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ABSTRACT

To achieve full cooperativediversity gainswhilestill maintaining spectral and energy efficiency, relay assignment schemes
for cooperative communications havebeen extensively studied in recent research. Theseschemesselect only thebest relay
from multiple relaying candidates to cooperate with a communication link. However, it is challenging to find the optimal
relay in distributed wireless networks due to the dynamic nature of such networks. In this paper, we first formulate the
problem of relay assignment as a non-cooperative, mixed strategy, repeated game, where relaying candidates are modeled
as rational players. We then propose a Game Theory based Relay Assignment scheme GTRA, in which each player plays
against all the other players, and determines whether to cooperate with a communication link on a packet-by-packet basis
in a distributed manner. To adapt to dynamic environments, an adaptive learning algorithm, i.e., modified-regret-matching
algorithm, isutilized by players to learn optimal strategiesof relay assignment, aswell asorienting thegameto converge to
aset of correlated equilibriums, which isoften moresystem efficient than aNash equilibrium. To evaluatetheperformance
of GTRA, we compare it with BR, a fictitious two player game based approach. Simulation results have shown that GTRA
outperforms BR in terms of network throughput, especially in environments where the channel fading becomes severe. It
isalso shown that GTRA can converge to a correlated equilibrium in a short period that enables the GTRA to work well in
dynamic environments. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Relay assignment [1] for cooperative communications [2,
3], i.e., dynamically choosing the best relay from multiple
relaying candidates to cooperate with a communication
link, and thus forming multiple transmission paths or
virtual MIMO (multiple-input-multiple-output) systems to
the destination, has emerged as an effective technique
to improve the performance of wireless networks, by
exploiting the spatial diversity of the wireless medium.
Optimal relay assignment can enable a cooperative
communication system to achievefull diversity gainswhile
still obtaining high spectral and energy efficiency [4, 5].
However, finding the optimal relay in distributed wireless
networksischallenging, asthelink qualitiesvary over time
and the network topology may change.

A number of adaptive relay assignment schemes have
been proposed recently. In the literature, most of the

schemesperform relay assignment in acentralized manner,
and choose relays based on measured link metrics. For
instance, the metrics, such as distance, either towards
the source or the destination [6, 7, 8, 9], signal-to-noise
ratio (SNR) [10, 11], and channel gain [12, 13, 14,
15, 16], are used for relay selection, and these metrics
are assumed to be available at the source, destination
and all the relaying candidates. However, there is often
no centralized control in distributed wireless networks,
and the measured metrics are often inaccurate and tend
to vary in dynamic environments. Moreover, significant
communication overhead will be incurred in acquiring and
disseminating such information to all of the cooperative
participants, especially for the cooperative protocols, as
in [12, 13], that instantaneous channel state information
(CSI) is required at all the candidates for performing relay
selection.
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To develop adaptive and distributed relay assignment
schemes for wireless networks, game theory [17] based
approaches [18] have received much research attention.
In [19], game theory is used to model a wireless
network consisting of selfish nodes, wherein a credit-
based model involving exchanges of virtual currencies is
proposed to manage node interactions. Whether a node
cooperates with a communication link depends on the
credit that can be earned and the resource needed for
relaying a packet. The authors in [20] proposes a relay
assignment scheme based on a two-level Stackelberg
game, in which the source node and relay nodes are
modeled as buyer and sellers, respectively. The proposed
scheme jointly considers the benefit of both the buyer and
the sellers and can achieve the best system performance
with minimum power consumption. [21] presents a
game-theoretic analysis of a decode-and-forward (DaF)
[16] cooperative communication system over additive
white Gaussian noise (AWGN) [22] and Rayleigh fading
channels. The analysis shows that a mutually Nash
equilibrium (NE) existsif aproper power control method is
utilized and users care about their long-term performance.
The game theory based schemes in the literature often
assume that players have complete information of the
game, i.e., all players’ identities, strategies, payoffs, and/or
utility functions [20]. Furthermore, the game’s history,
e.g., all actions have been taken by players in previous
stages, and the the actions’ corresponding outcomes, is
also assumed to be known to all players in a multi-stage
game [19]. However, these assumption are not always
hold in realistic scenarios, as nodes in wireless networks
usually only havelocally observed information and limited
knowledge of others nodes’ behavior. Therefore, adaptive
learning, e.g., estimating payoffs that may obtain by taking
certain actions, predicting the other players’ possible
behaviour, should be involved in game designs [23].

In this paper, we propose a Game Theory based
Relay Assignment scheme GTRA, in which the process
of relay assignment is modeled as a non-cooperative,
mixed-strategy, repeated game, and therelaying candidates
are modeled as players. Packet transmissions between
a source and a destination are modeled as repeated
stages in the multi-stage game. At every stage of the
proposed game, each player plays against all the other
players, and determines whether to cooperates with the
communication link to assist the communication between
thesourceand destination in adistributed manner. To adapt
to dynamic environments, a modified-regret-matching
(MRM) algorithm [24] is utilized by players to learn
optimal strategies and to orient the game to converge to
a set of correlated equilibrium (CEs) [23]. To evaluate
the performance of GTRA, we compare it with another
game theory based approach BR [19], which models the
processof relay assignment asafictitioustwo player game.
Simulation results have shown that GTRA outperforms BR
in terms of network throught, especially in environments
where the channel fading becomes more severe. It is also
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Figure 1. Cooperative communications with relay assignment

shown that GTRA can converge to a set of CE in a short
period, which enables the GTRA to fit well in dynamic
environments.

Therest of thepaper isorganized asfollows. Wepresent
the system model in Section II. Section III formulates the
problem of relay assignment asamixed-strategy game, and
shows how to orient thegameto converge to aset of CE(s)
by using adaptive learning algorithms. The performance
analysis is presented in Section IV. Finally, Section V
concludes the paper and discusses the future research
directions.

2. SYSTEM MODEL

2.1. Cooperative Communication Model

As shown in Fig. 1, we consider a wireless network
consisting of uniformly and randomly distributed nodes,
which are functionally equivalent in terms of radio
communications, signal processing, and power supply.
Multiple pairs of source and destination nodes are
randomly selected for data packet transmissions. For a
pair of source s and destination d, we assume that there
exits a number of common-neighboring nodes N which
are connected with both of s and d, as nodes are usually
densely deployed. Therefore, a node, e.g., node ni ∈ N ,
may overhear thepacket transmission between s and d due
to the broadcast nature of the wireless medium. Node ni

may cooperatewith thecommunication link between s and
d by retransmitting the packet overheard from s.

We consider the use of decode-and-forward (DaF)
[16] as the cooperative protocol, which operates in two
phases, namely, direct transmission and relay transmission.
In the direct transmission phase, the source transmits a
packet to the destination and all the relaying candidates.
In the relay transmission phase, a relay is chosen
from the relaying candidates to retransmit the packet
that overheard in the direct transmission phase to the
destination. Then, the destination combines the signals
received from both the source and the relay, and applies
maximal ratio combining (MRC) [25] for optimal packet
decoding. To reduce network operations and power

2 Wirel. Commun. Mob. Comput. 2010; 00:1–10 c© 2010 John Wiley & Sons, Ltd.
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consumption, the relay transmission will be invoked only
if apacket transmission fails in thedirect transmission. We
assume that the destination can feedback the improvement
on received signals’ signal-to-noise-ratio (SNR) to the
assigned relay by using acknowledgment (ACK) or
negative-acknowledgment (NACK) packets with extended
data fields.

2.2. Wireless Channel Model

The wireless channel is modeled as a log-distance
shadowing path losschannel which isdefined asPL(d) =
PL(d0) + 10 · η · log( d

d0
) + Xσ , where PL(d) is the

path loss at distance d, PL(d0) is the known path loss
at a reference distance d0, η is the path loss exponent,
and Xσ is a zero-mean Gaussian random variable with
standard deviation σ. For the links between two nodes,
e.g., i and j, thechannel coefficient hij which captures the
effects of path-loss, shadowing, and fading, are assumed
to be reciprocal, i.e., hij = hji. The channel coefficients
are constant for a given transmitted block, or a codeword,
but are independent and identically distributed (i.i.d.) for
different blocks[11]. For different links, thechannel fading
coefficients are statistically i.i.d., which is a reasonable
assumption as nodes areusually spatially deployed [26].

3. ANALYSIS OF THE PROPOSED
GAME

3.1. Description of The Proposed Game

The process of relay assignment is modeled as a non-
cooperative, mixed strategy, repeated game G, which is
denoted asG = (N, A, U), where

• N = {n1, · · · , nm} denotes the set of players;
• A = {A1, · · · , Am} denotes the set of actions;
• U = {u1, · · · , um} denotes the set of utility

functions.

In theproposed game, thenodesaremodeled asrational
players, which means that the nodes are expected to
follow acommon set of strategiesand choose actions from
the strategies to maximize their utilities. In a distributed
system, the nodes behaves selfishly, i.e., a node always
chooses actions to maximize its own utility, without
considering the utilities of other nodes. For a player, e.g.,
ni, the strategy Ai consists of two actions, i.e., Ai =
{cc, ncc}, where cc denotes that the player ni decides to
cooperates with the communication link between s and d

by retransmitting the overheard packet, and ncc denotes
that ni chooses to remain silent. As a mixed-strategy
game, each player takes its actions in accordance with a
probability distribution. That is, the player ni chooses the
actions of cc and ncc with the probabilities of pi(cc) and
pi(ncc), respectively, such that pi(cc) + pi(ncc) = 1.

Since the number of packets transmitted between the
source and destination is often assumed to be large, we

model the process of relay assignment as a multi-stage
game, and the process of relay assignment iterates in each
stageof thegame. Each candidatesimultaneously playsthe
game against the other candidates in a distributed manner.
Whether a candidate cooperates with a communication
link or not depends on the payoff it may obtain. As
the environment is assumed to be dynamic, each player,
e.g., ni, updates its strategy by adjusting the probability
distribution over the actions of cc and ncc, according to
the link qualitiesbetween s → ni (source-relay) and ni →
d (relay-destination).

Each packet transmission is modeled as a stage in the
multi-stage game and consists of the following steps:

1. Thesource transmitsapacket to thedestination and
all the players.

2. Each player chooses an action of cc or ncc

autonomously and simultaneously, based on the
probability distribution of pi(cc) and pi(ncc),
respectively.

3. Each player evaluates the quality of the selected
action by computing the obtained payoff.

4. Each relay updates its strategy by adjusting the
probability distribution of pi(cc) and pi(ncc).

3.2. Payoff Calculation

In this game theory based approach, payoff is used to
describe the difference between the benefit, i.e., improve-
ment on link quality achieved by relay retransmission, and
the cost associated, i.e., the channel occupancy time of a
relay, and the energy consumed by the relay. The utility
function designed to compute the payoff is defined as

ui = ω1
SNRs,ni,d − SNRs,d

SNRs,d

− (ω2
Tni,tx − Tni,rx

Tavr

+ω3
Pni

Pm

), (1)

where SNRs,d denotes the SNR of the received signal
at the destination d that is transmitted by the source s in
the direct transmission phase, and SNRs,ni ,d denotes the
SNR of the signal that combines the signals received from
the source s and the selected relay ni, respectively. Tni,tx

and Tni,rx represent the packet retransmitting time and
the packet receiving time at the relay ni, respectively. The
value difference between Tni,tx and Tni,rx reflects the
packet processing, queuing, and channel accesscontention
delays at node ni. Tavr is the average amount of time
needed for preparing a packet retransmission without
considering processing, queuing, and channel access
contention delays. Tavr iscalculated as

Tavr = TTA + TBO, (2)

where TTA denotes the transceiver’s receiving to
transmitting turnover time which is a constant value for
a specific radio hardware, and TBO is the average backoff
time at ni without any channel contention, and the value
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is determined by the underlying medium access control
(MAC) layer protocol.

Pni is the transmission power level of player ni. Pm is
the medium power level between Pmin and Pmax, where
Pmin and Pmax are theminimum and maximum available
transmission power levels of player ni.

ω1, ω2, and ω3 are the weighting factors for the metrics
of SNR, delay, and energy consumption, respectively. The
values of the weighting factors can be adjusted to adapt to
the QoSrequirements of the communication link.

In (1), thefirst term represents the improvement (in per-
centage) on the link quality in termsof SNR by employing
the relay transmission. The second term denotes the rela-
tive delay for preparing a packet retransmission, including
processing, queuing, and channel accesscontention delays.
The third term represents the relative energy efficiency,
compared with using a fixed, medium transmission power
level. If aplayer takes theaction of cc, theachieved payoff
computed by using (1) reflects both the benefit and cost;
otherwise if a player chooses the action of ncc, the payoff
is zero, as there is neither benefit nor cost caused by the
action.

3.3. Correlated Equilibrium

In a game, if players can receive a signal containing
strategy recommendations from a central coordinator, and
all theplayers follow therecommendations on how to play
the game, the outcome of the game can converge to a set
of CE(s), which is often the most system efficient state of
the game [27]. In a CE, it is the best interest of a player
to follow the recommendations, i.e., a player will not get
a higher payoff by taking any other actions, provided all
other players follow the recommendations. In the context
of relay assignment, a CE can be interpreted as a steady
state, as none of the nodes has incentive to unilaterally
deviate from the recommendation profile to increase its
payoff.

For a game, a probability distribution p is a CE of the
game, if and only if ∀ ni ∈ N , ai ∈ Ai, ∀a

′

i ∈ Ai, it holds
that

X

a−i∈A−i

p(ai, a−i)
h

ui(a
′

i, a−i) − ui(ai, a−i)
i

≤ 0, (3)

or equivalently,

X

a−i∈A−i

p(a−i|ai)
h

ui(a
′

i, a−i) − ui(ai, a−i)
i

≤ 0, (4)

where Ai denotes ni’s action space, and A−i denotes
the action space of ni’s opponents, i.e., all player except
ni. ai is the action chosen by ni from Ai, and a−i

is the action combination of ni’s opponents. ui(ai, a−i)
is ni’s obtained payoff by taking the action of ai, and
its opponents taking the action combination of a−i.
p(ai, a−i) is the joint probability distribution over actions

for all players. Eq. (4) can be interpreted as that when
the player ni is recommended to choose action ai, then
choosing a

′

i (a
′

i ∈ Ai, a
′

i 6= ai) will not lead to a higher
payoff.

3.4. Convergence to Correlated Equilibrium

Orienting the relay assignment game to converge to a set
of CE(s) isnot trivial, asacentral coordinator broadcasting
recommendations on how to play the game is often
not available in distributed wireless networks. A feasible
approach [28] of orienting agameto aset of CE(s) isusing
thecommon history of thegameasacoordinator. That is, a
game can converge to a set of CE(s) if each player adjusts
its strategy by tracking a series of regret values, which
are quantitative measures for not taking certain actions in
previous stages.

3.4.1. Calculation of Regret Values
Regret-matching (RM) [28], also called no-regret

learning, can be used by players to calculate the regret
values.

Assuming player ni has taken action ai at each of
the past M stages, the difference of average payoff
DM

i (a
′

i, ai) between the player that has actually obtained
and the player that would have obtained if it had taken the
action a

′

i instead of action ai isdefined as

D
M
i (a

′

i, ai) =
1

M

X

m≤M

(um
i (a

′

i, a−i) − u
m
i (ai, a−i)),

(5)
where um

i (a
′

i, a−i) is the payoff the player would have
obtained if the player had taken action a

′

i at stage m, and
um

i (ai, a−i) is the payoff the player has actually obtained
by taking action ai at stagem.

For any two actions a
′

i and ai, the regret value for not
taking action a

′

i at the previous M stages is defined as:

R
M
i (a

′

i, ai) = max{DM
i (a

′

i, a−i), 0}. (6)

The regret value is proportional to the difference of the
average payoffs, and is lower bounded by zero to ensure
that the probabilities of taking any actions are positive.
If the regret value is zero, it means that the player has
obtained ahigher payoff by taking action ai than taking a

′

i,
and thus there is no regret. Otherwise, if the regret value
is greater than zero, it means that the player would have
obtained a higher payoff if the player had taken action a

′

i.
As observed in (5) and (6), the implementation of

RM requires that the player should know the payoffs
it would have obtained if its actions in previous stages
had been different from the actions that the player has
actually taken. However, it is difficult for a player to
compute the payoff that the corresponding action has not
been taken. A common approach [27] in the literature
is that using a coordinator broadcasting references to all
the players at each stage of the game, indicating the

4 Wirel. Commun. Mob. Comput. 2010; 00:1–10 c© 2010 John Wiley & Sons, Ltd.
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potential payoffs that players would have obtained if the
players had taken certain actions in the previous stage.
By observing the references, the players can compute the
payoff differences and thus calculate the regret values.
However, this approach is often not feasible in distributed
wirelessnetworkswherein central coordinating isoften not
available.

MRM has been proposed for players to estimate the
payoffs that the corresponding actions have not been
actually taken, by only using the available historical
information. That is, a player only need to know the
probability distribution over its actions, and the payoffs
it has obtained in the previous stages, to determine the
probabilities of actions from the actually realizations only.
MRM can be interpreted as a reinforcement or stimulus-
response mechanism, as in the procedure of MRM, a
relative high payoff at stage m will tend to increase the
probability of playing the same action at stagem + 1.

In MRM, thedifferenceof theaveragepayoffsof player
ni would have obtained if it had taken the action a

′

i every
time in the previous stages instead of taking ai is defined
as

C
M
i (a

′

i, ai) =
1

M

X

m≤M

pm
i (a

′

i)

pm
i (ai)

u
m
i (ai, a−i)

−
1

M

X

m≤M

u
m
i (ai, a−i), (7)

where pm
i (a

′

i) and pm
i (ai) denote the probabilities of

taking a
′

i and ai at stage m, respectively. The first term in
(7) isan estimation of theaverage payoff the player would
have obtained if player ni had taken the action of a

′

i in
the previous M stages; and the second term is the average
payoff that player ni hasactually obtained by taking action
ai at every stage in the past M stages.

Themodified regret valueof not playing a
′

i isdefined as

Q
M
i (a

′

i, ai) = max(CM
i (a

′

i, ai), 0) (8)

Eq. (7) and (8) show that aplayer can estimate its regret
value of not taking a certain action by only using locally
available information, i.e, the probabilities of actions, and
the payoffs actually obtained in the previous stages.

3.4.2. Strategy update: adjusting probability
distribution of actions

To maximize payoffs in a multi-stage game, a
player updates its strategy by adjusting the probability
distribution over different actions throughout the game. In
MRM, aplayer, e.g., ni, updates itsprobabilitiesof actions
at stagem + 1 as:

p
m+1
i (a

′

i) = (1 −
δ

mγ
)min( 1

µ
Q

m
i (a

′

i, ai),
1

Ki − 1
) +

δ

mγ

1

Ki

;

p
m+1
i (ai) = 1 −

X

a
′

i
6=ai

p
m+1
i (a

′

i),

(9)

where a
′

i and ai ∈ Ai and a
′

i 6= ai, Ki is the number
of actions available for player ni, µ is a sufficiently
large number which controls the probabilities of action
switching and convergence speed. To ensure the game
converge to a limit CE, the term δ

mγ decreases to zero as
m increases, where 0 < δ < 1 and 0 < γ < 0.25. More
details on parameter settings can be found in [24].

Eq. (9) can beinterpreted asfollows. Thefirst term, with
weight (1 − δ

mγ ), denotes themodified regret value of not

taking a
′

i, and shows how strongly the player intends to
switch from ai to a

′

i at the next stage m + 1. The second
term, with weight δ

mγ , denotes the uniform distribution
over the available actions of ni. This uniform distribution
guarantees that all possible actions at stage m + 1 can be
taken with theprobabilitiesof δ

mγ at least. Thefirst term is
upper bounded to ensure that the sum of the probabilities
does not exceed one.

The mathematic property of (9) shows that if an action
can get a relative high payoff at stages m, then the
belief of taking the same action at m + 1 is reinforced.
For an action, a higher payoff will generate a greater
reinforcement. All the effects, e.g., belief reinforcement,
action switching, decrease with the evolution of the game,
asm increases over time.

3.5. GTRA Algorithm based on MRM Learning

In the relay selection game, for player ni, theprobabilities
of taking actions cc and ncc at stage m are denoted as
pm

i (cc) and pm
i (ncc), respectively. Thepseudo codeof the

GTRA algorithm implemented at ni is listed in Algorithm
1.

Algorithm 1 The GTRA algorithm based on MRM
learning

begin
initialization

Generate an arbitrarily probability distribution of p0
i (cc) and p0

i (ncc),
and p0

i (cc) + p0
i (ncc) =1.

for m=1,2,3, · · ·
1. Compute the dif ferenceof average payoff Cm

i (a
′

i, ai) using (7).

2. Compute the regret valueQm
i (a

′

i, ai) using (8).
3. Updatetheprobability distribution p

m+1

i
(cc) and p

m+1

i
(ncc) at stage

m + 1 using (9).
if cc is the action chosen at each of them stages,
then adjust theprobabilities of taken actionsof ncc and cc as:

p
m+1

i
(ncc) = (1 − δ

mγ )min( 1
u

Qm
i (ncc, cc), 1) + δ

mγ ;

p
m+1

i
(cc) = 1 − p

m+1

i
(ncc).

else adjust theprobabilities of taken actionsof cc and ncc as:
p

m+1

i
(cc) = (1 − δ

mγ ) min( 1
u

Qm
i (cc, ncc), 1) + δ

2mγ ;

p
m+1

i
(ncc) = 1 − p

m+1

i
(cc).

end for
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3.6. Convergence of the GTRA Algorithm

For the number of stages M , the relative frequency of
players’ action a played until M stages is defined as

zM (a) =
1

M
|{m ≤ M : am = a}| , (10)

where am denotes all the users’ action at stage m. It has
been proved in [24] that zM is guaranteed to converge
almost surly at m → ∞ to the set of CE(s) of the
game G, if each player plays according to the adaptive
MRM learning procedure, and adjusts its probability
distribution over actions as defined in (9). As the number
of packets transmitted from the source to the destination
is often assumed to be large, i.e., the number of stages is
sufficiently large, therelay assignment gamewill converge
to a set of CE(s).

4. PERFORMANCE EVALUATION

To study the performance of GTRA, We compare it with
BR, which models the process of relay assignment as
a fictitious game. In BR, a player deems all the other
players in the game as a fictitious opponent and plays
against the opponent. At every stage of the game, if
a player estimates that the retransmission probability
of the fictitious opponent at the stage is less than the
retransmission probability at themixed NE, theplayer will
retransmit the packet; otherwise, the player will remain
silent.

4.1. Simulation Environment

We simulate a WSN where 20 sensor nodes are randomly
distributed in a 50m × 50m area. A constant bit rate
(CBR) traffic with 5 packets per second is used as the
communication pattern, and the source and destination
nodes are chosen randomly in each simulation run. We
define the network lifetime is the time when the first node
exhausts its battery’s energy. Table I lists the detailed
simulation parameters.

TheCastalia[29, 30] wirelesssensor network simulator,
which is based on the OMNeT++ [31, 32] discrete event
simulation platform, isused asthesimulation environment.
Thedatalink layer in Castaliaismodified to facilitateMRC
combining and decoding, and wealso extend theACK and
NACK signals with new fields to feedback the received
signals’ SNR information.

4.2. Performance Evaluation

Fig. 2 illustrates the evolution of the GTRA game in which
5 players cooperating with a source-destination link, and
δ and γ are set to 0.5 and 0.1, respectively. In this game,
the total number of joint action space is 32, as each player
either chooses cc or ncc in a distributed manner.

The result shows that a player takes its actions of cc

and ncc with arbitrary probabilities in the beginning of

Table I. Simulation Parameters

Parameters Value
Wirelesschannel model log shadowing path loss channel
Path loss exponent 2.4
Channel deviation (in dB) 1
Collision model Additive interferencemodel
Physical and MAC layer IEEE 802.15.4 standard
Packet length 50 bytes
Transmitting power level [-25, -15, -10, -7, -5, -3, -1, 0] dbm
Node’s initial energy 12 J
Data transmission rate 250 kbps
Simulation time 100 s
ω1 0.5
ω2 0.3
ω3 0.2

Figure 2. Evolution of the GTRA game

the game. Then, each player adjusts the probabilities of
different actions by computing a series of regret values.
After about 60 iterations, the GTRA game converges, i.e.,
the joint probability distribution of players converge to
a set of CEs. We can observe that the 2 joint actions,
i.e., (ncc, cc, ncc, ncc, ncc) and (ncc, ncc, ncc, ncc, cc)
are chosen with probabilities of about 0.74 and 0.24,
respectively. The other joint probability distributions are
all of small values, i.e., less than 0.01 (we only plot
the curves of 6 joint probabilities because of limited
space). Theresult can be interpreted as follows. A strategy
recommendation signal, generated at each player by using
the MRM algorithm based on historical information,
recommends the players on how to play the relay
assignment game. That is, with the probabilities of about
0.74 and 0.24, the signal recommends the player n2 and
n5 to act as relays, respectively. At the same time, the
signal recommends the other players to remain silent.
The joint probabilities except p(ncc, cc, ncc, ncc, ncc)
and p(ncc, ncc, ncc, ncc, cc) are all of very small values,
which means that the possibilities of joint actions
except the two joint actions (ncc, cc, ncc, ncc, ncc) and
(ncc, ncc, ncc, ncc, cc) can be neglected. It can be also
observed in Fig. 2 that there are some deviations from the
recommended strategies even after the game converges.
The are two reasons for the strategy deviation. First, as
a mixed strategy game, a player takes its actions with

6 Wirel. Commun. Mob. Comput. 2010; 00:1–10 c© 2010 John Wiley & Sons, Ltd.
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Figure 3. Network throughput versus channel deviation σ

a probability distribution, which means that the player’s
strategy is of a probabilistic nature throughout the game.
The other reason is the result of applying the MRM based
algorithm. That is, a player takes each of its actions with
the probability of δ

mγ at least at every stage, as shown in
(9), to ensure that all actions havechances to be evaluated.
By doing so, a player explores the dynamic environment
continuously.

To investigate the performance of GTRA in a wireless
channel with different fading, the average network
throughput versus thechannel deviation isshown in Fig. 3.

Thesimulation resultsshow that GTRA outperformsBR,
especially when the channel deviation σ becomes higher.
We explain this as follows. The parameter of Xσ with
standard deviation σ reflects the signal attenuation caused
by the channel fading. That is, the higher the channel
deviation σ, the more variation of the instantaneous
strength of the received signals. In a wirelesschannel with
higher variations, packets transmitted between a source
and destination are more likely to becorrupted. Therefore,
it ismorecritical to choose thebest relay to cooperatewith
the communication link to help the packet delivery. In BR,
a player, e.g., ni, assumes that its opponent n−i’s strategy
is stationary, and estimates n−i’s possible behavior by
simply tracking the frequency of actions that has been
taken by n−i in previous stages. This approach works
well in static environments but does not fit in dynamic
environments. In contrast, GTRA is more adaptive in relay
assignment, as players continuously evaluate the qualities
of the actions that have been taken in previous stages, as
well as evaluating the actions that have not been taken
by using the adaptive learning algorithm MRM. Then,
players update their strategies by adjusting the probability
distribution of the actions based on the payoff differences.
Therefore, the flexible nature of the learning algorithm
allowsGTRA to adapt to dynamic environments, especially
in networks with varying link qualities.

Fig. 4 and Fig. 5 show the impacts of the weighting
factor ω3 for energy consumption on the performance of
network throughput and lifetime, respectively.

Figure 4. Network throughput versus weighting factor for energy
consumption

Figure 5. Network lifetime versus weighting factor for energy
consumption

Fig. 4 shows that the network throughput decreases
with the increment of ω3. The reason is that when ω3 is
small, the benefit of acting as a relay (SNR improvement)
outweighs the cost (energy consumption), thus players
tend to retransmit packets to obtain higher payoffs which
lead to a better performance on network throughput.
However, when the ω3 increases over a certain value,
the cost becomes a dominating factor in computing the
payoffs. In order to obtain higher payoffs, players tend
to remain silent instead of retransmitting packets, which
results in a lower network throughput.

Fig. 5 illustrates that the network lifetime alway
increaseswith theincrement of ω3. Thereason isthat when
ω3 becomes sufficient large, thecost isan important factor
in payoff computing. Thus, all players tend to remain
silent instead of retransmitting packets, which leads to a
longer network lifetime. However, as observed in Fig. 4
and Fig. 5, the longer lifetime is achieved by sacrificing
the performance on network throughput. Therefore, a
tradeoff must be considered when choosing the value of
the weighting factor ω3.

Wirel. Commun. Mob. Comput. 2010; 00:1–10 c© 2010 John Wiley & Sons, Ltd. 7
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5. CONCLUSIONS AND FUTURE
RESEARCH

In this paper, we have studied the problem of relay
assignment for cooperative communications, and have
formulated the problem as a non-cooperative, mixed
strategy, and repeated game, in which each player plays
against all the other players, and determines whether to
cooperate with a communication link on a packet-by-
packet basis in a distributed manner. To learn optimal
cooperating strategiesin dynamic environments, theMRM
adaptive learning algorithm has been implemented at each
player to adjust theprobability distribution over actions, as
well as orienting the game to converge to a set of CE(s),
Simulation results have shown that GTRA outperforms
BR in terms of network throughput, and can converge in
a short period that enables it to work well in dynamic
environments.

In future research, we will examine the issue of
system fairness to ensure that each node to achieve
an effort-balance, and to receive a fair share of the
channel access in both retransmitting packets for other
nodes and sending its own packets. Furthermore, we
will also consider employing a power allocation scheme
to prolong the network lifetime, as well as reducing
concurrent transmission interferences to improve the
network performance.
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