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Abstract—New generation mobile devices have become
inevitable to be employed within the realm of ubiquitous
sensing. Especially, smartphones have been increasingly used
for Human Activity Recognition (HAR) based studies. It
is believed that recognizing human-centric activity patterns
accurately enough could give a better understanding of
human behaviors. Further, such ability could give a chance
for assisting individuals in order to enhance the quality of
lives. However, the integration and realization of HAR based
mobile services stand as a significant challenge on resource-
constrained mobile embedded platforms. In this manner, this
paper proposes a novel Discrete Time Inhomogeneous Hidden
Semi-Markov Model (DT-IHS-MM) based generic framework
to address a better realization of HAR based mobile context-
awareness. In addition, we utilize power efficient sensor
management strategies by providing three intuitive methods,
and Constrained Markov Decision Process (CMDP) and Par-
tially Observable Markov Decision Process (POMDP) based
optimal methods. Moreover, a feedback control mechanism
is integrated to balance the tradeoff between accuracy in
context inference and power consumption. In conclusion, the
proposed sensor management methods achieve a 40% overall
enhancement in the power consumption caused by the physical
sensor with respect to overall 85-90% accuracy ratio thanks
to the provided adaptive context inference framework.

Index Terms—Context-aware framework, human activity
recognition, optimal sensing, power efficiency

I. I NTRODUCTION

The ever-increasing technical advances in embedded
systems, together with the proliferation of growing devel-
opment and deployment in small-size sensor technologies,
have enabled smartphones to be re-purposed to recognize
daily occurring human based actions, activities and in-
teractions which mobile device users encounter with the
surrounding environment. Accurately recognizing human
related event patterns, calleduser states, can give a better
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understanding of human behaviors. Such recognition can
also be used to assist individuals to enhance their quality
of lives. Therefore, the inference of a variety of human
activities in a computationally pervasive way within a very
diverse context has drawn much interest in the research area
of ubiquitous sensing.

In the real world, being aware of context and communi-
cating is a key part of human interaction. A context can be
defined as characterization of a specific entity situation such
as user profile, user surrounding, user social interaction
or user activity [1]–[3]. Applying context awareness into
mobile devices enables to have a collection of autonomous,
ambient intelligent and self-operated network nodes (e.g.,
independently acting smartphones) which are well aware of
surrounding context, circumstances and environments. The
evolution of ubiquitous sensing on resource-constrained
mobile devices have empowered the creation of context-
aware middleware [4], [5]. It emerges as a promising
solution for the dynamic integration of highly complex
and rich interactions among virtual world and physical
world. With these capabilities, the new emerging network
architecture would enhance data credibility, quality, privacy
and share-ability by encouraging participation at personal,
social and urban scales and would lead discover the knowl-
edge about human lives and behaviors, and environment in-
teractions/social connections by leveraging the deployment
capacity of smart things (e.g., smartphones, tablets) in order
to collect and analyze the digital traces left by users.

However, heavily use of the built-in smartphone sen-
sors would bring new challenges especially in resource-
constrained hardware platforms. First, continuous capturing
user context through sensory data acquisitions, and second,
inferring desirable hidden information from the context
would put a heavy workload on the smartphone processor
and sensors. Thereby, these operations cause more power
consumption than the device itself does during a regular
run. Eventually, smartphone battery would deplete rapidly.

To address power efficiency in context-awareness, the
best energy saving algorithm would be the one that infuses
into the low level sensory operations by manipulating the
frequentness of sensory sampling intervals. Especially, an
adaptive sensor management mechanism that dynamically
assigns duty cycles and sampling periods in a context-
aware manner would reduce power consumption signifi-
cantly. However, intervening sensory operations to achieve
power efficiency jeopardizes the accuracy, i.e., quality of
service, provided by context-aware services. Therefore, it
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creates a tradeoff between power consumption and accuracy
provided by these services.

In this paper, we propose a novel framework that allows
to run a HAR based smartphone application while achieving
a fine balance in the defined tradeoff. The framework con-
sists of a context inference module including an observation
analysis block to acquire and infer the desired contexts
through the smartphone accelerometer, a statistical machine
to represent user activities, and a sensor management
system to prolong the smartphone battery lifetime. Our
objective is to improve the power efficiency of smartphones
by dynamically adapting sensor sampling rates and duty
cycles while supporting accurate recognition in user ac-
tivities. More importantly, this research creates an effective
HMM-based framework that provides optimal power saving
methods at the low-level sensory operations in order to
guide the development of future context-aware applications.
The followings are a few distinctive key novelties exposed
by this paper:

• User profiles are considered time-variant (inhomo-
geneity) in a provided statistical machine. Therefore,
adaptability problem is defined for time-varying user
profiles, and a relevant solution is given by intro-
duction of the entropy production rate. The entropy
production rate is also used for the accuracy notifier
in context inference problem.

• The analytical modeling of the accelerometer sensor
is provided, and integrated into sensor management
system. The system aims at utilizing a mixture pair
of duty cycling and adaptive sampling regulated by
three intuitive and two sub-optimal sampling policies
in order to prolong mobile device battery lifetime.

• Missing observations occurred due to the power saving
strategies are estimated under the regulation of inho-
mogeneous semi-Markovian process.

• A feedback control mechanism is integrated between
context inference module and sensor management sys-
tem in order to ensure that a fine balance is obtained
for the tradeoff.

• A smartphone application is implemented to show
the effectiveness of proposed entropy production rate
analysis on accuracy notification, and the extension of
battery lifetime under proposed sensor management
system.

The rest of the paper is organized as follows: Section
II gives a relevant prior research. Section III provides
the purpose and intention of proposed framework design.
Section IV explains the context inference module consisting
of analysis of sensory data, and creation of a statistical ma-
chine to represent true user activities and behaviors. Section
V includes the analytical model of sensor utilization, and
power saving solutions to balance the tradeoff. Section VI
is reserved for performance analysis. Finally, Section VIIis
for conclusion and future work. In addition, the summary
of important notations used throughout the paper is listed
in Table I.

TABLE I: Summary of Important Symbols
Symbol Definition (Section where the symbol is first used)
St user state (IV-A)
Sτ
s Markov chain, or sequence of user states (IV-A)
ϑt observation (IV-A)
ϑτs sequence of observations (IV-A)
o observation emission matrix (IV-A)

n, s, t, τ time indexes throughout the paper (IV-A)
i, j,m indexes for user states (IV-A1)
ξ inhomogeneous Markov process (IV-A1)
qij user state transition rate (IV-A1)
Q user state transition density matrix (IV-A1)
pij user state transition probability (IV-A1)
P user state transition matrix (IV-A1)
πi initial user state probability (IV-A1)
Fij probability of waiting time in a state (IV-A2)
Hi probability of leaving a user state (IV-A2)
di a random time distribution (IV-A2)
Fj filtered probabilities (IV-A3)
Pj predicted probabilities (IV-A3)
Ŝt estimation of user state (IV-A3)
N total no. of user state transitions (IV-A4)
Ni total no. of passages in a fixed user state (IV-A4)
ep instantaneous entropy production rate (IV-B)
φ accuracy notifier (IV-B)
a actions (IV-B)

tsuff sufficient time to trigger an action (IV-B)

SR, or SR2

1D, or 2D state space for reward process (V-A)
r, w indexes for states∈ SR (V-A)
l, k indexes forl ∈ DC andk ∈ fs (V-A)

Θtspan total power consumption for a spanning time (V-A)
ψSR reward process attached to ongoingSR (V-A)
V total received reward, i.e. power consumption (V-A)
u optimal policies in CMDP and POMDP (V-D)
P a state transition matrix under actions (V-D)
I identity matrix (V-D)
λ belief vector (V-E)
Ra rewards according to actions (V-E)

II. RELATED WORK

The pervasive mobile computing, which captures and
evaluates sensory contextual information in order to infer
user relevant actions/activities/behaviors, has been becom-
ing a well established research domain, especially within
the realm of Human Activity Recognition (HAR) and
location-based services. Most studies rely on recognition
of user activities (especially posture detection) and defini-
tion of common user behaviors by proposing and imple-
menting numerous context inferring systems. In addition,
researchers have been aware of the need for computational
power while trying to infer sensory context accurately
enough. However, most works provide some partial answers
to the tradeoff between context accuracy and battery power
consumption. It is hard to say that power saving considera-
tions have been significantly taken at the low-level physical
sensory operations. Especially, there is not a generic frame-
work that intends to applyadaptively changingdynamic
sensor management strategies, which employs varying duty
cycles and sampling periods during a sensory operation like
this paper intends to propose.

From the stand point of a creation of framework design in
context-aware applications, it would be notable to mention
the following studies. “EEMSS” in [6], “Jigsaw” in [7],
“Sensay” in [8] and “SeeMon” in [9] use hierarchical sensor
management strategy by powering a minimum number of
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sensors and applying fixed sensor duty cycles so that the
proposed framework could recognize user states through
smartphone sensors while improving device battery life-
times. Unfortunately, sensors have fixed duty cycles, and
also they are not adjustable to respond differently to variant
user behaviors. In addition, energy consumption is reduced
by shutting down unnecessary sensors at any particular
time. On the other hand, classification of sensory data is
based on pre-defined test classification algorithms. Apart
from these studies, many other works have emphasized
to use deterministic sampling period schemes [10], and
to maximize power efficiency by solely applying less
complexity in computations or by changing transferring
methods of inferred contextual data packets [9]. The other
popular method is to fuse multiple sensory information to
decide future employment of a specific sensor, especially
in localization applications [11], [12].

This paper differs from other studies in the following
ways. First, this paper consider physical world as inho-
mogeneous. Therefore, the inhomogeneity is characterized
by time-variant system parameters. Second, adaptability
challenge in response to variant and rapid user activities is
integrated as well using the convergence of entropy rate in
conjunction with the inhomogeneity. Accordingly, entropy
rate is used to make an assumption on accurate working
of system parameters regulated by an ongoing stochastic
process. Third, power saving considerations are taken at the
low-level sensory operations. Fourth and most importantly,
a machine learning structure regulates sensor management
by estimating the trend of user preferences, and oppor-
tunistically finding out stable moments in user activity.
Thereby, sensor management could apply optimal sensing
policies, and change sensor sampling settings to respond
the defined tradeoffs in context-aware application services.
Finally, missing contextual inferences are estimated while
energy saving strategies are being applied.

III. PROPOSEDFRAMEWORK

Context aware sensing systems have been put forward to
provide a required model for recognition of daily occurring
human activities via observations acquired by various sen-
sors built in mobile devices. These activities are inferred
as outcomes of a wide range of sensor applications utilized
in such areas of environmental surveillance, assisting tech-
nologies for medical diagnosis/treatments, and creation of
smart spaces for individual behavior model. Key challenges
that are faced in this concept is to infer relevant activity
in such a system that takes raw sensor readings initially
and processes them until obtaining a semantic outcome
under some constrictions. These constrictions mostly stem
from difficulty of shaping exact topological structure and
from modeling uncertainties in the observed data due to
saving energy wasted while physical sensor operations
and processing of data are being undergone. Finally, there
is not a common framework system which covers all
types of application settings, provides an adaptation toward
changing context, and acquires a collection of asynchronous

heterogeneous context to create different abstract entities.
Even, none of current frameworks succeeds to have a
full transparency, which eliminates a direct involvement of
applications into context modeling process, by imposing
less computational workload on resource-limited mobile de-
vices. In this direction, gathering diverse and asynchronous
information, and presenting it to the application would
be the future work in context-aware framework research,
which this paper intends to enlighten. By this means, this
paper could help the exciting vision of “Internet-of-Things”
[13] while creating a knowledge network which capable
of making autonomous logical decision to actuate environ-
mental objects and also to assist individuals, especially in a
resource-constrained smart device. In addition, this research
could give a solution to effective manage fusion of data
gathered from multiple sensor applications.

To this end, this paper proposes an inhomogeneous (time-
variant) Hidden Markov Model (HMM) based framework in
order to represent HAR based user states by defining them
as an outcome of either recognition or estimation model.
A statistical tool-based classification, mostly using Hidden
Markov Models (HMMs) [14], [15] or using AutoRegres-
sive (AR) [16] models, is one of the foremost methods to
infer context obtained via wearable or built-in smart device
sensors in HAR based applications. However, these stud-
ies mostly allow predefined anduser-manipulatedsystem
parameter settings, such as arbitrary formation of context
transition matrix in HMMs, or building filtering coefficients
in ARs, which is not suitable for online processing due
to increasing computational workload while enlarging the
data size. Therefore, a statistical model is added into our
approach to tracktime-variantuser activity profiles in order
to predict the best likely user state that fits into instant
user behavior. The inhomogeneity is characterized by time-
variant system parameters, and the user profile adaptability
challenge is modeled using the convergence of entropy
rate. Accordingly, an implemented smartphone application
is provided to demonstrate how entropy rate converges
in response to distinctive time-variant user profiles under
different sensory sampling operations. The proposed frame-
work is designed to be based on a statistical machine to
obtain a better realization in context-awareness in order to
create adaptability to time-variant user preferences and be-
haviors, estimate missing context inferences in presence of
idle sensory operations, and also preserve the functionality
against aperiodically received sensory observations.

Most importantly, which is the key of this study, a
machine learning structure regulates sensor management
opportunistically to figure optimal sensing policies, and
change sensor sampling settings such as varying sensory
sampling and duty cycling so as to power efficiency could
be achieved while satisfying the accuracy of context-aware
application services.

The following two sections give further information
about two inter-operated core modules that our proposed
framework has: context inference module and sensor man-
agement system.
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Fig. 1: The operational process flow of the proposed context-aware framework: the framework consists of two main modules, which are
context inference module and sensor management system. Basically, context inference module acquires sensory data, extracts context,
infers user states, and delivers recognition accuracy statistics to sensor management system. Then, sensory operations are adjusted by
sensor management system to achieve a fine balance in power consumption and recognition accuracy.

IV. CONTEXT INFERENCEMODULE

The proposed context inference module consists of two
main blocks as shown in Fig. 1, which are sensory data
acquisition and analysis, and a statistical machine. The
first block receivesraw sensory readings(i.e., extracted
user contexts through mobile device based sensors) as
inputs. These readings undergo a series of signal processing
operations, and eventually end up with a classification al-
gorithm in order to provide desirable inferences about user
relevant information for context-aware applications. Note
that the selection of classification algorithm in the inference
process could differ due to the interested context obtained
through a target sensor. The probabilistic outcomes of the
classification algorithms source the inputs of the second
block.

The second block choses a Discrete Time Inhomo-
geneous Hidden Semi-Markov Model (DT-IHS-MM) as
the desired statistical machine. Hidden Markov Models
(HMMs) have been used to infer mobile device based
human-centric sensory context in HAR based applications
[17]. However, our approach intends to expand the prop-
erties of statistical machine so as to obtain a better real-
ization in context-awareness. First, the concept of Markov
Renewal Process is adopted to describe the functionalities
of user behavior modeling. Second, the inhomogeneity is
introduced to characterize time-variant user behaviors so
that the module could adapt itself to dynamically changing
user behaviors. Third, the semi-markovian feature is added
to specify aperiodically received discrete time observations
through sensory readings. Fourth, the estimation theory is
included in case of missing sensory inputs. Finally, the
entropy rate analysis is integrated to track the accuracy
of context inferences because there is not an absolute
solution to actually calculate the accuracy of a real-time

running HAR based context-aware application. Thereby,
the convergence of entropy rateis considered asoutputof
the module, which will be used by the sensor management
system introduced in Section V.

The following sub-sections include the explanations of
main blocks in context inference module. The desirable
statistical machine is put forward firstly since some system
parameters declared in this block will be used during the
introduction of the subsequent sensory data acquisition and
analysis block.

A. Inhomogeneous Hidden Semi-Markov Model: A Statis-
tical Machine

Classification algorithms produce observations (i.e.,
visible states), ϑt, of DT-IHS-MM. Amongst given obser-
vations, the one that has highest probability will make a
most likely differentiation in the selection of instant user
behavior. This observation is marked as instant observa-
tion, ϑT , which also indicates the most recent element of
observation sequence,ϑT1 , of DT-IHS-MM. On the other
hand, user states,sitting, standing, walking and running,
are defined ashidden states, S, of DT-IHS-MM since they
are not directly observable but only reachable over visible
states. Therefore, each observation has cross probabilities
to point a user state. These cross probabilities build an
observation emission matrix,o, which basically defines
decision probabilities to pick any user states from available
observations.

In addition, the transition probabilities among user states
might not be stationary since a general user behavior
changes in time. Thus, it is expected from a user state either
to transit into another user state or to remain in the same
with a different probability. These occurrences build a time-
variant user state transition matrix,p.
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1) Basic Definitions and Inhomogeneity:Let an inho-
mogeneous Markov process exist asξ = {ξ(t), t ≥ 0}
with a user state space ofS = {1, 2, ...,M}, and let
Q(t) = qij(t) where{i, j} ∈ S and t ≥ 0 be a transition
density matrix ofξ. If Q satisfies both0 ≤ qij(t) ≤ ∞
and qi(t) = −qii(t) =

∑

i6=j qij(t), then Q is called
a conservative inhomogeneous transition density matrix
function onS.
qij(t) represents jump or transition rates from user state

i to user statej at time t. Wheneveri = j, it means
that current user state remains unchanged, or i.e., a dummy
transition occurs.

Moreover, suppose that a user state transition probability
matrix P (s, t) = {pij(s, t) = Pr(S(t) = j | S(s) = i)}
where t ≥ s ≥ 0 together withQ satisfies both forward
and backward Kolmogorov’s equations [18], which assume
to havelimt↓s ∂pij(s, t)/∂t = qij(s), thenS becomes an
inhomogeneous Markov chainwith the transition density
of Q. The chain can revisit a user state at different system
times, and also not every user state needs to be visited.
Hence, there is no requirement that user state transition
probabilities must be symmetric (pij 6= pji) or a specific
state might remain the same in succession of time (pii = 0).

Furthermore, let an initial user stateπ(t) = {πi(t) =
Pr(S(t) = i)} satisfy the Fokker-Planck equation [18]:
dπ(t)/dt = π(t)Q(t).

2) The Working Process:Let ξ = {ξn, n ∈ N} be
redefined as an inhomogeneous irreducible discrete Markov
process with a user state space ofS. The process evolves
from S0 as initial user state and stays in there for a non-
negative length of timeX1 until goes into another user
state S1. Then, it stays in the new user state forX2

before entering intoS2, and so on. As indicated in [19],
this process is a two-dimensional or bivariate stochastic
process in discrete time called positive(S − X) process:
(S−X) = ((Sn, Xn), n ≥ 0) with initial of X0 = 0 where
Xn is called the successive sojourn times.
Xn is the time spent in stateSn−1 that defines inter-

arrival times. There is also another time variableTn in-
troduced for the definition of system properties at which
state transitions occur. This random time sequence is called
renewal sequence, and it is given byXn = Tn − Tn−1,
n ≥ 1 with the initial statuses of{X0, T0} = {0, 0}.

The Markov renewal process is now redefined over(S−
T ) = ((Sn, Tn), n ≥ 0) by

Qij(s, t) = Pr(Sn+1 = j, Tn+1 ≤ t | Sn = i, Tn = s),
(1)

whereTn represents n-th renewal time at which a user state
transition occurs.

The probability of waiting time, also called conditional
distributions of sojourn times, for each user statei in the
presence of (1) and information about the successively
followed user state is given by

Fij(s, t) = Pr(Tn ≤ t | Sn−1 = i, Sn = j, Tn−1 = s)

=

{

Qij(s, t)/pij(s), pij ≥ 0,
1, pij = 0.

(2)

In addition, with the help of (1) and (2), the probability
of the process leaving the user statei, also called sojourn
times distributions in a given user state, from times to t
is introduced by

Hi(s, t) = Pr(Tn ≤ t | Sn−1 = i, Tn−1 = s)

=
∑

j

pij(s)Fij(s, t) =

U
∑

j 6=i

Qij(s, t).
(3)

If F (s, t) = F (t − s), s ≤ t, then the kernelQ only
depends ont − s, which it yields to haveQ(t − s) =
pF (t − s) being called an inhomogeneous semi-Markov
process. The semi-Markov process [20], [21] indicates that
the sojourn time belonging to each state might have a
random distribution,di(t)1, which can depend on the next
user state to be visited. Thereby, this gives the probability
of a user state transition being occurred at timet:

bij(s, t) =

{

Qij(s, t) = 0, t ≤ s

Qij(s, t)−Qij(s, t− 1), t > s.
(4)

Also, for each waiting time, a user state is occupied.
Therefore, transition probabilities are defined with (3) and
(4) by

pij(s, t) = Pr(St = j | Ss = i) = δij(1 −Hi(s, t)) +
∑

m∈M

∑t

τ=1 bim(s, τ)pmj(τ, t), (5)

where δij represents the Kronecker symbol. The first el-
ement of right-hand side, wheredi(t) = 1 if i = j,
notifies the probability of residing in user statei at time t
without any change in context since times; and, the second
represents the probability of a user state transition from
statei in some way to user statej, and staying in this new
user state at timet.

αj(s, t) =

t
∑

t′=s

∑

i

[

αi(s, t− t′)pij(s, t− t′)dj(t
′)

t′
∏

t′′=1

oj(ϑt−t′+t′′ = z)
]

, (6)

3) User State Representation Engine:User state repre-
sentation engine infers an instant user behavior in light
of prior knowledge of a human behavior pattern and the
availability of sensory observation at a decision time. If
sensory observation exists, the applied process is called
recognition method; otherwise, estimation method. In other
words, estimation method is applied due to missing obser-
vations when power efficiency is taken into consideration
at the low-level sensory operations.

Let ϑt denote an observation at timet which is associ-
ated with user stateSt, and letoi(ϑt) be the probability
of observingϑt from given St = i. Thus, oi(ϑts) =
∏t

t′=s oi(ϑt′) represents a sequence of emitted observations
from time s to t, s ≤ t. In addition, note that since the
process flows in a discrete time and follows the first order

1The proposed solutions in Section V regulate sampling epochtimes in
sensory operations, and change the defined time distribution accordingly.
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Markovian feature, a current user stateSt depends solely
on the most recent user stateSt−1.

The inference of a hidden user statej at timet given the
last known hidden user statei at times, s ≤ t is presented
by

Pr(St = j | Ss = i, ϑτs ), (7)

where τ = t − s. (7) is termed aspredictedP , filtered
F , and smoothedS, probabilities of St, depending on
observation sequence ofϑt−1

s , ϑts or ϑTs respectively where
T > t.

The recognition method uses filtered probabilities ofSt

where it is derived from (7) as inFj(s, t) = Pr(St =
j | Ss = i, ϑts) in presence of sufficient number of
available observations. The probability of an instant user
state recognition is found by the forward algorithm [17],
which is proposed to find the most likely one-step ahead
user state in a hidden chain. The forward algorithm relies on
updating a probability weightα inductively, which decides
the probability of current occurrence of a user state,St,
generated from the one-step-previous occurrence,St−1.
However, this method works well for traditional HMMs not
for Semi-Markovian featured models due to the random
sojourn time distribution between two consecutive user
states in the hidden chain. In this manner, an extended
forward algorithm has been proposed in [22], [23] by (6)
with the condition ofαi(s, t) = πi if t ≤ 0.

Since the recognition process of user states evolves in
real time, the forward algorithm assigns a proper user state
to specify current user activity in case where a new obser-
vation is made. On the other hand, to make sure that user
state recognitions are made true, the backward algorithm,
whose corresponding weight is denoted byβ, is employed
[17]. By this algorithm, the accuracy of previous user
state recognitions is validated, i.e.,smoothing. However,
applying this algorithm seems redundant as it consumes
additional computational power on the mobile device batter-
ies. The context-aware applications run in real-time, thereby
there is no value of discovering what happened in the past
again. Hence, the backward component can be neglected,
and the filtered probability becomes

Fj(s, t) = αj(s, t)βj(s, t
′) = αj(s, t), t = t′ = T. (8)

Note that computational complexity while calculating
system parameters causes a crucial underflow problem.
When time goes by during evolution ofξ, αi(0, t)

t
⇒ 0

starts to head to zero at a exponential rate sincepij includes
elements being lower than 1. Therefore,Fj(s, t) needs to
be scaled [17] by a factor of

∏t

t′=s

∑

j Fj(s, t
′).

In addition to using the filtered probabilities to recognize
user states, the predicted probabilities are used to estimate
user state in case of no observation received. When power
saving methods are taken into consideration as studied in
Section IV-B, there will be some time intervals during
sensory operations in which no sensor readings are ob-
tained. As a result, the framework cannot receive a relevant
observation. In that case, the inference of instant user state

is based on the estimation method not on the recognition
method.

The predicted probabilities are found by

Pj(s, t) = Pr(St = j | Ss = i, ϑt−1
1 , �ϑt)

= Pr(St = j, ϑt = z | Ss = i, ϑt−1
1 )

=
∑

j Fi(s, t− 1)pij(s, t− 1). (9)

Alternatively, (9) can be found by assigning the most
likely visionary observation instead by accepting there is
a missing observation:

Pj,z(s, t) =
∑

j

Fi(s, t− 1)pij(s, t− 1)oj(ϑt = z). (10)

Then, the most likely observation is selected according
to assigning each possible observation as a final node to
observation sequence while calculating (10) by

ϑ̂t = argmax
z

∑

j

Pj,z(s, t). (11)

Finally, instant user state estimation is found using (10)
together with (11) by

Ŝt = argmax
1≤j≤M

[Pj,z(s, t)]. (12)

Then, instant user state recognition is specified using (8) in
case where observations are available by

St = argmax
1≤j≤M

[Fj(s, t)]. (13)

4) Time-Variant User State Transition Matrix:The most
important feature of context-aware applications is being ca-
pable of adapting themselves to distinctive user behaviors.
User relevant context differs in time and the corresponding
user state also does. For instance, one user might remain
the same user state for a long time; whereas others might
be more active by changing their user states frequently.
Therefore, it cannot be expected from user state transition
matrix to remain stationary under such conditions.

• Default Settings: User state transitions can be repre-
sented as simple random walk on a graph [24]. On
this graph, a vertice,υ, represents a user state, and a
edge represents a user state transition. Thus,ξ always
starts evolving by a default transition matrix, which is

pdefaultij =
1

d(υi)
, υi ∼ υj (14)

whered(υi) is the number of verticesυj adjacent to
υi. For example, if d(υi) is 0, pdefaultii = 1.

pij(s, τ0, τ)
update
= δij(1 −H∗

i (s, τ0, τ)) +

∑

m∈M

τ
∑

v=τ0

b∗im(s, τ0, v)pmj(s+ v, τ − v). (15)

• Update: A random variableN(t) > n−1 ↔ Tn ≤ t is
represented as the total number of jumps or transitions
of the(S−T ) process during (s=0,t]. Therefore,N(t)
is also called the discrete-time counting process of the
number of jumps. Jumps or transitions may include
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any transition towards user state itself (i.e., virtual
transitions).

By having the counting process, counting parameters can
be calculated where0 < τ ≤ t as follows:

• The number of visits to user statei during (0, t]:
Ni(t) =

∑N(t)−1
n=0 1{Sn=i}

• The number of transitions from user statei to user
statej during (0, t]: Nij(t) =

∑N(t)
n=1 1{Sn−1=i,Sn=j}

• The number of transitions from user statei to user
statej during (0, t] with the sojourn time,τ , in state
i: Nij(τ, t) =

∑N(t)
n=1 1{Sn−1=i,Sn=j,Xn=τ}

The empirical estimations of the user state transition
matrix, pij , the conditional distributions of sojourn times,
fij , and the discrete-time semi-Markov kernel,qij , are
given in [25] by

p̂ij(t) = Nij(t)/Ni(t), f̂ij(τ, t) = Nij(τ, t)/Nij(t),

q̂ij(τ, t) = Nij(τ, t)/Ni(t).
(16)

Given empirical estimations in (16) approach non-
parametric maximum likelihood estimations with having
good asymptotic properties if they maximize the likelihood
function of

L(t) =

N(t)
∏

n=1

pijfij(Xn)(1−
∑

j

B(t)
∑

τ=n

qij(τ)). (17)

whereB(t) = t−XN(t) is called age process showing the
sojourn time in the last visited stateSN(t).

With the evaluation of (17), the corresponding transition
density kernel turns into

Qij(s, τ0, τ)
update
=

Qij(s, τ) −Qij(s, τ0)

Qij(s, τ0)
, (18)

whereτ0 is the elapsed time since the first entrance into
user statei.

Finally, beginning from the default status in (14), the
evolving inhomogeneous state transition probability (5) is
updated by (18) together with (3) and (4) as in (15).

5) Observation Emission Matrix:The least power con-
suming sensor on today’s smartphones is the accelerometer
[11]. Therefore, the accelerometer sensor is considered to
be used in the implementation of HAR based applications.
Blackberry RIM Storm II 9550 smartphone is chosen target
device. Storm II consists of 3-axis accelerometer named
ADXL346 from Analog Devices [26]. While any applica-
tion is running, the target smartphone is only connected to a
3G network, and background operations are kept minimal.

For performance evaluations, firstly, two user states
consisting, which aresitting and standing, and then four
user states consisting, which aresitting, standing, walking
and running, statistical machines are considered for the
framework. However, more complex models can be applied
as well by using similar system approach. In our previous
work [27], an unsupervised classification method to detect
user centric postural actions, such as sitting, standing, walk-
ing and running, by smartphones is studied. By adopting
these works into our current study, recognition between
user states is made. Then, the observation emission matrix

for two and four user states are constructed by adopted
algorithm as:

ojz =

[

prob. of sitting
prob. of standing

]

,









prob. of sitting
prob. of standing
prob. of walking
prob. of running.









(19)

B. The Output of the Context Inference Framework

Supposingπi(0) > 0 where∀i ∈ S, the Markov process
ξn evolves in bidirectional way over the distributions of
P[n,n+ń] andP−

[n,n+ń] where∀n ∈ Z
+ and ∀ń ∈ N, and

the user state transition matrix also obeys a condition of
pij > 0 ↔ pji > 0, thenξn satisfies

lim
t↓s

πi(s)pij(s, t)

πj(s)pji(s, t)
= 1, (20)

which indicates that the inhomogeneous Markov process
has instantaneous reversibility at times, and hence it yields
to haveπ(s)Q(s) = 0.

Having the reversibility feature defined by (20), the
instantaneous entropy productionenp of ξ at timen is given
by

e
n
p = H(P[n,n+1], P̄[n,n+1]) =

1

2

∑

i,j∈S

[πn
i p

n
ij − π

n
j p

n
ji] log

πn
i p

n
ij

πn
j p

n
ji

.

(21)
where H(P[n,n+1], P̄[n,n+1]) is the relative entropy of
distribution of (ξn, ξn+1), P[n,n+1], with respect to the
distribution of (ξn+1, ξn), P¯[n,n+1].

By using (21), Fig. 2 shows the convergence of entropy
rate under some sensory operation parameters, such as a
fixed duty cycle DC= 1 along with variant sampling fre-
quenciesfs = {100, 50, 25, 12.5} Hz. Aggressive sampling
method, which takes100 Hz asfs, draws an actual track of
the entropy rate. Circles over blue line indicate a difference
in user behavior. Since user states, such as sitting and
standing, are recognized in this application example, the
frequentness of transition from one user state to another
cannot be observed much due to nature of human being,
that requires high energy effort by users throughout applica-
tion running time. Therefore, user state transition matrices

over time are desired aspij =

[

0.9 0.1
0.1 0.9

]

,

[

0.85 0.15
0.1 0.9

]

,
[

0.8 0.2
0.1 0.9

]

,

[

0.75 0.25
0.1 0.9

]

,

[

0.6 0.4
0.1 0.9

]

,

[

0.5 0.5
0.1 0.9

]

.

According to the results obtained by a HAR based
smartphone application, the entropy rate converges late
while samplings are collected at less than100 Hz. This
indicates the reason why accuracy ratio decreases as well.
In addition, the entropy rate cannot sometimes converge
into any point and stops, where the plot lines belonging
to fs = {12.5, 25, 50} Hz. When the frequentness of user
state transitions increases, sampling frequency may not be
fast enough to capture the activeness of an user profile.
Therefore, the system cannot find any proper user state
transition matrix to define instant user activity profile.

After all these assessments on the characteristic of en-
tropy rate analysis with respect to a changing user activity
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Fig. 2: Entropy rate analysis: convergence of entropy production
rate might differ depending on how accurate the context inference
is made under different sampling frequencies.

profile, letep(s, t) denote a sequence of entropy rates from
(21) in time range ofs up to t. Also, assume that a simple
threshold is defined byεep = [µep −σep , µep +σep ] where
µep and σep are mean and standard deviation ofep(s, t)
respectively. Thereby, the first output delivered to the sensor
management system by the statistical machine as shown in
Fig. 1 is named as accuracy notifier, which is defined by

φ(s, t) =
1

(t− s+ 1)

t
∑

n=s

1(enp∈εep )
. (22)

Moreover,τii denotes a return time, i.e., elapsed total
sojourn time, to user statei entering ats, as:

τii =

{

min{n = t− s, n ≥ 1, St = i | Ss = i},
∞, St 6= i, t ≥ 1,

(23)

represents the amount of time until the process returns to
the same user statei given the fact that it started from user
statei. Note that it may never return back to the same state
i.

By considering that a time variabletsuff is assigned
during application run to indicate a sufficient time interval
in which user statei would not change, the second output
is defined then using (22) and (23) by

a(t) =











1, φ(s, t) ≥ φ, τii > tsuff ,

2, φ(s, t) ≥ φ, τii ≤ tsuff ,

3, φ(s, t) < φ,

(24)

whereφ ∈ [0.5, 1] anda(t) denotes the actions for sensory
management introduced in Section V-B.

V. SENSORMANAGEMENT SYSTEM

In this section, the effect of variant sensory load profiles
on the depletion of mobile device battery is studied. Then,
these battery discharge profiles are examined within the
concept of Markov Reward process. In addition, there are
five novel solutions provided in this section for balancing
the tradeoff existing between accuracy in the user state
recognitions and power consumption required by the recog-
nition process.
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Fig. 3: Battery lifetime analysis: total lifetime for battery depletion
differs due to variant sensory operation methods within the
smartphone accelerometer. Experiment values are taken at every
20-min time intervals.

A. Sensor Utilization

The smartphone accelerometer sensor is utilized in order
to examine the power efficiency achieved under different
sampling and duty cycling strategies. Assume that a set of
DC and a set offs are given by{1, 0.75, 0.5} and {100,
50, 25, 12.5} Hz respectively. Also, let a state space lie
over two sub-spaces, which are sets of DC andfs, as in
SR2

= {DC× fs}. Thus, the state space is defined as in

SR
r = SR2

{l,k} = {SR2

{1,100}→1, S
R2

{1,50}→2, . . . , S
R2

{0.5,12.5}→W},
(25)

where SR2

→ SR : {DC = l, fs = k} → r, ∀l ∈ DC,
∀k ∈ fs andW = length(DC)× length(fs).

The state spaceSR, or SR2

, is considered to represent
different sensory operation methods supported by the ac-
celerometer sensor in a sensor management system.

To be able to see the effect ofSR on the battery deple-
tion, an application is implemented on the target device.
The application runs from a point where the smartphone
battery is fully-loaded until it totally depletes. Only one
constant pair of sampling frequency and duty cycle, i.e. a
state inSR, is applied as sensory operation parameters to
the accelerometer at each application run. A total time for
sensory operation cycle, denoted bytc, is taken as 1 second.
For instance, wherefs = 100 Hz, DC = 100% andtc = 1
second are taken, the total number of samplings per second
becomes 100.

The application results are shown in Fig. 3. Note that the
Blackberry Java 7.1. SDK only reveals remaining battery
status. According to results, more aggressive sampling
methodology is applied, faster the battery depletes. In
addition, the lower value of DC makes the battery recover
effect more significant, and thus it prolongs the battery
lifetimes. However, the battery non-linearities [28] are not
intended to study in this paper.

After the application results shown in Fig. 3 together with
[26] and our previous work [29], the sampling frequency
and duty cycle dependent power consumption model in the
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TABLE II: The power consumption ratio in sensor drain per each
operation cycle:tc = 2s, and comparisons are applied based on
(50%, 12.5 Hz)

(DC in %, fs at Hz) Ratio

(100, 100) 4.45
(50, 100) 2.58
(100, 50) 2.85
(50, 50) 1.80
(100, 25) 1.75
(50, 25) 1.24

(100, 12.5) 1.26
(50, 12.5) 1

accelerometer sensor operations can be defined as in

Θω∗12.5Hz = ω ∗ Ωsample + (ωmax − ω) ∗ Ωidle,

Θtc =
(DC)tc

ωmax/fsmax

Θω∗12.5Hz +
(1 −DC)tc
1/fsmax

Ωidle,
(26)

where ω = {1, 2, 4, 8}, and Ωsample and Ωidle are de-
fined as power consumption occurred during the operations
where sensor makes samplings or runs idle respectively,
and tc is a time span through a power cycle.

By using (26) and the application results obtained for
Fig. 3, Table II shows power consumption ratio of each
sensory operation methods by the accelerometer, where the
least aggressive sampling method,DC = 50% and fs =
12.5 Hz, is taken as normalizing factor.

To this end, assume that a semi-Markov chain represents
the evolution of changing sensory operation methods,SR,
for a desired sensor management system. The chain consists
of a finite state spaceSR = {1, ...,W}, the state transition
density matrixqR ∈ QR, and the state transition matrix
pR ∈ PR whereQR, PR ∈ R

W×W. In addition, a reward
structure can be attached to this on-going chain, and it
can be thought as a random variable associated with the
state occupancies and transitions. Moreover, assume that
the reward, denoted byψ, is seen as power consumption
per unit time while a mobile device battery is discharging,
andSR is redefined as the battery discharge profiles/states.
Thereby, the total reward, i.e., total power consumption,
depends on the total visiting time in a stater wherer ∈ SR.
Then, it can be said that the rewardψr belonging to state
r is proportional to the corresponding power consumption
defined by (26).

Finally, the general evolution of a semi-Markov reward
process to describe power consumption caused by sensory
operations in the sensor management system is given by

Vw(s, t) = Vr(s, t−1)+
∑

w∈W

pRrw(s, t− 1)ψw(s, t), (27)

where the left-hand side,V , represents the expected present
value of all received rewards from times to t given that
process enters into statei at time s. Whereas, the first
element of right-hand side represents the aggregation of
rewards earned both at previous time; and the second
element is the reward obtained from either continuity in
the same state or transition to another state.

B. Trade-off Analysis: The Description of Action Set

There are five different solutions proposed in order to
respond the defined trade-off between sensing accuracy and
power consumption. The proposed solutions aim at reduc-
ing power consumption by intervening sensory operations.
Therefore, the context inference framework always receives
the manipulated sensory samplings, then tries to recognize
user states accurately according to (12) and (13). After the
recognition process is done, it releasesa(t) as in (24),
which defines actions to be taken on sensory operations.
These actions force the proposed solutions to adjust a pair
of duty cycle or sampling frequency dynamically while
sensory sampling operations are actively operated. As a
result, a feedback system is integrated into a cyber-physical
sensor management system that balances the increase in
power efficiency with the decrease in user state recognition
accuracy.

Actions are defined as commands{1, 2, 3} for sensor
management, which are todecrease, preserveand increase
power consumption respectively. If the entropy rate is
not stable, which means user profile changes frequently,
thereby corresponding entropy rate does not converge a
specific value. Action #3 needs to be taken in this case
to increase the power consumption in sensory operations
by making more aggressive samplings. In contrast, if the
entropy rate converges and hangs in a specific margin, then
action #2 preserves the same set-up for applied sensory
operations. More significantly, if the same user profile
has been observed at least for a sufficient timetsuff ,
then action #1 is taken to reduce power consumption by
estimating that user profile is expected to stay on hold.

C. Intuitive Solutions

Intuitive solutions either reduce power consumption by
decreasing DC or/andfs, or improve accuracy in user state
recognition by increasing them. Relevant adjustments are
regulated by action set ofa(t). There are three different
intuitive solutions are proposed as follows:

1) Method I (MI): This method tries to change DC in
the first place rather than to changefs. Let the pairs of DC
andfs lie over a spaceSR2

, which is defined in a matrix
of {DC, fs} → {l, k}, wherel ∈ DC andk ∈ fs. Method
I proposes how to wander over the defined space according
to actions by

SR2

(l, k) =































SR2

(l − 1, k), a = 1, l 6= lmin

SR2

(l, k − 1), a = 1, l = lmin, k 6= kmin

SR2

(l + 1, k), a = 3, l 6= lmax

SR2

(l, k + 1), a = 3, l = lmax, k 6= kmax

SR2

(l, k), otherwise
(28)

2) Method II (MII): This method, in contrast to Method
I, makes the adjustments infs in the first place. Then, the
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relevant state transitions overSR2

become

SR2

(l, k) =































SR2

(l, k − 1), a = 1, k 6= kmin

SR2

(l − 1, k), a = 1, k = kmin, l 6= lmin

SR2

(l, k + 1), a = 3, k 6= kmax

SR2

(l + 1, k), a = 3, k = kmax, l 6= lmax

SR2

(l, k), otherwise
(29)

3) Method III (MIII): In this method, state transitions
are executed according to the ascending order of power
consumption ratios shown in Table II. The definition of (25)
is then re-characterized as inSR = ascend(SR). Hence,
both DC andfs could be changed simultaneously.

SR(r) =











SR(r − 1), a = 1, i 6= rmin

SR(r + 1), a = 3, i 6= rmax

SR(r), otherwise

(30)

In summary, intuitive solutions (28), (29) and (30) regu-
late pR, and hence affect the evolution of (27).

D. Constrained Markov Decision Process (CMDP)

Constrained Markov Decision Process (CMDP) is ap-
plied into sensor management system by setting a Markov-
optimal policy u. This policy controls sensory sampling
operations by deciding which pair of DC andfs to be
assigned in the sampling process, and it randomizes the
decisions over given actions.

The CMDP parameter set is provided as follows:
• Decision Epochs, O, are the outputs obtained from

the context inference module.State Space, SR, and
Action Space, A, are given by (25) and (24) respec-
tively.

• State Transition Probability, P a
rw: This probability

matrix defines transition probabilities among states
{r → w} while actiona is taken.

P a
rw =



















1
r−1 , a = 1, w < r

1, a = 2, w = r
1

W−r
, a = 3, w > r

0, otherwise.

(31)

Remark that all transitions that form a specific state
are set an equal probability according to the rule of
actions. Different transition probabilities could bring
an unfair selection of state.

• Accuracy Cost, c(r,a): The accuracy cost is the
retrieved error rate in user state recognitions while
the context inference framework is running, which is
defined byφ in (22).

c(r, a) = 1− φar . (32)

On the other hand, the default settings for the accuracy
cost is ruled by the rate of missing sampling points
under different system states where{(S = r)} →
{(DC = l)× (fs = k)} and∀a ∈ A:

c(r, a)default = c({l, k}, a) = 1− l + l
k

kmax

. (33)

Remark that the default settings are the maximum
error rates, indeed.

• Power Consumption, d(r,a): Power consumption ra-
tio is the reward processψr:

d(r, a) = ψr, ∀a ∈ A. (34)

The policy aims to maximize the accuracy in user state
recognitions subjected to the power constraints. Therefore,
a CMDP distinguishes from a regular MDP in the added
power consumption functiond, which is related to the
constraintsVy wherey ∈ [1,Y].
ρ(r, a) is denoted in CMDP as the occupation measure

by specifying the probability of a relevant state-action pair
in the decision process which satisfies given constraints,
whose probability distribution is given by

f(γ, u, r, a) =

∞
∑

t=1

Pruγ (S
R
t = r, Ar = a), (35)

whereγ andu are defined any initial distribution and any
stationary policy respectively.

Having (31), (32), (33) and (34), the constrained opti-
mization problem is given by the following requirements:

min
ρ

∑

r

∑

a

ρ(r, a)c(r, a)

subjects to:
∑

r

∑

a

ρ(r, a)(δw(r) − P a
rw) = 0,

∑

r

∑

a

ρ(r, a) = 1, ρ(r, a) ≥ 0,

(36)

where ∀r, w ∈ SR, ∀a ∈ A, δw(r) = {1, r =
w; 0, otherwise}.

Let u be the optimal policy that satisfies for alli, a:

ur(a) =
ρ(r, a)

∑

a ρ(r, a)
, ∀r ∈ S, ∀a ∈ A, (37)

whenever the denominator is non-zero. Since the occupa-
tion measure is derived from,

ρ(w) = γ(w) +
∑

r

∑

a(r)

ρ(w, a)P a
rw

= γ(w) +
∑

r

ρ(r)
∑

a(r)

ρ(w, a)

ρ(w)
P a
rw

= γ(w) +
∑

r

ρ(r)
∑

a(r)

uw(a)P
a
rw

= γ(w) +
∑

r

ρ(r)Prw(u),

(38)

it is concluded thatρ equals toγ(I−P (u))−1 like defined
in (36), and hence to (35), whereI is the identity matrix.

In addition, the following constraints are added into (36):
∑

i

∑

a

ρ(r, a)dy(r, a) ≤ Vy, y = 1, ...,Y. (39)

whereVy(t) = (1± ν)Vy(t− 1) is given for the constraint
according to which action is taken, such as{a = 1 : −ν}
and{a = 3 : +ν} where0 < ν < 1, and{a = 2 : ν = 0}.
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Finally, the constrained optimization problem is defined
from (36) and (39) as{min c subjects tody ≤ Vy}, whose
solution is described in [30], [31], and solved based on
linear programming as follows: Find the minimumC∗ ∈
C(γ, u) for u defined in (37),ρ ∈ f(γ, u) defined in (38),
C(γ, u) = C(ρ(u)) and eachDy(γ, u) = Dy(ρ(u)), where
the expected cost is expressed as in

C(γ, u) = E
u
γ

{

∞
∑

t=1

c(SR
t = r, At = a)

}

=

∞
∑

t=1

E
u
γc(S

R
t = r, At = a)

=
∞
∑

t=1

∑

r

∑

ai

Pr(SR
t = r, At = a)c(r, a)

=
∑

r

∑

ar

∞
∑

t=1

Pr(SR
t = r, At = a)c(r, a)

=
∑

r

∑

ar

f(γ, u, r, a)c(r, a).

(40)

In the similar way, for the constraints,

Dy(γ, u) =
∑

r

∑

ar

f(γ, u, r, a)dy(r, a). (41)

Under the policyu from (37) and derivation from (40)
and (41), the expected average accuracy and power con-
sumption cost is then defined by

E
u[C] =

1

n

n
∑

n′=1

E
ucn′(i, a), (42a)

E
u[V ] =

1

n

∑

∀y

n
∑

n′=1

E
udyn′(i, a), (42b)

wheren′ andn are instant and total decision epoch times
respectively.

E. POMDP

Partially Observable Markov Decision Process (POMDP)
also decribes an optimal solution in order to respond the
defined tradeoff. The parameter set by POMDP has some
similarities like the one provided by CMDP. The same
statesSR, actionsa, state transitionsP a

rw are used in this
model as well. A POMDP relies on an agent which takes
some actiona ∈ A, and hence makes the system moves
from stater to a new statew. Due to the uncertainty in an
action, the state transition is modeled byP a

rw. In addition,
the agent makes an observationx ∈ O to gather information
for the decision on the new system state selection, thereby,
state-observation relationship is probabilistically modeled
by Za

wx. In each observation epoch, the agent takes action
a in stater, then receives a rewardR(r, a).

The POMDP parameter set is given as follows:

• Decision Epochs, O, State Space, SR, Action Space,
A and State Transition Probability , P a

rw, are given
the same like in Section V-D.

• Observation Emission Probability,Za
wx: The obser-

vation is the accuracy ratio provided by the context
inference module (see Section IV-B).

Za
wx(t) =

1

|Z|

{

φ(t), r = w,

(1− φ(t)), r 6= w,
(43)

whereSR
(t−1) = r, SR

t = w, ∀a ∈ A, |Z| = φ(t) +
(W− 1)(1− φ(t)), andx = 1 since there is only one
observation, which is the accuracy ratio.

• Reward Function, Ra
r (t): The reward process (i.e.,

power consumption)ψr is defined in Section V-A:

Ra
r(t) = ψr, ∀a ∈ A. (44)

• Belief Vector, λar (t): Since the internal state of the
underlying POMDP is not directly observable, the
knowledge of the internal state could be provided by
a belief vectorλar (t) ∈ Λ in presence of the history of
all past decisions and observations. The belief vector
gives the conditional probability of being in stater
under actiona prior to any state transition.

The belief vector is updated whenever a new knowledge
comes in after incorporating the action and observation
obtained at timet within the history set ofH(t) =
{a(τ), O(τ)}, τ ∈ [1, t]. The updated belief vector is
obtained using (43) by the Bayes rule:

λaw(t+ 1) = T (λ(t) | a,O) =
Za
wx

∑

i P
a
rwλ

a
r (t)

∑

x Z
a
wx

∑

r P
a
rxλ

a
r (t)

.

(45)
The goal defined by POMDP is to develop an opportunis-

tic sensor sampling strategy which seeks for a favorable
trade-off balance between accuracy in sensing and energy
efficiency. Hence, a sensing policyu∗ : Λ → A is defined
to map a belief vectorλr to an actiona. The policyu∗ is
presented by a sequence of functions{u∗ = [η1, η2, ...,∞]}
whereηt maps a belief vectorλr(t) ∈ Λ to an actiona ∈ A
at time t over infinite horizon of POMDP.

From the time at the current belief vector isλ(t), a value
function Vt(λ(t)) is denoted to represent the minimum
expected remaining reward which can be earned under
the assigned policies. This reward is obtained through
immediate and future rewards. The optimal policy strikes a
balance between earning immediate reward and obtaining
a lean toward future decisions on the system.

The optimal strategy aims at minimizing the expected
total reward, and it is defined together with (44) and (45)
as in

u = argmin
u

Eu[
T
∑

t=1

Ra
r(t) | λ(1)]. (46)

Hence, the value function for total reward aggregation is
given with the help by (46) as in

Vt(λ(t)) = min
a

E[Ra(λ(t)) + ϕVt+1(T (λ(t) | a, Sa
r (t)))],

(47)
whereRa(λ) =

∑

r λrR
a
r and ϕ ∈ [0, 1] is a discount

factor.
Due to the impact of the current action on the future

rewards, an uncountable number of belief states lie over
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an infinite horizontal space. Therefore, specifying non-
stationarity of the optimal policy, or finding an optimal
strategy for POMDP is often computationally prohibitive.

1) Myopic Strategy and Sufficient Statistics:Since the
finding an optimal strategy is computationally restricted,
it is crucial to exploit the available POMDP and develop
suboptimal strategies in order to reduce the complexity.
Therefore, it is needed to show thea posterior of distri-
bution of the belief vector under sufficient statistics. The
belief vector (45) is then updated based on the chosen
action under the following sufficient statistics:

λr(t+ 1) =











(λ(t)Tr P
a
rw)

T, a′ = {1, 3}, r 6= w,

λi(t), a′ = 2, r = w,

0, otherwise,

(48)

where superscriptT denotes the matrix transpose.
In addition, a myopic policy is introduced to ignore the

impact of current action on the future rewards by solely
focusing on minimizing the immediate reward. This is
due to the fact that power consumption caused by instant
sensory operation settings does not rely on future diversity
in the sensory operation methods. Thereby, the myopic
policy makesϕ = 0 in (47), and hence it turns (46) into:

SR
∗ = argmin

r
E[Ra

r (λ
a
r (t))],

subjects to max(Za
w,O=x(t)) > ε,

(49)

whereSR
∗ is the chosen optimal state, andε denotes the

minimum probability of given accuracy allowed by the
process.

VI. PERFORMANCEEVALUATION

A case study in HAR based application model is exam-
ined in order to investigate the defined tradeoff by proposed
sensor management system. The targeted smartphone is
placed fixed on user’s hip area. A similar user activity
profile is examined for each tradeoff analysis by five
different participants. They are 3 males and 2 females,
whose ages range from 18 to 30. Accordingly, the HAR
based user activity profile begins with a random activity
pattern of user statessitting andstandingfor a minute (used
for calibration), then any of user statessitting, standing,
walking and running transits into the another one in the
end of the following sojourn times of{5, 5, 10, 10, 30,
30, 60, 60, 100, 100, 300, 300} seconds. This procedure
is also performed three times (approx. 50 mins in total per
method by each individual) to see the effect of having a
transition from longer waiting time to shorter waiting time,
or vice versa. The initial one-minute long application time
is used for adaptation process, which is reserved to set
required adjustments in the system parameters with respect
to ongoing activity pattern. Note that system parameters
already have default settings defined by (14). From this
point, sensory operation parameters, which are duty cycle
and sampling frequency, are updated with a 10-second
period. In addition,tsuff is set to 20 seconds. Recall that as
long as a continuing settlement time in any state gets longer

than tsuff , sensor management system decreases power
consumption, which jeopardizes recognition accuracy of
the activity pattern in return. The default sensory operation
parameters are set to the aggressive sampling method,
which is equal to the pair of{100%, 100 Hz} for {DC, fs}.

The context inference module is set to recognize a user
state with a period of one second under the aggressive
sampling method. The underlying Markovian chain in this
module has a finite horizon length of 60, which means a-
minute-long recent history of user states. Every one minute,
system parameters are updated according to (15). Except
for the aggressive sampling method in sensory operations,
the context inference module may not have a sensory
observation at any time. For instance, in a case where the
pair of {50%, 50 Hz} is selected for sensory operation
parameters, the decision period to recognize a user state
is extended to 4 seconds, which results in having 3 empty
decision points to estimate missing user state recognitions.

The tradeoff analysis is carried out for each sensor
management method by each participants. The tradeoff
solutions by each method are averaged, and then shown
in Fig. 4 for the analysis of power consumption ratio
according to (27), (42b) and (47), and also in Fig. 5 for the
analysis of averaged recognition accuracy according to (22),
(42a) and (49). In addition, the tradeoff solutions by each
method in both figures are noted by the suffixes ’a’ and ’b’
to demonstrate without/with some constraints added. The
suffix ’a’ indicates the actual sensor management methods
without any additional constraints. However, the suffix ’b’
sets extra rules on these methods. First, a 10% tolerance
value is added into Method I, II and III to constrain the
recognition accuracy ratio, which help the prevention of
drastic recognition errors. If this constraint is exceeded,
sensory operation parameters are forced to set the default
settings, i.e, the aggressive sampling. Second, for CMDP,
there is another constraint set on the power consumption
ratio to control the tendency of the decision process to take
an immoderate decrease in power consumption. According
to this regulation, current sensory operation setting must
stay in±25% of the present power consumption level at
most for the next setting. Finally, additional constraint for
POMDP, the update process of belief vector is reconfigured
by adding the feature ofλi(t+ 1) = 1 wherea = 2.

In light of the explanations above, the following discus-
sions can be made through both Fig. 4 and 5:

• Recognition accuracy ratio decreases significantly dur-
ing the initial progress of context inference module
since the framework begins running with default set-
tings. Therefore, the adaptation process toward a user
activity profile by the framework is not adequate yet.
It is also because that users exhibit variant activity
profiles that make the adaptation process take different
time accordingly.

• Both figures show ups and downs, i.e. zig-zag lines,
to prove the defined tradeoff. This is because sensor
management system always seeks for an opportunity
to save in power consumption. However, this also jeop-
ardizes the accuracy problem. In contrast, accuracy
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Fig. 4: Averaged power consumption ratio in response to user
profile: the evolution of power consumption efficiency in com-
parison to the most aggressive sensory sampling methods is
shown for each proposed sensory operation method in response
to the analyzed user profile. Overall 40% enhancement in power
consumption caused by the smartphone accelerometer is achieved.
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Fig. 5: Averaged recognition accuracy ratio in response to user
profile: having shown a drastic decrease initially due to thedefault
system parameters, the recognition accuracy ratio heals gradually
while the context inference module gets better adaptation toward
the analyzed user profiles, and ends up with an overall 10-15%
decrease in accuracy ratio for user state recognitions thanks to the
proposed framework.

is healed by boosting power cost. Therefore, increase
in power consumption compensates the worsening the
recognition accuracy ratio, whereas decrease in power
consumption receives benefits from the adaptation
feature if possible where the framework shows high
accuracy.

• When the time passes by and the framework gets a
better adaptation to the user activity profile, the recog-
nition accuracy ratio increases even though power
consumption ratio decreases. It is also because that
all user activities are known by the framework at this
point, and that will lead to have continuity of better
enhancement on tradeoff solutions.

• While switching from longer waiting times to slower
waiting times, during the second or third run of defined
user activity pattern, accuracy decreases even if power

consumption increases. It is because the system has
been fully aware that the same user activity has been
continuing for a longer waiting period. Moreover, it is
also giving a higher recognition accuracy comparing
to what it is currently available in presence of higher-
pace variant user activities.

• The recognition accuracy ratio may show a slight
decrease if a state transition occurs after a long state
visiting time, or the number of estimations in user
state recognition increases after a slower sampling
policy is attained. It is because that the entropy rate
cannot converge into any stable point. In such cases,
the framework attempts to fix the accuracy ratio.

• Amongst intuitive solutions, a comparison can be
made by MIII>MI>MII in terms of the power con-
sumption ratio, and by MI>MIII>MII in terms of
the recognition accuracy ratio. Results show that the
sampling in slower frequencies consume higher power
than the sampling in lower duty cycles; however, it
shows the opposite assumption for the recognition
accuracy. It is because that sampling in slower fre-
quencies still obtains information about user activ-
ity while the sampling in lower duty cycles cannot
do. On the other hand, MIII has the highest power
consumption since it switches sensor operation modes
modestly while achieving a fine accuracy in user state
recognitions.

• MXb>MXa where X=I, II, III and CMDPb>CMDPa
are met in terms of the power consumption ratio due
to the aggressive sampling is forced to apply in case
where severe errors occur in user state recognitions.

• POMDPb makes a clear conclusion about the belief
vector rather than POMDPa does when a sufficient
visiting time elapsed on a specific user state. Hence,
the power consumption decreases since the conclusion
notifies the continuity of the same user state.

• MIII responds in a similar way what CMDP has while
trying to reach their optimal policies.

In general, our novel tradeoff solutions achieve overall
40% enhancement in power consumption caused by the
physical sensor work with respect to overall 10-15% de-
crease in accuracy ratio for user state recognitions thanksto
proposed generic context inference framework. The novelty
of our framework also comes from the integrated adapt-
ability feature toward variant user behaviors along with the
online recognition accuracy tracker while providing optimal
adaptive sampling strategies to achieve energy efficiency
within the research area of mobile device based activity
recognition. In contrast, some other recent studies within
the same concept show enhancement in power efficiency by
20-25% in [32], by 5-10% in [33], and by 10-30% in [34]
while satisfying considerable recognition accuracy under
non-adaptive, deterministic, and variant sampling frequency
or duty cycle applying sensor sampling methods.

VII. C ONCLUSION

In this paper, a novel comprehensive framework is pre-
sented within the futuristic concept of context-awarenessin
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mobile sensing. A statistical machine based context infer-
ence model together with an intelligent sensor management
system is created to recognize human-centric activities. This
approach aims at achieving a fine balance between power
consumption and recognition accuracy. The study takes the
smartphone accelerometer sensor into the scope to show
the effectiveness of proposed total system structure as well
as leaving the door open for future improvements in the
functionality of other smartphone sensors.

While creating the statistical machine, some features are
taken into the consideration, such as time-varying user
activity profile, system adaptability to the changing profile,
non-uniform time distribution of sensory sampling process
due to the power saving precautions, and the estimation
process where missing sensory observations exist. On the
other hand, while creating the sensor management system,
the analytical modeling of power consumption caused by
the accelerometer is examined. Thereby, along with the
collaboration of the statistical machine, a better balanceis
achieved for the defined tradeoff throughout the paper. For
the tradeoff analysis, some intuitive and optimal sensory op-
eration solutions are provided in order to increase efficiency
in power consumption; whereas the statistical machine tries
to maintain the accuracy ratio provided by the framework.
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