other, singular failures are in the General Java
and Android Specific categories.

In addition, 29 failures are related to handling entry methods: ac-
cording to the DroidSafe documentation and source code, for each
identified flow, the tool reports the location of the entry method,
i.e., the method in which the flow source is defined, as well as the
source and sink methods. As DroidSafe does not provide any path
information for the detected flows, we inspected the output records
to determine the correct placement of entry methods, sources, and

sinks. We observed that in several cases, the tool produced an out-
put record with correct source and sink methods, but with the entry
method pointing to the sink rather than the source (15 cases) or to a
different method altogether (1 case). In addition, in 3 cases, the tool
produced two reports for an expected flow – one with the correct
and another with an incorrect placement of the entry method.

For the example in Listing 4, DroidSafe reports a flow from
getDeviceId() (line 7) to Log.d() (line 15), with MyRunnable:
void run() being the entry method, which is incorrect. Thus,
we categorized this flow as FP, and also considered that the tool
missed the correct flow, with void onCreate() (line 4) as the
entry method. Overall, the handling of entry methods resulted in
16 FPs and 13 FNs (UBC4), significantly lowering the accuracy
of the tool. When ignoring the placement of entry methods, 13 of
these FP and FN results can be eliminated, which would lead to an
overall accuracy of 92% (listed in parenthesis in Table 5).
Summary. Overall, besides a few singular failures, the major issue
of FlowDroid+IccTA is that it fails to accurately parse and track
ICC Intents involving complex string analysis and list management
operations. Amandroid has major issues in handling field sensi-
tivity and location-related flows; it also overestimates ICC-related
flows. DroidSafe’s main issue is its handling of entry points. Once
these major problems are fixed, the tools will have a much higher
overall accuracy.

5 DISCUSSION AND LESSONS LEARNED

The absence of accurate information on tool configuration as well
as sources, sinks, and benchmarks used for the analysis, hinders the
reproducibility of earlier studies. When each of the analyzed tools
was introduced, it reportedly outperformed the others. While we
have no doubts about the correctness of experiments reported in
earlier studies, we conjecture that the tools were evaluated under
different configuration setup and with different sets of sources
and sinks. Moreover, many reports focus only on a selected set of
benchmarks.

Furthermore, based on our study, we observed that the current
ways of measuring tools accuracy is sub-optimal: as multiple FP
and FN flows might be caused by the same underlying reason, just
counting FP and FN flows can produce false impressions on the
real tool accuracy. In fact, such counting might produce accuracy
metrics that look artificially low, even though the tool outperforms
others in many aspects. To mitigate this problem, we suggest to (a)
simplify the benchmarks and ensure they focus, as much as possible
on one particular aspect of the analysis and (b) investigate reasons
behind each failure, as we did in Section 4.

Our work contributes to solving several of the issues described
above: we separated tangled benchmarks and included individual
test cases in UBCBench, augmented the suite with test of differ-
ent types of sensitivities, clearly articulated potential reasons for
failures in each of the benchmarks, and made our setup and experi-
mental data publicly available for others to build on.

6 LIMITATIONS AND THREATS TO VALIDITY

The main threat to the validity of our results stems from the manual
analysis we performed to identify the expected results for each
benchmark, FP and FN flows in each tool, and the causes of these

184

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Lina Qiu, Yingying Wang, and Julia Rubin

flows. We mitigated this threat in three ways: first, two authors of
this paper performed the analysis independently and then cross-
checked each other’s results. Second, we constructed and ran our
own test cases, to confirm each hypothesis for a possible cause of a
FP / FN result. We also reached out to the authors of each tool to
resolve cases where a definite conclusion could not be reached and
shared the final version of the report with all tool authors to obtain
their feedback.

As the set of sources and sinks in DroidSafe is not configurable
without code modifications, we ignored flows detected by Droid-
Safe when these flows did not involve sources and sinks in our
set. While this part of the process was automated, we could have
mistakenly missed important flows. Again, we mitigated this threat
by independently inspecting results of each tool and comparing it
to our ground truth by at least two authors of the paper. Yet, we
acknowledge that running the tool with an extended set of sources
and sinks could alter its behavior.

Finally, as DroidSafe does not support applications above API
level SDK 19while ICC-Bench applications require SDK level 25, we
did not report DroidSafe results on ICC-Bench. This limited the
number of benchmarks we tested on DroidSafe. Apart from that,
even though the release date of the tools we used varies, all selected
tools can handle the benchmarks selected for the evaluation.

7 RELATEDWORK

Our discussion of related work focuses on the internal evaluation
of the tools we selected for our study and external surveys on
Android-specific static taint analysis tools.
Internal Evaluation. Arzt et al. [7] compared the precision and
recall of FlowDroid with two commercial tools, IBM AppScan
Source [5] and Fortify SCA [4] onDroidBench version 1.0, which
contained 39 benchmarks at that time. The authors provided a de-
tailed kit explaining how to reproduce their experiments [3]. Li et
al. [19] conducted two comparisons between FlowDroid, Flow-
Droid+IccTA, DidFail [17], and Amandroid, against 31 ICC re-
lated benchmarks from DroidBench and ICC-Bench. This work
also compared the execution time of IccTA with FlowDroid and
Amandroid on 50 randomly selected Google Play applications. Wei
et al. [37] compared Amandroid with FlowDroid and Epicc [27],
also focusing on ICC handling ability. The subject programs con-
sisted of 39 applications from DroidBench, 16 applications from
ICC-Bench, and another 4 specially designed test cases. Later on,
the authors upgraded the tool and conducted new comparisons [38],
focusing on 21DroidBench and 24 ICC-Bench applications related
to ICC and IAC. Finally, Gordon et al. [13] compared DroidSafe
with FlowDroid+IccTA using 94 applications from DroidBench,
40 additional benchmarks developed by the team and later con-
tributed to DroidBench, and 24 applications from a proprietary
APAC benchmark. As mentioned earlier, no detailed configuration
setup is provided for these experiments. In our work, we make
a particular effort to align the tool configurations and also focus
on a much larger set of benchmarks. Furthermore, we provide an
independent accuracy assessment as our team was not involved in
developing these tool.
External Surveys. Several papers survey Android-specific static
analysis techniques for identifying permission and privacy leakage

detection [33], robustness against obfuscation [14], and intra- and
inter-application communication vulnerabilities [10]. Sufatrio et
al. [35] provide a taxonomy of security vulnerabilities in Android.
Li et al. [21] and Sadeghi et al. [32] perform large-scale system-
atic literature reviews on static analysis tools for Android. They
also propose a taxonomy, classifying Android security assessment
mechanisms and research approaches.

Apart from the conceptual surveys discussed above, Reaves et
al. [30] also augment their survey with an empirical experiment
comparing the survived static analysis tools. This work evaluated
usability, performance, and precision of the tools for DroidBench
applications, mobile bank applications, and the top 10 most popular
financial applications in Google Play. The primary emphasis of this
experiment is on investigating the usability and accessibility of
the tools, understandability of the results, and usefulness of the
documentation provided by the tools. They reported on the number
of applications that each tool was able to process, without detailed
analysis of the accuracy of each tool. Moreover, experiments with
different tools were conducted by different auditors andwith default
configurations of those tools, which hinders the validity of the
results. In contrast, our study starts from aligning configurations of
the tools and reports not only overall accuracy for each tool but also
benchmark-level flow information. Furthermore, we investigate the
reasons for all failures and summarize the main weaknesses of each
tool. To the best of our knowledge, our study is the first large-scale,
in-depth, comparative analysis of the tools under the same setup.
Moreover, our configuration and results are publicly available, to
allow reproducibility.

8 CONCLUSION

This paper reports on the results of a large-scale, controlled, and
independent experiment we conducted to reproduce studies that
evaluated most prominent static taint analysis tools for Android
applications: FlowDroid+IccTA, Amandroid, and DroidSafe.
We aligned the tools along the same configuration setup, used
them to analyze 133 benchmark applications, and compared our
results to those reported in earlier work. We discussed the identified
difference and also inspected all reported false-positive and false-
negative flows to identify the main reasons for inaccuracy in each
tool. Furthermore, we identified several deficiencies in existing
benchmarks, such as missing checks and dependent checks that are
encoded in a single benchmark app.

Our work emphasizes the importance of providing detailed in-
formation about an experimental setup, which is required to ensure
the correctness and reproducability of reported comparisons. We
make our entire configuration setup, including the tool configura-
tion parameters, the set of sources and sinks, the precise version of
each benchmark application used, and our expected results avail-
able to other researchers. As future work, we plan to contribute our
benchmark to FlowDroid. We also plan to extend our experiments
to additional taint analysis tools.

ACKNOWLEDGMENTS

We thank the authors of FlowDroid, IccTA, Amandroid, and
DroidSafe for answering our questions about tool configurations
and for providing constructive suggestions on the setup of our
experiments.

185

Analyzing the Analyzers: FlowDroid/IccTA, AmanDroid, and DroidSafe ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

REFERENCES

[1] 2017. DroidBench Benchmark Suite. https://github.com/
secure-software-engineering/DroidBench.

[2] 2017. ICC-Bench Benchmark Suite. https://github.com/fgwei/ICC-Bench.
[3] 2017. PLDI’14 Artifact Evaluation. https://github.com/

secure-software-engineering/soot-infoflow-android/wiki/PLDI’
14-Artifact-Evaluation.

[4] 2017. Fortify SCA. https://software.microfocus.com/en-us/solutions/
enterprise-security.

[5] 2017. IBM AppScan Source. https://www.ibm.com/us-en/marketplace/
ibm-appscan-source.

[6] Steven Arzt. 2017. Static Data Flow Analysis for Android Applications. Ph.D.
Dissertation. Darmstadt University of Technology, Germany.

[7] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proc. of PLDI’14. 259–269.

[8] Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, Marcelo
d’Amorim, and Michael D. Ernst. 2015. Static Analysis of Implicit Control Flow:
Resolving Java Reflection and Android Intents (T). In Proc. of ASE’15. 669–679.

[9] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. 2012.
Dexpler: Converting Android Dalvik Bytecode to Jimple for Static Analysis with
Soot. In Proceedings of the ACM SIGPLAN International Workshop on State of the
Art in Java Program Analysis. 27–38.

[10] Shweta Bhandari, Wafa Ben Jaballah, Vineeta Jain, Vijay Laxmi, Akka Zemmari,
Manoj Singh Gaur, Mohamed Mosbah, and Mauro Conti. 2017. Android Inter-app
Communication Threats and Detection Techniques. Computers & Security 70
(2017), 392–421.

[11] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christo-
pher Kruegel, and Giovanni Vigna. 2015. What the App is That? Deception and
Countermeasures in the Android User Interface. In Proc. of S&P 2015. 931–948.

[12] Yanick Fratantonio, Aravind Machiry, Antonio Bianchi, Christopher Kruegel, and
Giovanni Vigna. 2015. CLAPP: Characterizing Loops in Android Applications. In
Proc. of ESEC/FSE 2015. 687–697.

[13] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information Flow Analysis of Android Applications
in DroidSafe. In Proc. of NDSS’15.

[14] Johannes Hoffmann, Teemu Rytilahti, Davide Maiorca, Marcel Winandy, Giorgio
Giacinto, and Thorsten Holz. 2016. Evaluating Analysis Tools for Android Apps:
Status Quo and Robustness Against Obfuscation. In Proc. of CODASPY’16. 139–
141.

[15] John Jorgensen. 2003. Improving the Precision and Correctness of Exception Analysis
in Soot. Technical Report 2003-3. McGill University, Canada.

[16] George Kastrinis and Yannis Smaragdakis. 2013. Efficient and Effective Handling
Of Exceptions in Java Points-to Analysis. In Proc. of CC’13. 41–60.

[17] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. 2014.
Android Taint Flow Analysis for App Sets. In Proc. of PLDI Workshop on Software
Analysis (SOAP’15). 1–6.

[18] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java Points-to Analysis Using
SPARK. In Proc. of CC’03. 153–169.

[19] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. IccTA: Detecting Inter-component Privacy Leaks in Android Apps.
In Proc. of ICSE’15.

[20] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon.
2015. ApkCombiner: Combining Multiple Android Apps to Support Inter-App
Analysis. In Proc. of SEC’15. 513–527.

[21] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Le Traon. 2017. Static Analysis of An-
droid Apps: A Systematic Literature Review. Information & Software Technology

88 (2017), 67–95.
[22] Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F Bissyandé, Alexandre

Bartel, Jacques Klein, and Yves Le Traon. 2017. AndroZoo++: Collecting Millions
of Android Apps and TheirMetadata for the Research Community. The Computing
Research Repository abs/1709.05281 (2017).

[23] Julia Rubin Lina Qiu, Yingying Wang. 2018. Supplementary Materials. https:
//resess.github.io/PaperAppendices/ISSTA2018.html.

[24] Zhang Mu, Duan Yue, Yin Heng, and Zhao Zhiruo. 2014. Semantics-Aware
Android Malware Classification Using Weighted Contextual API Dependency
Graphs. In Proc. of CCS’14. 1105–1116.

[25] Damien Octeau, Somesh Jha, Matthew Dering, Patrick McDaniel, Alexandre Bar-
tel, Li Li, Jacques Klein, and Yves Le Traon. 2016. Combining Static Analysis with
Probabilistic Models to Enable Market-scale Android Inter-component Analysis.
In Proc. POPL’16. 469–484.

[26] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick
McDaniel. 2015. Composite Constant Propagation: Application to Android Inter-
Component Communication Analysis. In Proc. of ICSE’15. 77–88.

[27] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. 2013. Effective Inter-Component Communica-
tion Mapping in Android: An Essential Step Towards Holistic Security Analysis.
In Proc. of USENIX Security 2013. 543–558.

[28] David J. Pearce, Paul H.J. Kelly, and Chris Hankin. 2007. Efficient Field-sensitive
Pointer Analysis of C. ACM Transactions on Programming Languages and Systems
30, 1 (2007).

[29] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. 2014. A Machine-learning
Approach for Classifying and Categorizing Android Sources and Sinks. In Proc.
of NDSS’14.

[30] Bradley Reaves, Jasmine Bowers, Sigmund Albert Gorski III, Olabode Anise,
Rahul Bobhate, Raymond Cho, Hiranava Das, Sharique Hussain, Hamza Karachi-
wala, Nolen Scaife, et al. 2016. *droid: Assessment and Evaluation of Android
Application Analysis Tools. Comput. Surveys 49, 3 (2016), 55.

[31] Alejandro Russo, Andrei Sabelfeld, and Keqin Li. 2010. Implicit Flows inMalicious
and Nonmalicious Code. Logics and Languages for Reliability and Security 25
(2010), 301–322.

[32] Alireza Sadeghi, Hamid Bagheri, Joshua Garcia, and Sam Malek. 2017. A Taxon-
omy and Qualitative Comparison of Program Analysis Techniques for Security
Assessment of Android Software. IEEE Transactions on Software Engineering 43,
6 (2017), 492–530.

[33] Suzanna Schmeelk and Junfeng Yang andAlfred V. Aho. 2015. Android Malware
Static Analysis Techniques. In Proc. of CISR’15. 5:1–5:8.

[34] Yannis Smaragdakis, George Balatsouras, et al. 2015. Pointer Analysis. Founda-
tions and Trends® in Programming Languages 2, 1 (2015), 1–69.

[35] Sufatrio, Darell J. J. Tan, Tong-Wei Chua, and Vrizlynn L. L. Thing. 2015. Securing
Android: A Survey, Taxonomy, and Challenges. Comput. Surveys 47, 4 (2015),
58:1–58:45.

[36] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In Proc.
of CASCON’99.

[37] Fengguo Wei, Sankardas Roy, Xinming Ou, et al. 2014. Amandroid: A Precise and
General Inter-component Data Flow Analysis Framework for Security Vetting of
Android Apps. In Proc. of CCS’14. 1329–1341.

[38] FengguoWei, Sankardas Roy, Xinming Ou, and Robby. 2017. Amandroid: A Precise
and General Inter-component Data Flow Analysis Framework for Security Vetting
of Android Apps. Technical Report 2017-4. University of South Florida, USA.

[39] John Whaley, Dzintars Avots, Michael Carbin, and Monica S Lam. 2005. Us-
ing Datalog with Binary Decision Diagrams for Program Analysis. In Proc. of
APLAS’05. 97–118.

[40] Wikipedia. 2017. Data-flow Analysis: Sensitivities. https://en.wikipedia.org/wiki/
Data-flow_analysis.

186

https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://github.com/fgwei/ICC-Bench
https://github.com/secure-software-engineering/soot-infoflow-android/wiki/PLDI'14-Artifact-Evaluation
https://github.com/secure-software-engineering/soot-infoflow-android/wiki/PLDI'14-Artifact-Evaluation
https://github.com/secure-software-engineering/soot-infoflow-android/wiki/PLDI'14-Artifact-Evaluation
https://software.microfocus.com/en-us/solutions/enterprise-security
https://software.microfocus.com/en-us/solutions/enterprise-security
https://www.ibm.com/us-en/marketplace/ibm-appscan-source
https://www.ibm.com/us-en/marketplace/ibm-appscan-source
https://resess.github.io/PaperAppendices/ISSTA2018.html
https://resess.github.io/PaperAppendices/ISSTA2018.html
https://en.wikipedia.org/wiki/Data-flow_analysis
https://en.wikipedia.org/wiki/Data-flow_analysis

	Abstract
	1 Introduction
	2 Background: Taint Analysis
	3 Study Design
	3.1 Tool Selection
	3.2 Configuration Parameters
	3.3 Subject Applications
	3.4 Sources and Sinks
	3.5 Expected Results
	3.6 Runtime Environment

	4 Results
	4.1 RQ1: What is the accuracy and performance of the tools when compared under common configuration setup?
	4.2 RQ2: Can we reproduce results of earlier experiments?
	4.3 RQ3: What are the main strengths and weaknesses of each tool?

	5 Discussion and Lessons Learned
	6 Limitations and Threats to Validity
	7 Related work
	8 Conclusion
	Acknowledgments
	References

