23
24
25
26
27
28
29

39
40
41
42
43
44

Hey, ChatGPT, Look at My Work: Using Conversational Al in
Requirements Engineering Education

Anonymous Author(s)

Abstract

The emergence of conversational Al tools in late 2022 practically
changed the face of software engineering and software engineering
education. Contemplating the question of how to best prepare and
evaluate students in this new reality, we experimented with sys-
tematically introducing a conversational Al tool, ChatGPT, into the
2023 offering of an upper-level undergraduate project-based course
on Software Engineering. In this course, 20 groups of four students
each had to design and implement a project of their choice, with an
Android-based mobile client and a Node.js-based cloud server. This
paper discusses our goals, approach, and lessons learned from in-
troducing ChatGPT into the first phase of the project development:
scoping the work and defining the project requirements.

Our experience shows that students can achieve comparable re-
sults using a variety of ChatGPT interaction modes and the success
of each mode largely depends on students’ preferences, learning
styles, and the invested effort. Yet, in any of the modes, with mod-
erate effort, students can produce artifacts of a mid-range quality
level of around 80%. Moving above this range requires substantial
investment, which can be spent on brainstorming, crafting high-
quality prompts, or critically assessing ChatGPT’s output. We also
observe low prompting proficiency of the students: students can
improve their prompting strategies by providing a more adequate
description of their course and project setup, examples, and ex-
pected output format for their requests. Interestingly, students can
often be “swayed” by ChatGPT’s projected confidence, even when
their original ideas are, in fact, more appropriate than the proposed
refinements. We hope that our experience and lessons learned will
help spark further discussions on how to best embed Al tools into
the software engineering curriculum and work practices.

ACM Reference Format:

Anonymous Author(s). 2025. Hey, ChatGPT, Look at My Work: Using Con-
versational Al in Requirements Engineering Education. In . ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

The last few years have been turbulent in the field of computing
education, when conversational Artificial Intelligence (AI) agents,
such as ChatGPT [1] and GitHub Copilot [3], introduced new oppor-
tunities and challenges to instructors and students [30, 31, 33, 35].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, Washington, DC, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-X/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

As “resistance is futile” [33], in this paper, we report on our expe-
rience systematically integrating conversational Al into the 2023
offering of an upper-level undergraduate project-based course on
Software Engineering. The students taking this elective course are
in their third to fifth year of studies. They completed at least two
prerequisite programming courses and other fundamental computer
science courses, such as algorithms and data structures. About 60%
of students taking the course have prior internship experience in
industry, either independently or through a co-op program.

In the scope of the course, 20 groups of 4 students each had to
design and implement their project of choice, with an Android-
based mobile client and a Node.js-based cloud server. They used
iterative development and were tasked to produce multiple deliver-
ables, including project scope and its requirements, design, project
implementation, integration and system tests, manual and auto-
mated code review results, and project documentation. Students
were allowed to use ChatGPT as an assistant in completing their
assignments, such as preparing requirements and design, albeit in
a controlled way, to fulfill the pedagogical objectives of this course
offering: assess the pros and cons of using Al tools in software
engineering processes and instill critical thinking when working
with these tools.

For this paper, we focus on the first phase of the project develop-
ment: scoping the work and defining the project requirements [17].
We designed two alternative processes for students to use ChatGPT
for this task. As a start, we asked each group to come up with two
possible ideas for their course project. Then, for one of these ideas
picked by a teaching assistant (TA) at random, students were asked
to spend one and a half hours during a lab session to brainstorm
the task and manually specify the initial set of requirements (as
they typically did in all prior offerings of the course). After the
lab, students were asked to use ChatGPT to refine and update this
initial specification. We refer to this process as Process A. For the
second project idea, the students were asked to work with ChatGPT
from the start, without manually specifying the requirements first.
We refer to this process as Process B. For both processes, in addi-
tion to the final deliverable, students were asked to submit their
intermediate artifacts and all conversations with ChatGPT.

For the results reported in this paper, we grade and analyze all
requirements specifications produced by students in both processes:
the initial requirements specification produced in the lab for Pro-
cess A, the output produced after ChatGPT interactions in both
processes, and the final submissions in both processes (only the
final submissions were graded in the scope of the course). The goal
of this analysis is to investigate which of the processes, A or B,
leads to higher-quality requirements specifications.

It is well-established that the quality of ChatGPT output depends
on the quality of the prompts [42, 54]. As such, we also aim to put
this analysis in context of the prompting strategy students applied
and the refinements they performed on the output obtained from

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Conference’17, July 2017, Washington, DC, USA

ChatGPT. To this end, we set a grading metric for ChatGPT prompts,
deriving it from OpenAl guidelines [37] and existing literature,
e.g., [12, 32, 49, 51, 53]. We use the metric to assess the quality of
the prompts produced by the students, categorize different modes
in which students interact with ChatGPT, and discuss the strengths
and areas of improvement in their prompting strategies.

Furthermore, to assess the ability of ChatGPT to produce require-
ments specifications, we construct an experiment that replicates the
students’ work using an improved prompting strategy. We assess
the quality of the specifications produced by ChatGPT under this
setup and the effort required to arrive at these specifications. We
compare this effort to the effort self-reported by students in their
submissions and also analyze the students’ self-reported reflection
on the use of ChatGPT for this task.

Finally, we analyze the students’ reflections on their experience
working with ChatGPT for this task.
Our analysis is driven by the following research questions:
RQ1: Which process, A or B, results in better requirements specifi-
cations?
RQ2: What effort is required to produce high-quality artifacts in
each process?
RQ3: How do students utilize ChatGPT in their work?
Our results show that:
1. Both processes A and B can be equivalently effective. While Pro-
cess A increases the students’ ability to critically assess the results
produced by ChatGPT, it is also associated with a decreased quality
of prompts in ChatGPT discussions, mostly because students pro-
vide less clear instructions, mistakenly assuming the initial specs
they provide are sufficient. Overall, students can improve their
prompting strategies by providing a more adequate description
of their course and project setup, examples, and expected output
format for their requests. Moreover, students can be “swayed” by
ChatGPT’s confidence, even though the artifacts they initially pro-
duced are more correct than fixes proposed by ChatGPT; it is thus
important to provide them with evidence-based education about
the need to analyze ChatGPT results more critically, which often
increases their ability to produce high-quality outcomes.
2. While on average students could achieve similar results in both
processes, obtaining a high-quality output requires an investment
of time and effort, in terms of time spent in initial brainstorming,
crafting high-quality prompts, critically assessing ChatGPT’s out-
put, and refining the results. The majority of this effort is spent
to achieve the improvement beyond the relatively-easy-to-achieve
generated requirements quality of around 80%.
3. Students perceive ChatGPT as a useful tool for ideation, refine-
ment, and formal writing, with ChatGPT’s suggestions for the last
two use modes receiving the highest adoption rate, especially for
students with at least partially formed initial ideas. At the same
time, students are concerned about over-reliance on ChatGPT. Some
students indicate a clear preference for having preliminary brain-
storming and discussions while others prefer to work with ChatGPT
directly. We believe different modes of work can be beneficial for
different student personality types.
Data Availability and Ethics Approval. The full description of
the course setup, our grading rubrics, the aggregated statistical

Anon.

data collected from student projects, and all data used in our own
experiment are available in our online appendix [6]. The study of
student projects was approved by the ethics board in our institution.

2 Course Setup

The Software Engineering course discussed in this paper was taught
in the Fall 2023 term (September-December). In what follows, we
outline the structure of the course, its requirements specification
milestone, and the use of ChatGPT in the context of this milestone.

Course Format. The main goal of this elective course is to teach
core Software Engineering principles required for building non-
trivial software-intensive systems. Students can take the course
starting from their third year of undergraduate studies, after com-
pleting at least two prerequisite programming courses and several
fundamental computer science courses, such as algorithms and data
structures. Many also complete at least one internship or co-op term,
during which they acquire professional, paid work experience. Stu-
dents in our university can take up to five co-op terms overall,
resulting in a five-year-long undergraduate program.

The course uses a term-long development project as the main
learning vehicle. Working in groups of four, students develop a
client-server software system of their choice, with Android-based
mobile client and a Node.js-based cloud server. Each project must
contain certain course-required features, such as third-party au-
thentication, and project-specific features defined by the students
themselves. The students are expected to scope their work and
define project requirements (the focus of this paper), provide a
high-level design of their project, its implementation, integration-
and system-level tests, results of the automated and manual code
review, and documentation.

This offering of the course had 88 students, with 70% of the

course cohort in their fourth or fifth year and 60% of the course
cohort having completed at least one co-op term. Thus, the majority
of the students already have fundamental programming experience
and take the course to learn good software engineering principles.
Per the guidelines of the ethics board, the students were given the
option to opt out from using their project data in our study. Two of
the 22 groups chose to opt out. Thus, the results of this study are
based on the work of 20 groups (80 students).
Requirements Specification. In the requirements specification,
students are asked to define the scope and specify the main func-
tionality and constraints of the system they wish to build [45].
We asked students to provide both functional and non-functional
requirements for their projects (FRs and NFRs, respectively).

FRs describe the system functionality, i.e., what the system should
do (rather than how). For this course, students were asked to cap-
ture requirements in form of (1) a use case diagram [24] with 5-6
clearly defined non-trivial use cases and 1-3 actors. Then, for each
use case, the students were asked to provide (2) a more descriptive
specification that includes a list of success and failure scenarios [8],
where success scenarios describe the normal flow of events and
failure scenarios describe what can go wrong and how to mitigate
failures in each step of the success scenario.

NFRs describe system properties and constraints related to per-
formance, safety, security, scalability, usability, etc. Students were

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232



233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

Hey, ChatGPT, Look at My Work: Using Conversational Al in Requirements Engineering Education

asked to describe 2-3 main NFRs for their project in plain text, to-
gether with the justification for why each requirement was needed
and how it could be validated.

The goals of this milestone were both to familiarize the stu-
dents with the concepts of requirements elicitation, analysis, and
specification, and to have them think through the details of their
proposed project before they embark on its implementation. Due to
the iterative nature of the project, students were also encouraged
to revise and refine their requirements throughout the term, as the
implementation progressed and new information and constraints
emerged. Yet, in the scope of this paper, we focus only on the initial
specification they produced in the requirements milestone.

The requirements were graded based on the following attributes,
inspired by the course guidelines and existing literature [7, 45]:

1. Complete, i.e., cover all parts of the project goals, providing suffi-
cient information to implement the system.

2. Consistent, without having contradictory definitions across mul-
tiple requirements.

3. Unambiguous, i.e., free of multiple, potentially conflicting inter-
pretations of a requirement.

4. Focused, i.e., defined at the right level of detail (not too coarse-
grained or too fine-grained).

5. Relevant to the project at hand (rather than applicable to any
project).

6. Feasible to implement given the time/resource constraints.

7. Verifiable/Measurable, i.e., where it is possible to clearly define
corresponding test cases.

8. Correctly classified as FR vs. NFR, i.e., FRs are not classified as
NFRs and the other way around.

9. Well-formatted, with appropriate notations of use case diagrams,
success and failure scenarios, etc.

The full description of the requirements specification approach
used in the course, our evaluation criteria, and our full grading
rubric are available online [6].

Use of ChatGPT. One of the educational objectives of this course
is to expose students to the advantages and disadvantages of using
Al tools in Software Engineering processes. As such, throughout
the course, students were allowed to use ChatGPT as an assistant
in completing their assignments. We did not teach or enforce any
specific prompting strategy, and students could use the tool in any
way they preferred. Yet, they were required to critically analyze
advantages and disadvantages of the tool and submit the results of
their analysis together with the milestone artifacts. Students were
also asked to submit their full chat history, which was not graded.

For the requirements milestone, students were instructed to use
ChatGPT 3.5, which was the publicly available free version at the
time the course was given. This restriction was necessary to ensure
a consistent and fair experience. To facilitate our and students’
critical analysis of the utility and outputs of the tool, we designed
two working modes, referred to as Process A and B (see Figure 1).
Process A relies on a thoughtful consideration of the project scope
and requirements prior to ChatGPT interaction, while in Process B
students started directly from interacting with the tool.

To enable efficient comparison of the processes, each group of
students was first asked to come up with two possible ideas for
a project they might want to implement within the scope of the

Conference’17, July 2017, Washington, DC, USA

EProject il
Idea L
@ ChatGPT™ [Ga[ChatGPT Reg.
Interaction Output Subm.
B
@) ChatGPT™ [Gg|ChatGPT Reg.
Interaction Output Subm.

Figure 1: Processes A and B.

Course
material

Milestone
spec

Ip Project
Idea

course (one per process). To avoid any bias that may arise from
personal preferences of students when picking which idea to work
on first, we asked half of the groups to use process A to work on
their first idea and process B to work on their second idea. The other
half of the groups used process A to work on their second idea and
process B to work on their first idea. That is, each group delivered
requirements specifications for both of their ideas (40 requirements
specification documents in total). However, we controlled for which
of their ideas they developed with each process. We denote by I4
the project idea for which the student group followed process A
and by Ip — the project idea for which they followed process B.

The students started to work on I4 in a two-hour-long course lab
session, where they produced requirements specifications without
using any Al or other external tools, as was typically done in pre-
ChatGPT offerings of the course. Throughout the session, course
TAs provided initial instructions and were available to answer
questions the groups had. In total, the students worked on the
requirements specification of I4 for 1.5 hours and were asked to
submit the version they produced by the end of the lab session. We
refer to this version as Hy (see the upper part of Figure 1; H stands
for ‘Human’). This intermediate submission was not graded in the
scope of the course, but we later graded it for this study.

After the end of the lab session, students were given 10 days
to complete their requirements specifications for both I4 and Ip.
Specifically, they were asked to use ChatGPT to further improve
H, through a series of discussions. They had to submit all their
conversations with ChatGPT, which we refer to as P4. Students
could choose to stop interacting with ChatGPT at any point of this
step, if they believed the interactions did not lead to any mean-
ingful improvement. We refer to the requirements specifications
we extracted from these conversations as G4 (G stands for ‘GPT’).
This artifact was also not graded in the scope of the course, but we
graded it for the discussion provided in this paper. As the last step
in this process, students were asked to produce and submit their
final requirements specification for I4, which we refer to as F4 (F
stands for ‘Final’).

Additionally, students developed requirements for their Ig (lower
part of Figure 1). Unlike in process A, they interacted with ChatGPT
without having a preliminary discussion session, but could further
refine ChatGPT results. We refer to artifacts produced in this pro-
cess as Pg (for ChatGPT conversations), Gp (for the requirements
specifications produced through ChatGPT interaction), and B (for
the final submission of their Ig requirements specifications, which
was graded in the scope of the course).

To summarize, the main difference between the processes is
that process A involved an in-class TA-facilitated session, where

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348



362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference’17, July 2017, Washington, DC, USA

Anon.

Pilot 1
10 conversations,
3 authors

OpenAl N
Guidelines Prompt
Quality Metric
Related N (draft)
Work

Prompt
Quality Metric
(refined)

Pilot 2
10 conversations
3 authors

Assessment
40 conversations
2 authors

Prompt
Quality Metric
(final)

Figure 2: Deriving the prompt quality assessment metric.

students had to brainstorm and draft their project scope and require-
ments prior to ChatGPT interaction. No such session was present
in B and students could start directly from interacting with the
tool (as we assumed many would do if not explicitly encouraged
to meet and brainstorm). In both cases, TAs were available outside
of the lab hours, to answer questions about the course material
and the assignment via Piazza [5]. A detailed description of the
requirements assignment is available online [6].

3 Study Methodology

We now describe the methodology we followed for answering the
research questions outlined in Section 1.

3.1 RQ1: Process Avs.B

Grading Process. Even though in the scope of the course, we
only graded the final requirements specifications produced by the
students in each process, to answer this research question, two
authors of this paper, who were also TAs of the course, graded
all intermediate artifacts produced by students, i.e., requirements
specifications (Hy4, G4, Fa, Gp, and Fp) and prompts (P4 and Pp).
The authors cross-validated grading for each artifact and all
disagreements (5% disagreement rate for requirements artifacts and
6% for prompts) were resolved in a discussion with another author,
who served as the primary course instructor. Our full grading rubric,
for both requirements and prompts, is available online [6].
Grading Requirements Specifications. We assigned to each of
the requirements quality attributes specified in Section 2 a grade on
a scale of 0-5. To this end, for each quality attribute, we extracted a
set of issues, such as missing or incomplete descriptions, logical or
factual errors, and more. The full list of issues is available in our
online appendix [6]. We assigned a severity for each issue: from 0 -
absent, to 1 - rare, 2 — moderate, 3 — abundant. We further added
and normalized the issue severity ranks for a quality attribute,
producing a 0-5 scale attribute score (the higher the better). Finally,

1. What to Ask:
Use cases, actors, a use case diagram, success scenarios,
failure scenarios, and non-functional requirements

X
2. How to Ask:
Problem Instructions and Contextua-
Setup Expected Results lization
Complete @ 2 =
Q o w [J] E
=] =] [ =
s Z1 2558/ 8
Clear & & g1 S e < =
-+ o< el
& 3 = |8 a g 5
Relevant 3 S L 9 o a o
o o - Q a
o o = % o
i} 35 fin}
Focused

Figure 3: Prompt quality assessment metric.

we averaged the attribute scores for all nine quality attributes to
produce the final grade for a requirements specification, giving
completeness a double weight, as incomplete information reduces
the likelihood of identifying other issues.

Grading ChatGPT Prompts. We used the process in Figure 2 to
derive a set of quality attributes used for assessing the quality of
ChatGPT prompts. We started from the OpenAI prompt engineer-
ing guide for GPT models [37] and extensive advice from existing
literature on prompt engineering best practices [12, 14, 32, 51].

As existing guidelines are largely high-level and cannot be di-
rectly used for assessing conversation quality, comparing conversa-
tions with each other, and correlating the quality of conversations
with the quality of requirements specifications produced in these
conversations, we aimed to turn the guidelines into a concrete met-
ric. To this end, we derived an initial set of attributes and used
them to assess 10 randomly selected ChatGPT conversations - five
for each process A and B. The assessment was conducted by three
authors of the paper independently, with each one collecting their
observations and suggestions for improving the attributes. We re-
fined the attributes following these suggestions and conducted a
second pilot study by independently grading another 10 conversa-
tions selected at random. Only minor revisions were required at
this stage and we used the refined set of attributes to grade all 40
conversations.

Figure 3 shows the final set of attributes we derived. They are
divided into two parts: the “What to Ask” part contains task-specific
attributes. In our case, these are attributes of the requirements
specification, i.e., use cases, actors, a use case diagram, success
scenarios, failure scenarios, and non-functional requirements.

The second, “How to Ask” part, is mostly agnostic to the task at
hand. It has seven attributes grouped into three categories:

1. Problem Setup, which includes the Course and Project Setup at-
tributes, ensures an adequate description of the problem space (e.g.,
project goal, scope, and time constraints) and course-specific ways
to define requirements (i.e., with success and failure scenarios) [37].
2. Instructions and Expected Results, which includes Explicit Requests,
Expected Content, and Expected Format attributes, focuses on the
importance of clearly defining the instruction/question for Chat-
GPT [14] (vs. just asking “Fix this” or “What do you think”, as some
of our students did) and specifying the content and format of the
expected results [37].

3. Contextualization, which includes the Personas and Examples
attributes, helps provide an adequate context and guide the desired
style of the ChatGPT-generated output [12, 32, 37, 51].

For each of these categories, we identified four cross-cutting quali-
ties (horizontal rows in the figure), which ensure that each category
is defined in an adequate manner. Specifically:

1. Complete means that all the necessary details are provided for
each attribute.

2. Clear means the information is well-formulated and is free of
ambiguities and mistakes.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

449

461
462
463

464



465

466

467

468

469

470

471

472

473

474

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494
495

Hey, ChatGPT, Look at My Work: Using Conversational Al in Requirements Engineering Education

3. Relevant means the information is relevant to the task at hand
(vs. asking generic questions about marginally-related topics or
providing unnecessary contextual information).

4. Focused means that the instructions are fine-grained and specific
(vs. asking many questions at once).

As with requirements, when grading, we identified a set of issues
for each of the 28 factors (7 attributes X 4 cross-cutting qualities),
assessed them based on their severity, and converted the assessment
into a numeric score for each factor, on the scale of 0 to 5 (the
higher the better). We further averaged the scores across categories,
producing the total score for the “How to Ask” (denoted by H).

For the “What to Ask” part, we assessed whether students had
at least one request or question related to each of the six require-
ments components in their chats. We then computed the fraction
of requirements components they consulted ChatGPT about. E.g.,
if the students consulted ChatGPT about actors, use cases, a use
case diagram, success scenarios, and failure scenarios, but omitted
the non-functional requirements, the assigned score would be 5/6.
We denote this score by W.

We compute our final prompt assessment score as W X H, to

independently consider both the completeness of the assigned task
(W) and the employed prompting strategies (H). That is, our metric
makes it possible to distinguish between students who use excellent
prompting strategies but only complete part of the assigned task
and those who complete the entire task.
Comparing artifacts produced in processes A and B. For Pro-
cess A, we compare the quality of the students’ initial specification
made in the lab (Hy), with the specification we extracted from their
ChatGPT outputs (G4), and their final requirements specifications
(Fa). For Process B, as no initial specification was made, we compare
the quality of Gg and Fp.

In addition, to assess the “trajectory” students followed for ar-
riving at their final requirements specifications and determine to
what extent ChatGPT output was used, we compared the ChatGPT
outputs (G4 and Gg) with their corresponding final specifications
(F4 and Fp). We noted the number of the requirements components
(i.e., use cases, actors, a use case diagram, success scenarios, failure
scenarios, and non-functional requirements) for which students di-
verted from the ChatGPT output and deemed groups that diverted in
three or more components (50% or above) as “high-editing” groups.
We deemed all the remaining groups as “low-editing”.

3.2 RQ2: Effort

As the quality of results produced by ChatGPT highly correlates
with the quality of the prompt, we aimed to gain further insights
into the effort required to complete the deliverable at a high-quality
level while interacting with ChatGPT. To this end, we conducted
an additional experiment, where we recruited a human expert who
was not involved in the course, neither as a student nor as an
instructor. In what follows, we refer to this expert as an investigator.
The investigator is a Master’s student (in a university different from
where the course was given), holds an undergraduate degree with
distinctions in Computer Science, and subsequently also became a
co-author of the paper.

Subjects. We asked the investigator to use ChatGPT to produce
deliverables for four case study subjects systematically selected

Conference’17, July 2017, Washington, DC, USA

from the 40 projects in this course offering: two for process A and
two for process B.

S1, Sy: First, we selected two subjects that correspond to projects
that received the highest and the lowest H4 grade, out of all spec-
ifications produced by the students in the lab. We refer to these
subjects as S1 and Sy, respectively. As a starting point for the in-
teractions with ChatGPT, the investigator used these requirements
specifications, as was also done by the course students in process
A. Our rationale for selecting the specifications with the highest
and the lowest grade was to factor out the quality of the inputs
and focus on the prompting effort required to produce high-quality
refined requirements specifications with ChatGPT.

S3, S4: We further selected two projects for which students re-

ceived the highest and lowest prompt grades in Process B and,
as a result, produced the highest and lowest ChatGPT-generated
requirements specifications Gg. We refer to these subjects as S3
and Sy, respectively. Here, the investigator used as a starting point
the high-level project descriptions produced by the students for
these projects, as was done by the course students in process B.
Our rationale for selecting these subjects was to, again, factor out
the quality of the inputs, demonstrating that our prompt genera-
tion strategies can consistently lead to high-quality outputs, and to
compare student prompts with those of our investigator.
Prompt Crafting Principles. We equipped the investigator with
the course material, to simulate the experience of students taking
the course, but did not disclose our requirements assessment metric,
to avoid biasing the study. However, unlike with the course students,
we equipped the investigator with the prompt quality metric and
discussed the attributes of good prompts. We asked the investigator
to improve the initial specifications for S; and Sy and to produce
requirements specifications for S3 and Sy, as the students of the
course did, only using better prompting strategies.

Specifically, we instructed the investigator to focus on crafting
well-formulated questions but not engage in any follow-up clarifi-
cation discussions with ChatGPT, to avoid subjectivity and ensure
our experiment is reproducible. As such, we essentially obtained
the lower bound on the result that can be achieved with an initial
good prompting, without any further clarifications made. Further-
more, to avoid subjectivity, the inputs provided to ChatGPT for
the case studies from each process varied only in the initial project
description (Hy for subjects S; and Sy; Ig for subjects S3 and Sy),
which were used without any modifications.

After reviewing the course project specification (to build a clear
understanding of the target system’s goals, scope, and constraints),
the milestone description (to understand the scope of the assign-
ment), and the lecture notes on requirements engineering (to fa-
miliarize themselves with the covered material), the investigator
mainly followed the “divide and conquer” principle to design a
series of ChatGPT questions.

Specifically, the investigator worked in a hierarchical manner,
starting from a high-level description of the personas, and course
and project setup. Then, the investigator split the tasks: first, by
working on each requirements component individually and then
by working on its sub-parts individually (“What to ask”). This was
done to both reduce the scope of each ChatGPT question and to
ensure no part of the assignment is overlooked.

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562



592

595

596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

Conference’17, July 2017, Washington, DC, USA

For each individual step, the investigator provided all relevant
parts of the course and project setup (repeating them, if necessary,
for a new question, to ensure sufficient context is provided), ex-
pected output content and format, and an explicit request. The
investigator also aimed for complete, clear, relevant, and focused
requests, as per our prompt guidelines (“How to ask”). For example,
after a brief introduction of the course, assignment, and project
scope, the investigator instructed ChatGPT as follows: “Let’s start
with functional requirements. I will now provide you my initial speci-
fication of functional requirements and will ask you to refine them.".
The investigator then further split the question in a hierarchical
manner: “Let’s consider one functional requirement at a time. <...>.

At the end of each step, the investigator asked ChatGPT to com-
bine the information about individual items, producing a complete
output: “Let’s put everything together. List all functional requirements
for the project using the format described below <...>.

The prompt templates the investigator used and example con-
versations for processes A and B are available online [6].
Assessment. All requirements produced by the investigator in
this experiment were graded by the TA authors of this paper, who
also graded all student artifacts, using the method in Section 3.1.
To avoid issues related to the instability of ChatGPT, which are
reported by existing work [28, 38] and which we also observed in
our study, the investigator repeated the experiment for each subject
three times. We observe only minor differences between the results
obtained for each subject across the three ChatGPT iterations (< 2%
Std. Dev.) and report the average result. The time invested in these
repetitions was not considered for the purpose of this study.

We measured prompting effort by using prompting time and
the count of questions and words in a prompt. All students spent
1.5 hours in the lab crafting the original submission in Process A
(Ha). We relied on students’ self-reported (mandatory) assessment
of the time they spent in completing requirements specifications
for Process A and producing specifications for Process B. Like for
students, we rely on the investigator’s self-reported time for crafting
ChatGPT prompts and producing the necessary deliverables.

We used metrics such as the number of questions asked during a
ChatGPT session and the total number of words in these questions,
to assess the effort required for providing complete information
to ChatGPT. Furthermore, we categorized the words in a prompt
by the prompt’s quality attributes they contribute to, to identify
words that describe Course Setup, Project Setup, etc. To this end,
two of the authors of this paper manually inspected students and
the investigator’s conversations for subjects S1-S4, marking each
sub-phrase/word with its purpose. Words that could not be reliably
classified, e.g., “Please” and “Thank you”, were marked as Other. The
authors discussed any major disagreements in counts and involved
the investigator, when necessary.

3.3 RQ3: Usage Patterns

For the course, students were asked to describe advantages and
disadvantages of using Generative Al technology for each of the
Software Engineering tasks. In this research question, we analyze
the students’ self-reflections and interpret their reports.

We further complement the students’ reflections with our own
analysis that aims to explore how students utilize ChatGPT for

Anon.

At
F, o
a-

B
20 groups <: I 77%
4 B|75%

Figure 4: Average quality of artifacts in A*, A~ and B.

their requirements engineering assignment. To this end, we used
open coding - a qualitative data analysis technique borrowed from
grounded theory [47], to extract patterns students use when in-
teracting with ChatGPT. More specifically, we started from a pi-
lot study where two authors of the paper independently read the
prompts of five student groups and identified the goals behind their
questions/commands. These two authors and an additional arbiter
then met to discuss the identified concepts and any disagreements,
refine concept labeling, and merge related concepts, if needed. Af-
ter agreeing on a coding style, the authors split and assessed the
prompts of all 20 groups.

4 Results

We now discuss the results of our study.

4.1 RQ1: Process Avs.B

Requirements Specifications. Figure 4 shows the average score
for each of our graded artifacts across all projects and processes.
When inspecting students’ interactions with ChatGPT, we observed
that 7/20 groups in process A did not, in fact, provide their manually-
defined requirements specifications (H4) to ChatGPT (using Chat-
GPT only as a vehicle to generate new ideas to augment their
original specifications). These groups essentially followed a process
similar to process B, only after already having their requirements
defined manually in the lab. To better understand the impact of
this decision, we further split the process A artifacts into those that
included the original specifications in conversations (referred to as
A%) and those that did not (referred to as A™).

Furthermore, we split the groups in each process into high-
editing and low-editing, as discussed in Section 3, and report the
numbers of such groups in each of the processes (an ellipse with
either single or multiple check marks, which appears before the fi-
nal requirements specification deliverable). We provide the average
grades for the deliverable for these two types of groups separately,
and then show the aggregated average grade for each process.

We were surprised to see that, overall, students were able to
achieve comparable grades in all three processes: 82% for A*, 75%
for A7, and 77% for B, with no statistically significant difference
between the processes. In fact, out of the ten top-ranked projects,
five followed Process A (three: A*; two: A™) and the other five —
Process B. However, when following A* and A~ processes, students
tended to edit the result produced by ChatGPT more frequently (in
11/13 and 5/7 cases for A* and A~ , respectively, compared with 7/20
cases for B). This is likely because these students were more inclined

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696



697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

753
754

Hey, ChatGPT, Look at My Work: Using Conversational Al in Requirements Engineering Education

& 100%

z s e,
T 75% R
(e o e o0 o

3 50% ., . e

= .

O .

K 25%

Q

&

O 0%

20% 30% 40% 50% 60% 70%
Prompt Quality (P)

Figure 5: Prompt vs. generated output quality.

to refine the results based on their preliminary discussions. This
observation is also aligned with impressions reported by students,
e.g., «B process just uses answers from ChatGPT, whereas the
process for A uses the best answers from ChatGPT and our own
answers».

Students’ Prompts. It is widely established that the quality of
results produced by ChatGPT highly correlates with the quality
of the prompt [34, 39]. Figure 5 confirms this observation for our
study as well, showing a strong correlation between the quality
of requirements produced by ChatGPT in both processes (y-axis,
denoted by G and combining both G4 and Gg) and the quality of
the corresponding prompt (x-axis, denoted by P and combining P4
and Pg). The figure also shows that our prompt quality metric is
indeed able to reliably distinguish between prompts that produce
low- vs. high-quality requirements specifications.

Figure 6 shows average scores for each prompt attribute in each
of the three processes. Overall, students did not provide an adequate
description of the course setup, examples,and personas in their
prompts. They also lacked a sufficient description of the project
setup and expected output format.

To our surprise, we observed that students who followed pro-
cess B scored better on almost all prompt quality attributes, likely
because students in A™ mistakenly assumed that their initial sub-
mission already provides all this relevant contextual information.
The low quality of some initial specifications further complicated
matters, as these specifications did not contain clear descriptions
and examples of what needed to be done.

The prompt quality is even lower in A~ groups, where no initial
submissions were provided. We conjecture that this is because
students had already spent time discussing their requirements in the

Course Setup
5

Examples 3 Project
Setup

Personas
reon Explicit

Requests

Expected Expected
Format Content

Figure 6: Prompt attribute scores for A*, A~, and B.

Conference’17, July 2017, Washington, DC, USA

lab and, when deciding to use ChatGPT to augment their work, they
implicitly assume the tool also “knows” all the necessary details.
Reliance on ChatGPT. The ability to critically analyze and im-
prove ChatGPT outputs is another factor affecting students’ grades.
In our study, students who edited ChatGPT results more heavily
achieved higher grades than those who did not, across all processes.
In fact, the five lowest requirements specification grades across all
processes all belong to low-editing groups.

As an example, when asked to generate use cases for a project,
ChatGPT often listed security, performance, and responsiveness as
parts of project functionality. However, in the scope of the projects
students developed in the class and according to the course specifi-
cation, most of these would be considered non-functional require-
ments. Students who correctly fixed ChatGPT suggestions received
a higher grade.

Aligning the feasibility of requirements with the scope of the
course is another major modification applied by the students. Stu-
dents from one of the groups noted that «[they] have a way better
understanding than ChatGPT in terms of the scope of the project».
ChatGPT also often provided generic requirements not directly
relevant to the scope of the project, such as “In-App Purchases and
Monetization”.

Overall, we observed that ChatGPT often produced incomplete

specifications, generic and unfeasible requirements, and incorrectly
classified FRs/NFRs. Interestingly, we also observed that some of
the Process A students were “swayed” by ChatGPT’s projected
confidence, even when their original ideas were, in fact, more ap-
propriate for the scope of the course than the refinements proposed
by ChatGPT.
Answer to RQ1: Both Process A and B can result in requirements
specifications of comparable levels of quality of around 80%. To
achieve better results, students can improve their prompting strate-
gies by providing a more adequate description of the course and
project setup, examples, and expected output format for their re-
quests. It is also important to provide students with evidence for
the need to analyze ChatGPT results more critically, as students
can often be “swayed” by ChatGPT’s projected confidence, even
when their original results are more accurate.

4.2 RQ2: Effort

To evaluate the quality of requirements one can generate by prompt-
ing only and the effort required to craft high-quality prompts, we
inspect the data collected in our expert-investigator experiment for
subjects S1-S4 and compare it to that of students.

Artifacts Produced by Prompting. The Artifacts part of Table 1
(columns 2-5) shows the quality of the artifacts for the four subjects
in our experiment. The Students sub-part shows the quality of the
initial requirements specifications produced by the students in the
lab (Hy, available for S; and Sz only), the quality of their prompts
(P), and the quality of the requirements specifications produced
by ChatGPT for the prompts (G). The investigator sub-part, Inv.,
shows the quality of the requirements specifications produced by
ChatGPT in the investigator’s experiment. We omit other columns
for the investigator as (a) the investigator used the exact same
initial requirements specifications (Hy) as students did, and (b) the
investigator’s prompts were explicitly designed to optimize for our
metric, thus, the quality of their prompts is 100% by definition.

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812



816

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

846

859
860
861
862
863
864
865
866
867
868

869

Conference’17, July 2017, Washington, DC, USA Anon.
Table 1: Prompt Assessment
Artifacts Effort
Subi Students Inv. || #Questions #Words
- H rlala lsw!lmy Total  |Course Stp.|Project Stp. |Explicit Req. |Exp. Content | Exp. Format| Personas | Examples | Other
A ’ " || Stu. | Inv. |Stu. [Inv. |Stu.| Inv. |Stu. [Inv. |[Stu.|Inv. |Stu. |Inv. |Stu. | Inv. |Stu. | Inv. | Stu. | Inv.
S1 92% | 27% | 65% | 99% 9 29 188 | 6,206 | 24 | 566 | 118 [3,655| 36 | 328 10 | 572 0 52 0 40 0 982 0 11
Sa 27%(17% | 38% | 97% || 16 | 29 527 |2,915| 0 | 566 | 208 | 364 | 269 | 328 15 | 572 0 52 0 40 0 982 | 35 11
S3 - |70% | 84% | 94% || 23 | 23 617 |3,045| 273 | 566 79 | 291 | 50 | 343 80 | 610 22 | 48 68 40 36 1,137 9 10
M - |18% |47% | 95% 4 23 56 (2,906 0 | 566 32 | 152 | 24 | 343 0 | 610 0 48 0 40 0 1,137 O 10
[ avg || - [33%]58%[96%]] 13 [ 26 [[347[3,768] 74 [ 566 [ 109 [1,115] 95 [336 [ 26 [591 [ 6 [ 50 [17 ] 40 [ 9 [1060] 11 [ 11 |

Provided with such prompts, ChatGPT was able to produce re-
quirements specifications graded at 96% on average (min: 94%, max:
99%). The reasons for not reaching 100% include our deliberate deci-
sion not to follow up with clarification, as well as ChatGPT-related
issues, such as generating incomplete specifications, generic and
unfeasible requirements, and incorrectly classified FRs/NFRs. While
similar issues also occurred in outputs ChatGPT produced for stu-
dents, their magnitude is mitigated by the good prompting strategy.
For S1, the high-quality specifications Hy (92%) provided as an
input allowed ChatGPT to inherit these specific and well-scoped
requirements and further help produce nearly-perfect output (99%).

The improved quality of the prompts comes at the expense of
effort invested in crafting such prompts, which we discuss next.

Time. For our investigator, interactions with ChatGPT took five
hours per subject, out of which four hours were spent on crafting
and refining the prompt (common for all subjects) and one addi-
tional hour was spent on the actual interactions with ChatGPT.
Interestingly, students who achieved the highest overall require-
ments specifications scores also reported investing around five
hours in their projects, on average. However, this investment was
spent on a combination of various activities, including crafting
ChatGPT prompts, brainstorming, and inspecting and manually
adjusting ChatGPT results.

For the projects in the medium grade range of around 80%, stu-
dents invested 1.5-3 hours, on average. Interestingly, requirements
specifications generated in the 1.5 hours lab session, without any
use of ChatGPT (Hj4), were, on average, of comparable quality to
the mid-range final artifacts produced by the students in the course
and were even better than artifacts produced by turning to ChatGPT
directly in Process B (Gp).

When focusing on students’ prompting effort in particular, the
students with the highest-quality prompts reported that crafting
prompts took them about three hours, on average. In comparison,
for the remaining groups, this time was one hour, on average. Yet,
students’ highest-quality prompts still resulted in requirements
specifications graded around 80%, e.g., the grade for the ChatGPT-
produced requirements specifications for subject S3 (the highest
prompt quality and, as a result, the highest-quality requirements
specification from all students’ prompts) is still 84%, due to the
remaining prompt issues.

Question and Word Count. The Effort part of Table 1 shows the
number of questions (#Ques) and the number of words (#Words) in a
chat conversation, for students (Stu.) and the investigator (Inv.), sep-
arately. We further report the word count for each prompt quality
attribute: Course Setup, Project Setup, etc.

These metrics, again, assess the needed investment in producing
high-quality prompts. For example, the students’ prompt for subject
S3 indeed had the highest number of questions (23) and words (617)
among other students’ prompts. While our investigator asked the
same number of questions in this case, the questions were around
5 times longer, allowing them to achieve 94% vs. 84% in the quality
of the generated requirements specification (in return for the effort
of producing text with 3,045 vs. 617 words). Across all case studies,
the investigator conversations were 10 times longer, on average.

Interestingly, for Sy, the relatively high number of questions
(16) and words (527) in the students’ artifacts did not translate to a
high-quality outcome (38% for G). Our analysis shows that students
in Sy omitted many of the prompt quality components, such as
course setup, expected output format, and examples, all of which
were included in students’ S3 prompt.

The effort required for closing the quality gap while relying on
ChatGPT is also aligned with impressions reported by the students
themselves: «getting to 80% is easy, but a lot of work needs to be
done to get the remaining 20%».

Answer to RQ2: While a mid-range quality level outcome can be
achieved with moderate effort, reaching high-quality results often
requires more than twice the investment, with or without ChatGPT.
This investment is spent in brainstorming, crafting high-quality
prompts, and critically assessing and refining ChatGPT’s outputs.

4.3 RQ3: Usage Patterns

Students’ Impressions. Figure 7 summarizes the most prominent
observations reported by the students in their own reflections on
using the tool. In a nutshell, a number of groups mention that
ChatGPT is creative and can be a valuable tool for brainstorming,
essentially treating it as another member of the team. Some also
report that it is quick and easy to use, can act as an expert reviewer
in catching mistakes, is knowledgeable, and is available 24/7, al-
lowing the students to treat it as a member of the teaching staff.
At the same time, ChatGPT responses being generic and unrealis-
tic was the most frequently-mentioned issue, which is consistent
with observations in our own study, where ChatGPT produced
some generic and unfeasible results even when using high-quality
prompts. The significant amount of effort required to craft prompts
and refine the results, the lack of “common sense,” and the tendency
to over-rely on ChatGPT results which, in turn, fosters a poor under-
standing of materials, were other main mentioned disadvantages,
all of which are consistent with our observations as well.

Further inspecting students’ reflections, we observed that some
groups valued the collaborative teamwork setup and found it to be

871

873

874

876
877

879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

928



929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

Hey, ChatGPT, Look at My Work: Using Conversational Al in Requirements Engineering Education

Creative Generic and unrealistic

Quick and easy Tedious to prompt
Capable reviewer A
Leads to over-reliance

Expert writer
Lacks common sense

Knowledgable
Available 24/7

I

I

Tedious to post-process m———m

I

——
Bad at long responses =
_——

Limited context window

0 2 4 6 810

(a) Advantages.
Figure 7: Student reflections on using ChatGPT.

(b) Disadvantages.

more productive and enjoyable: «Time spent in the lab collaborating
on the requirements specifications was undeniably more enjoyable
and quite constructive». Others believed ChatGPT reduced their
workload and made the requirements engineering process more
efficient: «B was more productive because ChatGPT takes away
that initial brainstorming time and gives you what you need in
seconds». We believe each of these different working modes is
effective and suitable for students with different personality traits:
some prefer an interactive environment while others work better
with a digital assistant. Further investigating such correlations is
beyond the scope of this work.

As already mentioned in Section 4.1, we observed that some
groups overly relied on ChatGPT: despite the high quality of the
in-lab requirements specification (92% and 86%), these groups did
poorly in prompting and further adopted those mistakes made by
ChatGPT that they did not originally have, such as including very
generic use cases, non-measurable non-functional requirements,
and inconsistent descriptions. This led to a low score in their fi-
nal specification (65% and 67%, respectively). We believe that the
confident tone adopted by ChatGPT could sway the opinion of inex-
perienced users in the wrong direction. Indeed, some of the groups
confirm this observation: “ChatGPT is indeed a double-edged sword,
the person needs to be well-versed about the topic”.

Usage Modes. To gain further insights into how students utilized
ChatGPT, two authors independently read the students’ prompts,
as discussed in Section 3.3. We identified four main ChatGPT us-
age modes among students, which we define below. Each of the
usage modes is applied to one or several requirements specification
components: use cases, actors, use case diagram, success/failure
scenarios, and non-functional requirements.

1. Generation refers to cases when students asked ChatGPT to
generate new components, e.g., “can you generate failure scenarios
for this functional requirement?”.

2. Concretization refers to cases when students asked to refine
an existing component with more detailed content or information,
e.g., “Can you provide numerical values for these non-functional re-
quirements based on average values from high-performing apps?”.
3. Rewriting refers to cases when students asked to adjust format-
ting, improve the clarity of existing text, or fix typos and grammar
mistakes, e.g., “can you help me edit the grammar of my work?”.
4. Concept Understanding refers to cases when students’ ques-
tions focused on gaining knowledge about some requirements spec-
ification component, utilizing ChatGPT as a replacement of an
information source, such as the course teaching staff or internet,
e.g., “what is a functional requirement?”.

Conference’17, July 2017, Washington, DC, USA

Table 2: Usage Patterns and Acceptance Rate

Total Generation Concretization Rewriting

Process

#Projects #ijects‘ Accept. Rate #Projects‘ Accept. Rate #Projects‘ Accept. Rate

a1 1 o Gof ]| 10 [s0% @of10)] o  [66% (60f9)
A 7 7 Joow eofn || 4 [s0n @ote) [ o
[ B [ 20 [ 20 Jeow qzof2o)]] 7 J100%x (ot [[ o | - |
[an [ a0 [ 38 [asz 7o) 21 [sin rof2n]] o [e6% (60f9) ]

In what follows, we analyze how students utilize ChatGPT out-
puts obtained in various usage modes, focusing on Generation,
Concretization, and Rewriting, as these are more directly related
to the artifacts produced and evaluated in this work. Specifically,
to estimate students’ satisfaction with ChatGPT suggestions for
each mode, we consider all 40 projects in processes A*, A~, and
B, measuring the percentage of projects where students accepted
at least one output for a particular usage mode out of all projects
where students utilized ChatGPT in this mode.

Table 2 shows the outcome of this analysis, for each process
individually and for all processes combined. As expected, all groups
following A~ and B processes, as well as the majority of groups in
A process, used ChatGPT in Generation mode to either create from
scratch or extend their requirements specification. However, the
acceptance rate was much lower in both Process A* and A~ groups,
compared with that in Process B, as the former groups already had
a good preliminary idea of what the requirements specifications
should look like.

Instead, many Process At groups successfully utilize ChatGPT
to concretize their existing ideas (the highest acceptance rate over-
all) as well as provide writing improvements (albeit with a lower
acceptance rate). As for the groups following Process A~ and B,
they successfully used ChatGPT to concretize preliminary partial
information about their project, as well as intermediate ChatGPT
replies, e.g., «For an Android app that lets users query a grades
website for a university, describe a functional requirement for au-
thenticating the user». Surprisingly, none of the groups in A~ and
B processes asked ChatGPT for rewriting, presumably because the
text they used was generated with ChatGPT to start with. Groups
also often combined patterns, such as requesting new functional
requirements while concretizing existing ones.

Overall, concretization usage mode led to the highest acceptance
rates across all processes, demonstrating ChatGPT’s ability to im-
prove on the well-defined user input: «ChatGPT outputs are more
desirable when you ask it for improvement».

Answer to RQ3: Students perceive ChatGPT as an easy-to-approach,
available, and useful tool. Idea concretization and text rewriting
are the most popular ChatGPT usage modes, especially for stu-
dents with well-formed initial ideas. At the same time, students
are concerned with generic and unrealistic suggestions, prompting
difficulties, and the potential of over-reliance on the tool.

5 Threats to Validity

External validity pertains to conditions that limit the general-
ization of our findings. As in many other exploratory studies, our
research is inductive in nature and thus might not generalize beyond
the subjects that we studied. As our study involved a large-scale
course with 20 student groups, we believe our results are reliable.
However, to further mitigate this threat, we make our methodology

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044



1045
1046
1047
1048

1049

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

Conference’17, July 2017, Washington, DC, USA

and evaluation strategy publicly available to encourage replication
studies across different settings, to further assess the generalizabil-
ity of the findings.

Team dynamics pose another threat to validity. While the teams
used ChatGPT during in-class lab sessions and off-class meetings,
we did not systematically control or collect data on team inter-
actions. Team compositions, collaboration style, or interpersonal
dynamics may have influenced students’ experiences and satis-
faction when using Al techniques. However, we believe our main
findings hold across different team configurations and individuals.

The main threat to the internal validity of our results stems
from the manual artifact inspection and grading. We mitigate this
threat by having at least two authors perform all data analysis
steps independently and further resolving all disagreements in a
discussion with another author.

Our selection of the investigator for the case study could also
affect our results. We mitigate this threat by carefully selecting a
competent subject with the necessary background and skills match-
ing our target audience. Finally, to reduce the effect of ChatGPT
responses varying when repeated with the same prompt, we ran
each case study three times and presented the averaged results.

6 Discussion and Future Directions

Training Students to Better Utilize AI Tools. As the students
in this course offering did not receive any training in crafting high-
quality prompts, our results probably represent an unbiased sample
of typical ChatGPT usage. Sadly, our prompt quality assessment
results show rather low prompting proficiency of the students, in-
dicating educational opportunities in this domain. As one student
put it in their feedback: «prompting is hard. it needs thoughtful
thinking». Our results also show the importance of instilling critical
thinking when analyzing Al outputs; students expressed the same
sentiment: «[need to] teach students how to critically analyze the
quality of Al answers». In this reality, it is important to systemat-
ically train students on how to interact with Al tools, both when
prompting and when critically analyzing their outputs.

For prompting, we believe that the prompt quality metric we
proposed and the prompting strategy our expert user followed
could be a useful starting point of such training — not only in
requirements engineering, but also in other software engineering
tasks. Our prompt metric and strategy basically emphasize the
importance of elaborating on each task at a sufficient level of detail
and systematically breaking down larger tasks into smaller ones —
concepts that are not new in the field of Software Engineering but
that now receive renewed attention in the context of prompt-based
use of AL

For critical analysis, as students learn from failures probably as
much as they learn from following successful practices, we believe
that sharing with students concrete examples of conversational Al
deficiency in the context of their assignments could be useful and
we intend to leverage information and evidence collected in this
work for future offerings of the course.

Furthermore, the course offering discussed in this paper was
deliberately designed to promote critical thinking by allowing stu-
dents to critically reflect on the process of using ChatGPT in two
different modes (process A and B), explicate the strengths and weak-
nesses of both approaches, and better understand which strategies

10

Anon.

work best for them. While some student reflections led us to be-
lieve our design was effective, our teaching approach induced extra
overhead on the course staff, e.g., because they had to grade two
requirements specification artifacts instead of one.

For student cohorts larger than ours, such an approach might
not scale well. One way to mitigate this issue while keeping the
benefits of focusing students’ attention on the critical analysis of
their interaction with Al technologies, could be using selective and
peer-review evaluations. That is, we could randomly select and
grade only one of the requirements specifications produced by one
of the processes, A or B. Asking teams to peer-review the require-
ments specifications is another option, which also has additional
benefits of exposing students to several requirements specifications
examples and training students in reviewing others” work. While
these approaches may lead to less accurate grading, we believe that
the benefits could outweigh the scaling drawbacks.

As industry shifts to the collaborative human-Al nature of work,

i.e., Software Engineering professionals are nowadays augmented
with Al tools, learning also shifts to the collaborative student-Al
experience, i.e., students’ course deliverables are now produced
collaboratively with Al tools. Educators thus need to rethink the
learning objectives they target and develop new assessment meth-
ods to estimate students’ gained knowledge w.r.t. these objectives.
In this course offering, we assessed whether the students gained
knowledge in requirements engineering through an in-class paper-
only written quiz. Analyzing the relationship between students’
grades for the quiz and their reported reliance on ChatGPT, we
found no correlation between the two. We thus believe students
received adequate training in requirements engineering task ir-
respective of their ChatGPT usage. However, we believe that a
broader effort aiming to understand how to set up and assess a
more general Al-aware and Al-targeted training strategy and how
to embed it into the program curriculum, to best prepare profes-
sionals for the new Al-empowered world, is needed. We hope our
experience and lessons learned from this offering of the course can
be used as inspiration for such future educational initiatives.
AI Technology. Our analysis of students’ ChatGPT conversations
and our own prompting study shows some deficiencies of the un-
derlying AI technology, such as being incomplete, unspecific, or in-
feasible; it has factual knowledge gaps and can produce outputs that
are internally inconsistent. Moreover, it produces non-deterministic
replies, with a varying degree of correctness.

Fine-tuning Al models for a task-specific setup, such as configur-
ing ChatGPT for requirements engineering processes in a particular
course, project, team, organization, etc., could save some of the
prompting and refinement effort. For example, we observed that
when students’ prompts did not provide any clarifications about
the intended use and scope of the project, ChatGPT suggested re-
quirements that did not align with their expectations and needs,
e.g., “the system should support over 10,000 users”.

Our analysis of students’ prompts also shows that students often
ask ambiguous questions, such as “Improve this”, which can be
interpreted as “improve wording”, “fix the structure of the text”, “add
more requirements”, etc. In most instances where students provided
such ambiguous prompts, ChatGPT made specific assumptions
about the students’ goals and proposed a set of improvements,

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

1145



1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

Hey, ChatGPT, Look at My Work: Using Conversational Al in Requirements Engineering Education

which were not necessarily aligned with students’ intentions. As
a reasonable human actor would likely ask for clarifications on
what kind of improvements are expected, we believe improving the
ability of Al tools to figure out when to ask clarifying questions
and which questions to ask would largely improve the models.

Finally, a number of students also flagged the lack of support
for interacting with ChatGPT as a team. As teamwork is a crucial
element of many engineering tasks, an interface supporting the
simultaneous interaction of multiple team members with Chat-
GPT would increase its usability in collaborative environments.
Designing such interfaces seems valuable future work.

As Al technology continues to improve, our experience with
ChatGPT 3.5 might not generalize to future Al tools. However, we
believe that our main findings and proposed educational adapta-
tions pertain to the use of Al technology in general, not ChatGPT 3.5
in particular, and will remain relevant.

7 Related Work

We discuss related work in three dimensions: (a) pedagogical ap-
proaches to using conversational Al (b) assessments of conversa-
tional Al capabilities in computer science education, and (c) prompt
engineering.

Pedagogical Approaches. A number of authors emphasize the
need to adjust teaching and learning practices [19, 20, 31, 35] to
the new era of conversational Al technologies. For example, Denny
et al. [19] suggest teaching prompt problems, i.e., to have students
devise prompts that would guide an Al tool to generate the code
required to solve a given problem. Student feedback on this ap-
proach is positive and suggests that it engages their computational
thinking and exposes them to new programming constructs. Our
work follows this general direction of adjusting teaching paradigms,
encouraging students to apply critical thinking when working with
conversational Al techniques. We also contribute a set of attributes
and a metric to assess the quality of the prompts, while existing
work on prompt engineering typically assesses prompt quality by
measuring the quality of the produced output [14, 19].

A different line of research explores the use of Al in generat-
ing teaching materials, including programming exercises [10, 11,
29, 44, 46], contextualized problem statements [44], and personal-
ized questions tailored to students’ interests [36]. Similarly, some
explore techniques for automating assessment generation, grad-
ing, and feedback generation processes [16, 21, 27, 28, 33, 52]. Our
work is orthogonal to this and rather focuses on teaching effective
mechanisms to employ conversational Al tools.

Yet another line of research emphasizes the limitations of using
generative Al in education. These include the potential for students
to become over-reliant on generative Al tools to solve problems [9,
10, 22, 23, 26] or to spend their time in unproductive ways, e.g., it
may take longer to figure out an effective prompt than to write
the code [2, 40, 50]. Our results confirm these findings and discuss
in more detail both the anticipated effort for successful prompt
engineering and cases where over-reliance on ChatGPT caused
students to lose marks in the requirements engineering tasks.
Assessments of Al Capabilities. Another research direction fo-
cuses on assessing the capabilities of conversational Al techniques

11

Conference’17, July 2017, Washington, DC, USA

for solving typical course assignments and other similar educa-
tional activities. While the majority of this work looks at code-
related tasks [4, 18, 41], few also explore the applicability of Al in
tasks that extend beyond coding, such as requirements engineer-
ing [13, 25, 48]. These works mostly rely on interviews, surveys,
and students’ self-reflections. They show that students who were
asked to use ChatGPT for the requirements engineering task gen-
erally have a positive perception of its capabilities [13] and believe
that ChatGPT enhanced their efficiency, accuracy, and understand-
ing [48]. However, they rarely use it for this task if not explicitly
asked [25]. While the outcomes of these works are inconclusive,
most agree there is a need for a well-thought-out and balanced
approach to technology use. Our work contributes to this direction.
Moreover, instead of relying on interviews and surveys, we perform
a detailed analysis of student- and ChatGPT-generated artifacts,
which allows us to gain deeper insights into the workflows students
followed, successful and failing practices, and the effort required to
employ ChatGPT for requirements engineering tasks.

Prompt Engineering. Prompt engineering is the systematic design
and optimization of inputs (i.e., prompts) for conversational Al
systems, to enhance the quality of their outputs [14, 43]. Prompting
strategies range from basic ones, as documented in the OpenAl
prompting guide [37], to advanced ones such as those classified
by a recent survey [43]. This field has seen the development of
strategies and techniques ranging from basic ones, such as those
documented in the OpenAI prompting guide [37], to advanced ones,
such as those classified by a recent survey [43]. The basic ones,
including few-shot prompting [12] and specifying personas [32,
51], form a basis for our prompting metric. Advanced prompting
techniques, such as chain-of-thought prompting [49] and program-
of-thoughts prompting [15], require a deeper understanding of Al
systems or additional tools for effective implementation and thus
are out of scope of our current study. Given their complexity and
the specialized knowledge or tooling they necessitate, we have
chosen to exclude these advanced techniques from the scope of our
current study, focusing instead on more broadly applicable ones.

8 Conclusion

In this paper, we reported on our experience integrating ChatGPT
into the curriculum of a large upper-level undergraduate project-
based course on Software Engineering, where students used Chat-
GPT in a controlled manner to help with the requirements specifi-
cation task. We discuss the course setup we devised to encourage
students to critically assess Al outputs, i.e., processes A and B for in-
teracting with ChatGPT, the effort required to produce high-quality
ChatGPT outputs, and students’ approaches to utilize ChatGPT
for their work. We were surprised to observe that, unlike our ex-
pectations, process A did not generally result in higher-quality
requirements than process B. Our study also provides empirical
evidence that reaching beyond 80% quality in any of the processes
requires a substantial effort. Specifically, high-quality prompting
took significant time, even for the professional investigator, and
brainstorming /improving ChatGPT outcomes took students’ effort.
We hope that our work will inform educators who aim to integrate
Al technologies into their curriculum and will provide ideas for
Al technologists on how to improve and better integrate Al into
existing workflows.

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1276



1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

1334

Conference’17, July 2017, Washington, DC, USA

References

(1]
(2]

[10]

[11]

[12]

[13

[14]

[15]

[17]

[18]

[19

[20]

[21]

[22]

[23]

[24]

[25

[n.d.]. ChatGPT OpenAl https://chat.openai.com/.

[n. d.]. Generative Al Assistants in Software Development Education: A Vision for
Integrating Generative Al into Educational Practice, not Instinctively Defending
Against it. ([n.d.]).

[n.d.]. GitHub Copilot: Your Al Pair Programmer. https://copilot.github.com/.
[n.d.]. My AI Wants to Know If This Will Be on the Exam: Testing Open Al
Codex on CS2 Programming Exercises.

[n.d.]. Piazza. https://piazza.com/.

[n.d.]. Supplementary Materials. https://anonymousresearcher2020.github.io.
2018. ISO/IEC/IEEE International Standard - Systems and software engineering
- Life cycle processes — Requirements engineering. ISO/IEC/IEEE 29148:2018(E)
(2018), 1-104

Steve Adolph and Paul Bramble. 2003. Patterns for effective use cases. Addison-
Wesley.

Matin Amoozadeh, David Daniels, Daye Nam, Aayush Kumar, Stella Chen,
Michael Hilton, Sruti Srinivasa Ragavan, and Mohammad Amin Alipour. 2024.
Trust in Generative AI Among Students: An Exploratory Study. In Technical
Symposium on Computer Science Education (SIGCSE TS). 67-73.

Brett A Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming is Hard-or at least it
Used to be: Educational Opportunities and Challenges of AI Code Generation.
In Technical Symposium on Computer Science Education (SIGCSE TS). 500-506.
Jonnathan Berrezueta-Guzman and Stephan Krusche. 2023. Recommendations to
create programming exercises to overcome ChatGPT. In International Conference
on Software Engineering Education and Training (CSEE&T). 147-151.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems (NeurIPS), Vol. 33. 1877-1901.

Juan Pablo Carvallo and Lenin Erazo-Garzon. 2023. On the Use of ChatGPT
to Support Requirements Engineering Teaching and Learning Process. In Latin
American Conference on Learning Technologies. 328—-342.

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu. 2023.
Unleashing the potential of prompt engineering in Large Language Models: a
comprehensive review. arXiv:2310.14735 [cs.CL]

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. 2023. Pro-
gram of Thoughts Prompting: Disentangling Computation from Reasoning for
Numerical Reasoning Tasks. Transactions on Machine Learning Research (TMLR)
(2023).

Bruno Pereira Cipriano, Pedro Alves, and Paul Denny. 2024. A Picture Is Worth a
Thousand Words: Exploring Diagram and Video-Based OOP Exercises to Counter
LLM Over-Reliance. arXiv:2403.08396 [cs.SE]

Marian Daun, Alicia M Grubb, Viktoria Stenkova, and Bastian Tenbergen. 2023.
The Field of Requirements Engineering Education. In International Conference
on Software Engineering Education and Training (CSEE&T). 119-119.

Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with Copilot:
Exploring Prompt Engineering for Solving CS1 Problems Using Natural Language.
In Technical Symposium on Computer Science Education (SIGCSE TS). 1136-1142.
Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A Becker, and Brent N Reeves. 2024. Prompt Problems: A New
Programming Exercise for the Generative Al Era. In Technical Symposium on
Computer Science Education (SIGCSE TS). 296-302.

Paul Denny, James Prather, Brett A Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N Reeves, Eddie Antonio Santos,
and Sami Sarsa. 2024. Computing Education in the Era of Generative AL. Commun.
ACM 67, 2 (2024), 56-67.

Felix Dobslaw and Peter Bergh. 2023. Experiences with Remote Examination
Formats in Light of GPT-4. In European Conference on Software Engineering
Education (ECSEE). 220-225.

Amanda S Fernandez and Kimberly A Cornell. 2024. CS1 with a Side of Al
Teaching Software Verification for Secure Code in the Era of Generative Al In
Technical Symposium on Computer Science Education (SIGCSE TS). 345-351.
James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots are Coming: Exploring the Implications of Ope-
nAI Codex on Introductory Programming. In Australasian Computing Education
Conference (ACE). 10-19.

Andrew C. Gemino and Drew Parker. 2009. Use Case Diagrams in Support of Use
Case Modeling: Deriving Understanding from the Picture. Journal of Database
Management (JDM) (2009).

Khadija Hanifi, Orcun Cetin, and Cemal Yilmaz. 2023. On ChatGPT: Perspectives
from Software Engineering Students. In IEEE International Conference on Software
Quality, Reliability, and Security (QRS). 196-205.

12

[26

[27]

[28

™~
20,

@
=

(34]

[35

[36

[37

[38

(39]

[41]

[42]

[43

[44]

[45]

[46

[47

Anon.

Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpaa,
and Juha Sorva. 2023. Exploring the Responses of Large Language Models to
Beginner Programmers’ Help Requests. In International Computing Education
Research (SIGCSE TS). 93-105.

Muntasir Hoq, Yang Shi, Juho Leinonen, Damilola Babalola, Collin Lynch,
Thomas Price, and Bita Akram. 2024. Detecting ChatGPT-generated Code Submis-
sions in a CS1 Course Using Machine Learning Models. In Technical Symposium
on Computer Science Education (SIGCSE TS). 526-532.

Sajed Jalil, Suzzana Rafi, Thomas D LaToza, Kevin Moran, and Wing Lam. 2023.
ChatGPT and Software Testing Education: Promises & Perils. In IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW).
4130-4137.

Mollie Jordan, Kevin Ly, and Adalbert Gerald Soosai Raj. 2024. Need a Program-
ming Exercise Generated in Your Native Language? ChatGPT’s Got Your Back:
Automatic Generation of Non-English Programming Exercises Using OpenAl
GPT-3.5. In Technical Symposium on Computer Science Education (SIGCSE TS).
618-624.

Ishika Joshi, Ritvik Budhiraja, Harshal Dev, Jahnvi Kadia, Mohammad Osama
Ataullah, Sayan Mitra, Harshal D Akolekar, and Dhruv Kumar. 2024. ChatGPT
in the Classroom: An Analysis of Its Strengths and Weaknesses for Solving Un-
dergraduate Computer Science Questions. In Technical Symposium on Computer
Science Education (SIGCSE TS). 625-631.

Vassilka D Kirova, Cyril S Ku, Joseph R Laracy, and Thomas ] Marlowe. 2024. Soft-
ware Engineering Education Must Adapt and Evolve for an LLM Environment.
In ACM Technical Symposium on Computer Science Education, Vol. 1. 666-672.
Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, and
Xin Zhou. 2023. Better Zero-Shot Reasoning with Role-Play Prompting.
arXiv:2308.07702 [cs.CL]

Sam Lau and Philip Guo. 2023. From "Ban It Till We Understand It" to "Resistance
is Futile": How University Programming Instructors Plan to Adapt as More
Students Use AI Code Generation and Explanation Tools such as ChatGPT
and GitHub Copilot. In ACM Conference on International Computing Education
Research (ICER), Vol. 1. 106-121.

Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A Becker. 2023. Using Large Language Models to Enhance Programming
Error Messages. In Technical Symposium on Computer Science Education (SIGCSE
TS). 563-569.

Stephen MacNeil, Joanne Kim, Juho Leinonen, Paul Denny, Seth Bernstein,
Brett A Becker, Michel Wermelinger, Arto Hellas, Andrew Tran, Sami Sarsa,
et al. 2023. The Implications of Large Language Models for CS Teachers and
Students. In Technical Symposium on Computer Science Education (SIGCSE TS).
1255.

Stephen MacNeil, Andrew Tran, Juho Leinonen, Paul Denny, Joanne Kim, Arto
Hellas, Seth Bernstein, and Sami Sarsa. 2022. Automatically Generating CS
Learning Materials with Large Language Models. arXiv (2022).

OpenAl [n.d.]. Prompt engineering. https://platform.openai.com/docs/guides/
prompt-engineering.

Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang. 2023. LLM is
Like a Box of Chocolates: the Non-determinism of ChatGPT in Code Generation.
arXiv:2308.02828 [cs.SE]

Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Bren-
dan Dolan-Gavitt. 2023. Examining Zero-shot Vulnerability Repair with Large
Language Models. In Symposium on Security and Privacy (S&P). 2339-2356.
James Prather, Brent N Reeves, Paul Denny, Brett A Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. “It’s Weird That it Knows What I Want”: Usability and Interactions
with Copilot for Novice Programmers. ACM Transactions on Computer-Human
Interaction (CHI) 31, 1 (2023), 1-31.

Ben Puryear and Gina Sprint. 2022. Github Copilot in the Classroom: Learning to
Code with Al Assistance. Journal of Computing Sciences in Colleges 38, 1 (2022),
37-47.

Laria Reynolds and Kyle McDonell. 2021. Prompt Programming for Large Lan-
guage Models: Beyond the Few-Shot Paradigm. In Extended Abstracts of the 2021
CHI Conference on Human Factors in Computing Systems. 1-7.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal,
and Aman Chadha. 2024. A Systematic Survey of Prompt Engineering in Large
Language Models: Techniques and Applications. arXiv:2402.07927 [cs.AI]

Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gen-
eration of Programming Exercises and Code Explanations Using Large Language
Models. In ACM Conference on International Computing Education Research (ICER),
Vol. 1. 27-43.

Tan Sommerville and Pete Sawyer. 1997. Requirements engineering: a good practice
guide. John Wiley & Sons, Inc.

Sandro Speth, Niklas Meifiner, and Steffen Becker. 2023. Investigating the Use of
Al-Generated Exercises for Beginner and Intermediate Programming Courses: A
ChatGPT Case Study. In IEEE International Conference on Software Engineering
Education and Training (CSEE&T). 142-146.

Anselm Strauss and Juliet Corbin. 1998. Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. Thousand Oaks, CA: Sage.

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392


https://chat.openai.com/.
https://copilot.github.com/
https://piazza.com/
https://anonymousresearcher2020.github.io
https://arxiv.org/abs/2310.14735
https://arxiv.org/abs/2403.08396
https://arxiv.org/abs/2308.07702
https://platform.openai.com/docs/guides/prompt-engineering 
https://platform.openai.com/docs/guides/prompt-engineering 
https://arxiv.org/abs/2308.02828
https://arxiv.org/abs/2402.07927

Hey, ChatGPT, Look at My Work: Using Conversational Al in Requirements Engineering Education

Conference’17, July 2017, Washington, DC, USA

1393 [48] Muhammad Waseem, Teerath Das, Aakash Ahmad, Peng Liang, Mahdi Fahmideh, [51] Ning Wu, Ming Gong, Linjun Shou, Shining Liang, and Daxin Jiang. 2023. Large 1451
1394 and Tommi Mikkonen. 2024. ChatGPT as a Software Development Bot: A Project- Language Models are Diverse Role-Players for Summarization Evaluation. In Nat- 1452
based Study. In International Conference on Evaluation of Novel Approaches to ural Language Processing and Chinese Computing Conference (NLPCC). 695-707.
1395 Software Engineering (ENASE). [52] C.Zastudil, M. Rogalska, C. Kapp, J. Vaughn, and S. MacNeil. 2023. Generative 1453
1396 [49] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Al in Computing Education: Perspectives of Students and Instructors. In IEEE 1454
1397 Xia, Ed Chi, Quoc V Le, and Denny Zhou. 2022. Chain-of-Thought Prompting Frontiers in Education Conference (FIE). 1-9. 1455
Elicits Reasoning in Large Language Models. In Advances in Neural Information [53] Denny Zhou, Nathanael Schérli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,
1398 Processing Systems (NeurIPS), Vol. 35. 24824-24837. Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H Chi. 2022. 1456
1399 Michel Wermelinger. 2023. Using Github Copilot to Solve Simple Programming Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. 1457
1400 Problems. In Technical Symposium on Computer Science Education (SIGCSE TS). In International Confereflce on Learning Regresentations (-ICLR)A o 1458
172-178. [54] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,
1401 Harris Chan, and Jimmy Ba. 2023. Large Language Models are Human-Level 1459
1402 Prompt Engineers. In International Conference on Learning Representations (ICLR). 1460
1403 1461
1404 1462
1405 1463
1406 1464
1407 1465
1408 1466
1409 1467
1410 1468
1411 1469
1412 1470
1413 1471
1414 1472
1415 1473
1416 1474
1417 1475
1418 1476
1419 1477
1420 1478
1421 1479
1422 1480
1423 1481
1424 1482
1425 1483
1426 1484
1427 1485
1428 1486
1429 1487
1430 1488
1431 1489
1432 1490
1433 1491
1434 1492
1435 1493
1436 1494
1437 1495
1438 1496
1439 1497
1440 1498
1441 1499
1442 1500
1443 1501
1444 1502
1445 1503
1446 1504
1447 1505
1448 1506
1449 1507

1450 13 1508



	Abstract
	1 Introduction
	2 Course Setup
	3 Study Methodology
	3.1 RQ1: Process A vs. B
	3.2 RQ2: Effort
	3.3 RQ3: Usage Patterns

	4 Results
	4.1 RQ1: Process A vs. B
	4.2 RQ2: Effort
	4.3 RQ3: Usage Patterns

	5 Threats to Validity
	6 Discussion and Future Directions
	7 Related Work
	8 Conclusion
	References

