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Abstract—Compared with conventional wireless sensor net-
works (WSNs) operating based on the client–server computing
model, mobile agent (MA)-based WSNs can facilitate agent-based
data aggregation and energy-efficient data collection. In MA sys-
tems, it has been known that finding the optimal itinerary of
an MA is nondeterministic polynomial-time hard (NP-hard) and
is still an open area of research. In this paper, we consider the
impact of both data aggregation and energy efficiency in itinerary
selection. We first propose the Itinerary Energy Minimum for
First-source-selection (IEMF) algorithm. Then, the itinerary en-
ergy minimum algorithm (IEMA), which is the iterative version
of IEMF, is described. This paper further presents a generic
framework for the multiagent itinerary planning (MIP) solution,
i.e., the determination of the number of MAs, allocating a subset
of source nodes to each agent and itinerary planning for each MA.
Our simulation results have demonstrated that IEMF provides
higher energy efficiency and lower delay, compared with existing
single-agent itinerary planning (SIP) algorithms, and IEMA incre-
mentally enhances IEMF at the cost of computational complexity.
The extensive experiments also show the effectiveness of MIP
algorithms when compared with SIP solutions.

Index Terms—Data aggregation, energy efficiency, mobile agent
(MA), wireless sensor networks (WSNs).
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I. INTRODUCTION

THE APPLICATION-SPECIFIC nature of wireless sensor
networks (WSNs) requires that sensor nodes have various

capabilities for diverse applications. It would be impractical to
store all of the programs needed in the local memory of embed-
ded sensors to run every possible application, due to the tight
memory constraints. A mobile agent (MA) is a special kind of
software that migrates among sensor nodes to autonomously
carry out task(s) in response to changing conditions in the
network environment to achieve the objectives of the agent
dispatcher (i.e., the sink node). The use of MAs to dynamically
deploy new applications in WSNs has been proven to be an
effective method to address this challenge [1]–[7].

In [1], the agent design in WSNs is decomposed into four
components, i.e., architecture, itinerary planning, middleware
system design, and agent cooperation. Among the four compo-
nents, itinerary planning determines the order of source nodes
to be visited during agent migration, which has a significant
impact on the energy performance of the MA systems. It has
been shown that finding an optimal itinerary is nondetermin-
istic polynomial-time hard (NP-hard) [3]. Therefore, heuristic
algorithms are generally used to compute itineraries with sub-
optimal performance.

In [2], two simple heuristic algorithms are proposed: 1) the
local closest first (LCF) scheme, which searches for the next
node with the shortest distance to the current node, and
2) the global closest first (GCF) scheme, which searches for
the next node closest to the sink. These two schemes only
consider the spatial distances between sensor nodes and, thus,
may not be energy efficient in many cases. Mobile Agent-
based Directed Diffusion (MADD) [4] is similar with LCF but
differs in selecting the first source node. MADD selects the
farthest source node from the sink as the first source. In [3],
a genetic algorithm (GA) is proposed to produce near-optimal
itinerary results in WSNs. Its main components include an
encoding mechanism, crossover and mutation operations, and
an evaluation function.

Some previous schemes (e.g., LCF, GCF [2], and GA [3])
are all based on the assumption of high redundancy among the
sensory data, which can be fused into a single data packet with a
fixed size. This implies that a perfect data aggregation model is
used. The assumption limits the application scope of WSNs. To
address this limitation, we present a general data aggregation
model, which facilitates a wide range of applications.

In this paper, we focus on designing energy-efficient itiner-
ary planning algorithms while relaxing the aforementioned
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TABLE I
NOTATION

assumption. We first propose an Itinerary Energy Minimum for
First-source-selection (IEMF) algorithm, which extends LCF
by considering the estimated communication cost. In IEMF,
the impact of both data aggregation and energy efficiency
is taken into account to obtain an energy-efficient itinerary.
The scheme is quite general in the sense that relies on no
specific network architecture (e.g., [2] assumes a cluster-based
networking environment).

We then propose an Itinerary Energy Minimum Algorithm
(IEMA), which is an iterative version of IEMF. During each
iteration, IEMA selects the best node according to IEMF as the
next source to visit among the remaining set of source nodes.
We show that, with more iterations, the suboptimal itinerary
can be progressively improved and that the major reduction
in average energy consumption is achieved for the first few
iterations. We can thus trade off between energy efficiency
and computational complexity based on specific application
requirements.

Although our proposed IEMF and IEMA approaches ex-
hibit higher performance in terms of energy efficiency, com-
pared with the existing solutions, the limitation of utilizing
a single agent to perform the whole task makes the algo-
rithm unscalable with a large number of source nodes to be
visited.

For large-scale sensor networks, with many nodes to be
visited, single-agent-based data collection may exhibit two
pitfalls.

1) Large delay: Extensive delay is needed when a single
agent works for networks comprising hundreds or more
sensor nodes.

2) Unbalanced load: There are two kinds of unbalancing
problems while using a single agent. First, in the per-
spective of the whole network, the traffic load is put
on the nodes along the single flow. Therefore, sensor
nodes traversed along the itinerary will quickly deplete
energy than other nodes. Second, from the perspective
of the itinerary, the agent size (since it includes data)
continuously increases while it visits source nodes, and
so, the agent transmissions will consume more energy in
its itinerary back to the sink node.

In this paper, we further study multiagent itinerary planning
(MIP) algorithms to address the preceding issue and present
a generic framework for the design of a MIP algorithm. The
notation used in this paper is given in Table I. The rest of
this paper is organized as follows: The single-agent itinerary
planning (SIP) problem is formulated in Section II. We present
IEMF and IEMA in Section III. The MIP problem is explained
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in Section IV. We analyze the computational and space com-
plexities in Section V. Our simulation studies are reported in
Section VI. Section VII concludes this paper and presents the
future work.

II. SINGLE-AGENT ITINERARY PLANNING PROBLEM

A. Data Aggregation Model

The degree of correlation between sensory data from two
sensor nodes is closely related to the distance between them,
as well as a particular application scenario. Typically, closely
located sensors are very likely to generate data with high redun-
dancy. In densely populated WSNs, data aggregation becomes a
very important function for energy conservation, which reduces
the redundancy in sensor data and, thus, decreases the volume
of data to be transmitted. Many traditional data aggregation
schemes exploit a specific network structure (e.g., a cluster-
based network [2] or forming a data aggregation tree structure
[9]). In MA-based WSNs, an MA visits the source nodes one
after the other. At each source node, the MA collects sensory
data and then performs data aggregation and removes any ex-
isting redundancy, depending on the data aggregation function.
There is no need for a specific topology structure. However, the
data aggregation and energy performance are highly dependent
on the order in which the source nodes are visited, i.e., the
itinerary.

Consider an MA dispatched by the sink node to collect
data from n source nodes. Let lproc be the size of the MA
processing code, Shead be the size of the agent packet header,
and l0ma be the agent size when it is first dispatched by the
sink node. Then, we have l0ma = lproc + Shead. Let r ∈ [0, 1)
be the reduction ratio in sensory data by agent-assisted local
processing and ldata be the size of raw data at a source node.
The reduced data payload collected by the agent at each source,
which is denoted by lrd, is lrd = (1 − r) · ldata. Let lkma be
the agent size when it leaves the kth source (1 ≤ k ≤ n).
Since there is no data aggregation at the first source, we have
l1ma = l0ma + lrd.

When the agent visits the second source node, it begins to
perform data aggregation to reduce the redundancy between the
data collected at the current source and the data it has carried.
Let ρ ∈ [0, 1] denote the data aggregation ratio, which is a
measure of the compression performance. The MA size, after it
leaves the second source node, is l2ma = l0ma + lrd + (1 − ρ)lrd,
and so forth. For the sake of simplicity, we assume that r, ρ,
and ldata are identical for every source.1 After visiting the kth
source node, we have

lkma = lk−1
ma + (1 − ρ)lrd

= l0ma + [1 + (k − 1)(1 − ρ)] lrd. (1)

After visiting all the n source nodes, the MA’s size is lnma

in the range of [l0ma + lrd, l0ma + nlrd], depending on ρ. The

1The case of heterogeneous ri, ρi, and Sdata,i at each source node i can be
easily handled in a similar fashion.

lower bound l0ma + lrd corresponds to a perfect data aggregation
model (ρ = 1), where multiple sensory data are compressed
into a single and fixed one [2], [3], whereas the upper bound
l0ma + nlrd corresponds to the case of no data aggregation
performed at the MA (ρ = 0).

B. Generic SIP Algorithm

Algorithm 1 SIP(u, V, t): a SIP algorithm with a greedy
approach

begin
notation

u is the starting point of an agent.
V denotes the set of source nodes to be visited by the
agent.
t is the sink node.
S is the sequence of n nodes in an itinerary, which is
an array.
f(p, T, t) is a function that returns the next source
node determined by a particular next-source-selection
algorithm.

initialization
T ← V .
p ← u.

for i = 1 to n do
S[i] ← f(p, T, t).
p ← S[i].
T ← T − {S[i]}.

end for
Return S.

We state our assumptions and define SIP algorithm in this
section. Specifically, it is assumed that one node (i.e., the sink
node) is more powerful than the others for computing itinerary
planning algorithms. The issues of node mobility and node
failure are not considered in this paper.2 We assume that the
set of source nodes to be visited is predetermined. In addition,
the location information of the source nodes is also available
at the sink node [2], [3]. Under these assumptions, we actually
consider static itinerary planning [1], where an itinerary is cho-
sen based on the location information of the source nodes. Note
that these are the general assumptions made in the references
discussed in this paper.

Let n represent the number of source nodes to be visited and
V denote the set of source nodes to be visited by an MA. In
addition, let u and t be the starting point and ending point of an
agent, respectively. The ending point t is always the sink node.
Although, usually, u is set to the sink node, it can also be set to
one of the source nodes when defining an iterative algorithm
(see Section III-C). We define a generic SIP algorithm as a

2An MA may deal with unexpected failures of source nodes. The MA then
changes the visiting order of sensors by skipping the crashed nodes.
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Fig. 1. Estimating communication cost of a tentatively planned itinerary in IEMF.

function SIP(u, V, t). Specifically, we design a SIP algorithm
with two components.

1) Next-source-selection function, which is denoted by
f(p, T, t). Given a source list T , the current starting
point p, and the sink node t, it returns the best source
node to be visited next, among the |T | source candidates.
In LCF [2], f(p, T, t) finds w (w ∈ T ), such that the
distance between p and w is the minimum, i.e., d(p,w) =
min{d(p, j)|j ∈ T}. As for GCF, f(p, T, t) finds w, such
that the distance between w and t is the minimum, i.e.,
d(w, t) = min{d(j, t)|j ∈ T}.

2) SIP algorithm, which is denoted by SIP(u, V, t). Given
V , a starting point u, the sink node t, and a next-source-
selection function f(p, T, t), it computes a planned
itinerary S = S[1]|S[2]| · · · |S[n], where | is concatena-
tion of sequences. The pseudocode of a SIP algorithm is
given in Algorithm 1.

III. PROPOSED SINGLE-AGENT ITINERARY

PLANNING ALGORITHMS

A. Estimated Communication Cost of a Candidate Itinerary

We first show how to estimate the communication cost of
a given itinerary t|S[1]|S[2]| · · · |S[n]|t, which means that an
agent starts from sink t and returns back to t after visiting n
source nodes, as shown in Fig. 1.

Generally, the communication energy consumption for a
packet transmission at a given node consists of the receiving
energy, the control energy, and the transmitting energy. Let ectrl

be the energy spent on control messages exchanged for a suc-
cessful data transmission (e.g., acknowledgement). Let mrx and
mtx be the energy consumption for receiving and transmitting
a data bit, respectively. Let ctx denote the fixed energy cost for
each transmission, which is independent of the packet length.
Without loss of generality, we assume that mtx, mrx, ctx, and
ectrl are the same for every node. Let lrx and ltx be the sizes
of a received and a transmitted packet, respectively. When a
node receives a packet with size of lrx, after local processing,
the size of a transmitted packet by this node (ltx) is differ-
ent. The communication energy consumption at a node (i.e.,
an intermediate node or a source node) can be expressed as

e(lrx, ltx) = mrx · lrx + (mtx · ltx + ctx) + ectrl. (2)

Multiple hops may exist between two adjacent source nodes,
e.g., S[k − 1] and S[k]. Let d(S[k − 1], S[k]) denote the dis-

tance between the two source nodes. In a dense WSN, we
can estimate the hop count between S[k − 1] and S[k] as
Hk

k−1 = �d(S[k − 1], S[k])/R�, where R represents the max-
imum transmission range. When the agent traverses inter-
mediate sensor nodes (not the source nodes), the agent size
remains the same; its size will be increased after visiting
each of the source nodes. Let Ek

k−1 be the communication
energy consumed when the MA moves from S[k − 1] to
S[k] with size lk−1

ma . We estimate the communication energy
cost as

Ek
k−1 = mp · ldata + e

(
0, lk−1

ma

)

+ Hk
k−1 · e

(
lk−1
ma , lk−1

ma

)
+ e

(
lk−1
ma , 0

)
(3)

where mp · ldata is the data-processing energy at S[k − 1];
e(0, lk−1

ma ) is the energy for S[k − 1] to transmit the agent;
Hk

k−1 · e(lk−1
ma , lk−1

ma ) is the energy consumption of intermediate
sensor nodes to relay the agent between S[k − 1] and S[k]; and
e(lk−1

ma , 0) is the energy consumption for S[k] to receive the
agent.

We divide the whole itinerary into three phases, as shown
in Fig. 1.

1) Code-conveying phase, which is the phase when the
processing code is conveyed to the target region, during
which the MA migrates from the sink to the first source
node S[1]. The communication energy consumption in
this phase is denoted by Econv, i.e., Econv = H(t, S[1]) ·
e(l0ma, l

0
ma), where H(t, S[1]) is the estimated hop count

between the sink node and S[1].
2) Roaming phase, which starts from the time when the MA

arrives at the first source node S[1] to the time when it
arrives at the last source node S[n]. The communication
energy consumption in this phase is denoted by Eroam,
where Eroam =

∑n
k=2 Ek

k−1.
3) Returning phase, which starts from the time when the MA

starts processing at the last source node to the time when
it returns to the sink. The communication energy con-
sumption in this phase is denoted by Eback, i.e., Eback =
mp · ldata + e(0, lnma) + H(S[n], t) · e(lnma, l

n
ma), where

mp · ldata is the data-processing energy at the last source
node S[n]; e(0, lnma) is the energy for S[n] to transmit
the agent; and H(S[n], t) · e(lnma, l

n
ma) is the energy con-

sumption of intermediate sensor nodes between the last
source node and the sink node.
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Fig. 2. Choosing different first source nodes results in different total costs. The agent size is assumed to be incremented by 1 at each source. The path-loss
exponent α is set to 2.

Finally, the communication energy of a candidate itinerary is
estimated by

EI = Econv + Eroam + Eback

= Econv +
n∑

k=2

Ek
k−1 + Eback. (4)

B. IEMF Algorithm

Fig. 2 illustrates the problem of LCF. There are three nodes in
the chain of the WSN, i.e., the sink and two source nodes. Based
on LCF, node A will be first visited. Assume that the distance
is one between sink t and node A. The distance between t
and B, and the distance between A and B are 2, respectively.
Let the original agent size be 1, and assume that the agent
size is increased by 1 after visiting each of the sources. We
can calculate the phitinerary segment cost through multiplying
the phitinerary segment distance to the power of the path-loss
exponent by the current agent size. The resulting total cost of
LCF when node A is visited first is 21. If the agent visits node
B first, the total cost is decreased to 15. Thus, LCF performance
can be improved by carefully choosing the first source node in
the itinerary, which is one of the motivations for us to design
the IEMF algorithm.

On the other hand, among the n source nodes in V , different
algorithms may select different source nodes as S[1]. For
example, LCF and GCF select the one that is the closest to the
sink as S[1]; in contrast, MADD selects the farthest source node
from the sink as S[1]. While these studies can be categorized as
pure distance-based selection, IEMF selects a source node as
S[1] by estimating the minimum energy cost.

Specifically, the IEMF algorithm first selects an arbitrary
source node v as a tentative S[1]. The remaining source set
is denoted by V − {v}. Next, v is set as the start point, and
the LCF criterion is used to determine the itinerary for the
n − 1 source nodes in V − {v}. The result of the function
LCF (v, V − {v}, t)3 is the visiting sequence for the remaining
n − 1 source nodes. Then, the entire itinerary sequence starting
from the sink is obtained by t|v|LCF (v, V − {v}, t)|t.

Choosing every source in V as tentative S[1] and finding the
itinerary starting with that source in a round-robin fashion, we
can get n different candidate itineraries and their correspond-
ing energy costs. Among the n candidates, IEMF selects the
itinerary that has the minimum energy cost. The pseudocode of
IEMF is shown in Algorithm 2.

3For the sake of simplicity, LCF (u, V, t) denotes the SIP algorithm by LCF
approach, as detailed in Section IV-B.

Algorithm 2 IEMF(t, V, t): IEMF algorithm

begin
notation

IEMF(t, V, t) is the next-source-selection of IEMF.
S is a sequence of n nodes.
| is the symbol to concatenate two sequences.
LCF (v, T, t) is an itinerary of source nodes planned
by LCF.

initialization
tmp ← ∞.

for each v (v ∈ V ) do
if E(t|v|LCF (v, V − {v}, t)|t) < tmp then

tmp ← E(t|v|LCF (v, V − {v}, t)|t).
S[1] ← v.

end if
end for
IEMF(t, V, t) ← S[1].
S ← S[1]|LCF (S[1], V − {S[1]}, t).
Return S.

C. IEMA Algorithm

IEMF selects the first source (or S[1]) as the one whose
corresponding itinerary is estimated to have the smallest energy
cost among n candidate itineraries. Once S[1] is determined,
the corresponding itinerary is actually determined by the LCF
criterion [2]. In this section, we propose an iterative version of
IEMF called IEMA. Compared with IEMF, in addition to S[1],
IEMA seeks to optimize the remaining itinerary to a certain
degree.

Let κ denote the number of iterations in IEMA. Since each
iteration optimizes one next hop of the itinerary, we have
κ ∈ [0, n]. We denote IEMA with κ iterations by IEMA(κ).
Specifically, LCF and IEMF are the two special cases of IEMA:
LCF is the 0 iteration of IEMA, i.e., IEMA(0); and IEMF is the
1 iteration of IEMA, i.e., IEMA(1).

The pseudocode of IEMA is shown in Algorithm 3. Given
κ, IEMA(κ) only optimizes the first κ source nodes using
the basic IEMF method, as illustrated in Algorithm 2. Here,
IEMF(u, T, t) returns the first node S[1] from the result of
IEMF(u, V, t).

The remaining n − κ source nodes will be simply sorted
through the LCF method. Clearly, κ provides a conve-
nient tradeoff between energy saving and computational
complexity.
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Algorithm 3 IEMA(κ, t, V, t): IEMA(κ) algorithm

begin
initialization

u ← t.
T ← V .

for i = 1 to κ do
S[i] ← IEMF(u, T, t).
u ← S[i].
T ← T − {u}.

end for
S ← S[1]|S[2]| · · · |S[κ]|LCF (u, T, t).
Return S.

D. Performance Analysis

In the following, we prove that IEMA yields the more
energy-efficient itinerary after each iteration. Let I(i → j), 0 ≤
i < j ≤ n, be the itinerary segment from the ith sorted source
(S[i]) to the jth sorted source (S[j]). For example, I(1 → κ −
1) = S[1]|S[2]| · · · |S[k − 1], and I(κ → n) = S[k]| · · · |S[n].
Then, the sorted sequence I(1 → n) is also equal to I(1 →
κ − 1)|I(κ → n).

Proposition 1: Letting Eiema
I(i→j)(κ) denote the energy cost

of I(i → j) using IEMA(κ), we have that Eiema
I(1→n)(κ) ≤

Eiema
I(1→n)(κ − 1), k ∈ [1, 2, . . . , n].

Proof: In the case of k = 1, from Algorithm 2, the cost of
the itinerary selected by IEMF is the minimum among all the n
candidate itineraries. That is, Eiema

I(1→n)(1) ≤ Eiema
I(1→n)(0).

We next recursively prove the general case when κ ≥ 2.
From Algorithm 3, the first κ − 1 source nodes are exactly the
same in both IEMA(κ) and IEMA(κ − 1). The difference be-
tween them is in the remaining source sequences. Thus, we have

Eiema
I(1→m−1)(κ) = Eiema

I(1→m−1)(κ − 1) ∀m ≤ κ. (5)

In the κth iteration of IEMA(κ), only n − κ + 1 sources
are undetermined. Since the κth iteration is the last itera-
tion, the resulting sequence of the remaining sources is equal
to IEMF(S[κ − 1], V − {S[1], S[2], . . . , S[κ − 1]}, t). In con-
trast, for IEMA(κ − 1), since there is no IEMF operation after
the (κ − 1)th iteration, S[κ], . . . , S[n] is equal to LCF (S[κ −
1], V − {S[1], S[2], . . . , S[κ − 1]}, t). Thus, Eiema

I(κ→n)(κ) is

smaller than Eiema
I(κ→n)(κ − 1), according to Algorithm 2.

Based on the preceding analysis and (5), we show
that the energy cost of IEMA(κ) is smaller than that of
IEMA(κ − 1), as

Eiema
I(1→n)(κ) =Eiema

I(1→k−1)(κ) + Eiema
I(κ→n)(κ)

≤Eiema
I(1→κ−1)(κ) + Eiema

I(κ→n)(κ − 1)

=Eiema
I(1→κ−1)(κ − 1) + Eiema

I(κ→n)(κ − 1)

=Eiema
I(1→n)(κ − 1). �

IV. MULTIAGENT ITINERARY PLANNING PROBLEM

While previous studies focus on designing SIP algorithms,
the use of multiple MAs for data collection is more challenging.
This section will discuss the problem of MIP for a large-scale
sensor network.

A. Motivation

The motivation for the MIP problem is hinted from (1)
and (4), which show that the itinerary cost is a quadratically
increasing function of n, thus causing the performance of the
SIP algorithm to deteriorate in large-scale sensor networks. The
end-to-end agent delay exhibits a similar trend as the itinerary
cost. Thus, we are motivated to design a MIP algorithm that
can dispatch multiple MAs, depending on the specific network
parameters, such as the network size, number of source nodes,
reduction ratio, data aggregation ratio, sensor data size, etc.

B. Generic MIP Algorithm

We state our assumptions and define a generic MIP algorithm
in this section.

1) Most of the SIP and MIP algorithms are running at the
sink, which has relatively plenty of resources in terms of
energy and computation.

2) The sink node knows the geographic information of all
the source nodes to be visited.

In fact, the preceding assumptions are common in most of
the solutions presented for the SIP problem. The previous SIP
algorithms assume that the set of source nodes to be visited by
an MA is predetermined. In contrast, our MIP algorithm needs
to exclusively group source nodes for multiple MAs. Finding
an optimal agent number is also an NP-hard problem. Thus,
we propose an iterative framework to cover all the sources by
incrementing the number of MAs.

The generic MIP problem can be divided into three subprob-
lems: 1) determination of the number of MAs; 2) allocating a
subset of source nodes to each agent; and 3) itinerary planning
for each MA. Among these three problems, the third one can
be addressed by SIP algorithms. Thus, the main focus of MIP
algorithm is to solve the first two problems.

For example, in CL-MIP [10], the visiting area of an MA is
determined by the circle centered at a visiting central location
(VCL). Then, the source nodes within the circular area will
be assigned to the MA. The algorithm will iteratively perform
until all the source nodes are allocated to MAs, and the number
of MAs is equivalent to the number of iterations. By compar-
ison, DSG-MIP [11] determines the visiting area of an MA
by partitioning the whole area into directional sectors with a
controllable angle. In BST-MIP [11], a minimum spanning tree
is built with the sink as root and source nodes as tree nodes, and
a balancing factor α is introduced to calculate of the weight of
each edge of the tree. Then, the source nodes in an MA in a
branch stemmed from the sink will be assigned for an MA to
visit. The number of such main branches is also equal to the
number of MAs.
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Since finding optimal itineraries for MAs in a MIP algorithm
is an NP-hard problem, all of the aforementioned heuristic algo-
rithms introduce some adjustable parameters (e.g., radius of the
circular area R in CL-MIP, expanding angle θ in DSG-MIP, and
balancing factor α in BST-MIP) to facilitate a tradeoff between
energy and delay while computing suboptimal itineraries.

For all the three MIP algorithms, an iterative framework can
be summarized. In each iteration, a list of source nodes will
be assigned to a new MA. Then, the itinerary for the MA can
be planned by any SIP algorithm. If there are still-remaining
sources, the aforementioned process will be repeated until all of
the source nodes have been assigned to MAs. The pseudocode
of the iterative MIP framework is shown in Algorithm 4.

Algorithm 4 MIP(V )

notation
V is the set of the original source nodes to be visited.
V ′ denotes the set of the remaining source nodes,
currently.
T denotes the set of grouped source nodes at each
iteration.
k denote the index of MAs.

initialization
V ′ ← V .
k ← 0.

loop
if V ′ is not empty then

k ← k + 1.
Compute T .
V ′ ← V ′ − T .
(phItinerary of MA k) ← SIP(t, T, t).

end if
end loop

Return (Itineraries of MAs 1, 2, . . . , k).

V. COMPLEXITY ANALYSIS

A. Computational Complexity

1) GCF: This essentially utilizes sorting the distances (be-
tween the sink and other sources) to compute the MA
path. Its computational complexity is O(n log n) if using
a comparison-based sorting algorithm (e.g., quick sort).

2) LCF: This has the computational complexity of O(n2) if
the closest neighbor node is obtained by comparing the
distances with the remaining nodes at each step.

3) IEMF: Intuitively, IEMF is deemed to have n times the
complexity of LCF, i.e., O(n3). However, the complexity
can be reduced. As shown in Table II, assume that we
have a network with five source nodes (i.e., node A, B,
C, D, and E). We first sort the source nodes by their
distances to a test source node, which corresponds to a
candidate of S[1] in IEMF(t, V, t) and is given in the
first column in Table II. The computational complexity
of calculating each row in Table II is O((n − 1) log(n −
1)); then, the computational complexity of calculating the

TABLE II
DISTANCE ORDERS OF OTHER SOURCE NODES TO TEST SOURCES

whole table is O(n(n − 1) log(n − 1)) = O(n2 log n).
The complexity of deciding an itinerary starting with a
given node by looking up the table is O(n log n). For
example, an itinerary starting with node A is given as
follows: A, C, D, E, B. Then, IEMF can be finished
by computing the cost of n itineraries with complexity
of O(n2 log n). Thus, the final complexity of IEMF is
O(n2 log n) + O(n2 log n) = O(n2 log n).

4) IEMA: The complexity of IEMA with κ iterations is
O(κ · n2 log n).

5) MIP: Given CL-MIP [10] as example, the computational
complexities of the VCL-selection algorithm and the
source-grouping algorithm are O(n2) and O(n), respec-
tively. Thus, for each iteration of our MIP algorithm,
the computational complexity will depend on the SIP
algorithm. For example, if an SIP (e.g., LCF) has a com-
putational complexity of O(n2), then one iteration of the
LCF-based MIP algorithm will have the computational
complexity of O(n2) + O(n) + O(n2) = O(n2). Then,
the computational complexity of our MIP algorithm is
O(m · n2), where m is the maximum number of MAs. By
the same approach, if using IEMF as the SIP algorithm,
the corresponding MIP algorithm will have the computa-
tional complexity of O(m · n2 log n).

B. Space Complexity

Space complexity will determine whether a heavy-weight
sink node is always needed or whether the algorithms can also
operate in a homogeneous WSN that is purely peer to peer.
Given the number of source nodes of n, the minimum memory
with space complexity of O(n) is required to store the resulting
sequence of the n source nodes after performing the itinerary
planning algorithm.

1) GCF: Before the algorithm executes, it only needs to store
n distances (between the sink and the other n sources).
Thus, the space complexity is O(n).

2) LCF: The matrix of the distance between each
source–sink pair or source–source pair is required prior
to the execution of the algorithm, which requires memory
with space complexity of O(n2). For each iteration of the
algorithm, memory with O(1) is needed to store the in-
formation of the next source. Thus, the space complexity
is O(n2).

3) IEMF: Similarly, it requires memory with a space com-
plexity of O(n2) to store the distance matrix as an LCF.
Then, the space complexity of O(n) is required to store
one itinerary candidate with any of the n source nodes
as the first source node. Thus, the space complexity of
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TABLE III
COMPARISONS OF THE ENERGY–DELAY PRODUCTS OF LCF, IEMF, AND IEMA

O(n2) is needed to store n candidate itineraries. Finally,
the space complexity of the algorithm is O(n2).

4) IEMA: In each iteration, IEMA requires memory with
space complexity of O(n2) to store the n candidate
itineraries as in IEMF and memory with O(1) to
store the resulting next source node. Then, the mem-
ory with O(n2) can be reused for next iteration. Thus,
it has the same space complexity of O(n2) as LCF
and IEMF.

5) MIP: For each iteration of a typical MIP algorithm (e.g.,
CL-MIP [10]), the space complexity will depend on the
SIP algorithm. For example, if an SIP (e.g., LCF, IEMF,
or IEMA) has space complexity of O(n2), then one iter-
ation of the MIP algorithm will have space complexity of
O(n2). Then, the space complexity of the MIP algorithm
is O(m · n2), where m is the maximum number of MAs.

VI. PERFORMANCE EVALUATION

We implement several SIP and MIP algorithms using OP-
NET Modeler and perform extensive simulations. We choose
a network where nodes are uniformly deployed within a field
measuring 1000 m × 500 m. To verify the scaling property
of our algorithms, we select a large-scale network with 800
nodes. The multiple source nodes are randomly distributed
in the network. The sensor application module consists of a
constant-bit-rate source, which generates a sensory data report,
and the default value of its size is 1024 bits long. By default,
the size of sensed (raw) data (ldata) is set to 2048 bits long, the
size of the processing code (lproc) is 1024 bits, the raw data
reduction ratio (r) is 0.8, the data aggregation ratio (ρ) is 0.9,
the MA accessing delay (τ) is 10 ms, and the data-processing
rate (Vp) is 50 Mb/s. For consistency, we use the same energy
consumption model as in [10] and [12].

We consider three performance metrics.

1) Task duration: In an SIP algorithm, it is equivalent to
average end-to-end report delay, which is the average
delay from the time when an MA is dispatched by the sink
to the time when the MA returns to the sink. In the MIP
algorithm, since multiple MAs work in parallel, there
must be one agent that returns to the sink last. Then, the
task duration of a MIP algorithm is the delay of that MA.

2) Average communication energy: This consists of the total
communication energy consumption, including transmis-
sions, receptions, retransmissions, overhearing, and col-

lisions, to obtain each sensory data from all the target
sources.

3) Energy–delay product (EDP): For time-sensitive appli-
cations over energy-constrained WSNs, EDP (calculated
by EDP = energy · delay) gives us a unified view.
The smaller the value of EDP , the better the unified
performance.

In the succeeding sections, we first compare several SIP
algorithms and examine the impact of the number of source
nodes on the performance of the these algorithms. Then, typ-
ically, MIP schemes are compared with a representative SIP
algorithm.

A. Performance Comparison of Representative SIP Algorithms

We set the number of source nodes n to 10, 20, 30, and 40
and obtain a set of results for each case. For a given n value,
we randomly choose the set of source nodes in each simulation
with a different random seed.

Typically, the number of source nodes n has a big impact
on the delay and energy performance; the product of delay and
energy consumption is larger for bigger n value. This is because
a large n means more source nodes to be visited. The MA size
will be larger, and more transmissions will be made. n is a good
indicator of the MA-related traffic load. From the descriptions
of the algorithms, IEMA(0) is actually equivalent to LCF, and
IEMA(1) is equivalent to IEMF.

Let EDPn(κ) denote the EDP of IEMA(κ) in the scenario
with κ iterations and n source nodes (n = 10, 20, 30, 40, κ ≤
n). In addition, we define αn(κ) as the incremental perfor-
mance gain of IEMA(κ), compared with IEMA(0) (i.e., LCF),
as defined in

α(κ) =
EDP (0) − EDP (κ)
EDP (0) − EDP (n)

, 0 ≤ κ ≤ n. (6)

Then, in Table III, EDPn(κ) and αn(κ) with various n and
κ are tabulated.

Since the maximum value of κ is equal to n, we mark
“−” when κ exceeds n. Based on Table III, we have three
observations.

1) αn(κ) is monotonically increasing with κ, which con-
firms that IEMA(κ) always outperforms IEMA(κ − 1).

2) In the first iteration, more than 80% incremental gain
of EDP is obtained. However, as the iteration increases,
the performance gain between two adjacent iterations
becomes marginal.
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Fig. 3. Impact of the number of source nodes on performances. (a) Task duration. (b) Average communication energy (c) EDP.

3) Since most of the incremental gain is obtained in the first
iteration, the simple algorithm IEMF can achieve good
performance with small overhead. Generally, we can de-
termine a suitable κ for the given application quality-of-
service requirements; there is no need to have n iterations
in many cases. In contrast, we find that the GA algorithm
[3] achieves visible improvement only after about 100
iterations. Such fast convergence property of the proposed
scheme is highly desirable.

B. Performance Comparison of MIP Algorithms and
SIP With Varying Number of Source Nodes

Fig. 3(a) shows the task duration comparison among a typical
SIP algorithm (i.e., LCF) and the three MIP schemes. LCF
takes the longest task duration since the single MA has to
visit all source nodes distributed in the network. The value
of end-to-end delay for LCF grows from 0.3 to 1.2 s, along
with the increasing number of source nodes. In contrast, the
task durations of MIP algorithms are much lower. Fig. 3(b)
illustrates the impact of the number of source nodes on energy
cost. In LCF, the energy cost for LCF grows from 0.2 to 0.54 J
per task while the number of source nodes increases. For the
MIP solutions, BST-MIP [12] consumes more energy than
LCF, whereas CL-MIP [10] and DSG-MIP [11] have higher
energy efficiency. Fig. 3(c) evaluates the overall performance
of the LCF and MIP schemes in terms of EDP. Due to the
good performance of MIP algorithms, CL-MIP, DSG-MIP, and
BST-MIP have comparable EDP values, which are much lower
than that of LCF. It demonstrates the effectiveness of the MIP
algorithms.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of itinerary
planning for MAs in dense WSNs. Based on a general data
aggregation model, as well as relaxed assumptions, we have
presented IEMF (an extension of LCF), which achieves im-
proved energy performance by choosing the first source node
to be visited according to the estimated communication cost.
We have also presented IEMA(κ), which is an iterative version

of IEMF, where the selection of the first κ source nodes is
optimized based on the estimated energy costs. We have shown
that the proposed schemes achieve considerable improvements
in both energy saving and delay over the existing schemes,
whereas IEMA(κ) provides a tradeoff between energy cost and
computational complexity. On the other hand, we have consid-
ered the more challenging case of itinerary planning for mul-
tiple MAs and presented a design framework for typical MIP
algorithms. Compared with SIP algorithms, MIP algorithms
may achieve even lower delay and can be flexibly adaptive to
network dynamics in various network scales.
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