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JIMR: Joint Semantic and Geometry Learning
for Point Scene Instance Mesh Reconstruction
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Abstract—Point scene instance mesh reconstruction is a challenging task since it requires both scene-level instance segmentation
and instance-level mesh reconstruction from partial observations simultaneously. Previous works either adopt a detection backbone or
a segmentation one, and then directly employ a mesh reconstruction network to produce complete meshes from incomplete instance
point clouds. To further boost the mesh reconstruction quality with both local details and global smoothness, in this work, we propose
JIMR, a joint framework with two cascaded stages for semantic and geometry understanding. In the first stage, we propose to perform
both instance segmentation and object detection simultaneously. By making both tasks promote each other, this design facilitates
subsequent mesh reconstruction by providing more precisely-segmented instance points and better alignment benefiting from predicted
complete bounding boxes. In the second stage, we propose a complete-then-reconstruct procedure, where the completion module
explicitly disentangles completion from reconstruction, and enables the usage of pre-trained weights of existing powerful completion
and reconstruction networks. Moreover, we propose a comprehensive confidence score to filter proposals considering the quality of
instance segmentation, bounding box detection, semantic classification, and mesh reconstruction at the same time. Experiments show
that our proposed JIMR outperforms state-of-the-art methods regarding instance reconstruction qualitatively and quantitatively.

Index Terms—Instance Mesh Reconstruction, 3D Scene Understanding, 3D Reconstruction

✦

1 INTRODUCTION

Instance mesh reconstruction (IMR) from a 3D point scene
is a crucial step towards holistic 3D scene understanding
for enriching various real-world applications, such as robot
navigation, games, AR/VR, and interior design, etc. This
task aims to not only understand the semantic information
of each object but also recover their geometries from partial
observations. In short, IMR is a multi-objective task that
unifies object recognition from a 3D scene and mesh recon-
struction from a partially observed point cloud together.

Most previous scene understanding methods only focus
on one or two tasks, e.g., semantic/instance segmentation
[1], [2], [3], [4], [5], [6], [7], semantic scene/instance comple-
tion [8], [9], [10] or scene-level surface reconstruction [11],
[12], [13], [14], thus lacking abilities to provide both com-
prehensive scene understanding and instance-level high-
resolution mesh reconstruction from partial observations.

While inevitably involving the above single-task meth-
ods, existing IMR works especially focus on how to integrate
these backbones more effectively and efficiently, so as to ex-
plore both semantic and geometry information and further
unify object recognition and mesh reconstruction together.
In other words, existing IMR works aim to propose a general
and refined framework, where sub-modules (backbones)
can be flexibly changed. For instance, the pioneering work
RfD-Net [15] first proposes a detect-then-segment process
and reconstructs complete meshes directly from incomplete
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Fig. 1. Comparing the instance mesh quality of RfD-Net [15], DIMR [16]
and our proposed JIMR given input point scene with incomplete objects.
Unlike RfD-Net with abundant and thick structures or DIMR with a low-
poly abstract style, our method yields the reconstructed mesh with local
details and smooth surfaces.

point clouds. However, as shown in Figure 1, RfD-Net tends
to generate abundant and thick structures. To reduce false
positive instance proposals and handle the ambiguity of
incomplete scans, DIMR [16] conducts instance segmenta-
tion and then implicitly completes missing geometries by
regressing latent codes of complete shapes from incomplete
points, then followed by mesh reconstruction. See again
Figure 1, though the reconstructed mesh by DIMR has no
obvious abundant structures, the global smoothness and
completeness are worse.

In general, the reasons why existing works are not so
good can be mainly categorized into two aspects. The first
one is the error accumulation in cascaded tasks. That is, the
accuracy and completeness of segmented points directly
affect the quality of the subsequent mesh reconstruction.
Intuitively, a poorly segmented instance suffering from false
positive points from nearby objects tends to yield a noisy
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reconstructed mesh, while false negative points would cause
missing geometry, thus increasing the difficulty of shape
completion. The second one is the misalignment between the
incomplete point clouds and the complete ground-truth meshes,
thus obstructing training an effective shape completion net-
work; see Figure 2 for an illustration. Specifically, a seg-
mented instance needs to be canonically transformed from a
scene-level global coordinate system to its object-level local
one for training a shape completion (or reconstruction) net-
work. To realize such a transformation, an accurate complete
bounding box (abbr. bbox) predicted from a partial instance
is required. However, the structure ambiguity caused by
incomplete point observations leads to inaccurate bbox, thus
resulting in the misalignment with the ground-truth shape.
Note that, we experimentally find that feeding ground-truth
segmentation and detection results to the completion and re-
construction modules significantly improves reconstruction
quality, which proves the rationality of the above analysis.

To overcome these shortcomings, we are motivated
to develop our JIMR, a new approach by exploiting in-
stance segmentation, object detection, shape completion and
mesh reconstruction Jointly for point scene Instance Mesh
Reconstruction. We design our JIMR with two cascaded
stages for semantic and geometry understanding, respec-
tively. In the first stage, to ensure an accurate instance
segmentation for subsequent mesh reconstruction, we pro-
pose to perform both instance segmentation and object
detection by formulating two parallel branches to obtain
point-wise results. In this way, we can not only get both
(partial) instance points and (complete) bboxes in one stage,
but also make these two highly-related tasks promote each
other. Next, we group and merge these point-wise results
into instance-wise ones, which are then transformed into
their local canonical coordinate systems benefiting from the
predicted complete bboxes.

In the second stage, instead of reconstructing meshes
directly from partial segmented points, we propose to dis-
entangle this complex task into two sub-tasks: (i) to generate
complete instance points from partial observations first,
and then (ii) to reconstruct meshes from predicted com-
plete points. To do so, we introduce a simple yet effective
point cloud completion network [17] followed by a mesh
generation network [18] to produce the final reconstructed
complete instance meshes. In addition, in this stage, we pro-
pose to regress multiple kinds of confidence scores, includ-
ing instance segmentation scores, bbox prediction scores,
mesh reconstruction scores, as well as semantic classification
scores, so as to filter out low-confidence samples. Overall,
we list our technical contributions as follows:

(i) We formulate JIMR with a joint instance segmen-
tation and object detection backbone, which makes
both tasks promote each other to achieve precise
instance segmentation and complete bbox prediction
within a single stage, and the predicted complete
bboxes facilitate better-aligned inputs for the subse-
quent completion and reconstruction modules.

(ii) We introduce a complete-then-reconstruct strategy
where the completion module explicitly disentan-
gles completion from reconstruction, and enables the
usage of pre-trained weights of existing powerful

Fig. 2. A predicted complete bounding box covering both the observed
partial points and the missing parts (top) from partial scans provides bet-
ter alignment with ground truths via canonical transformation, while an
incomplete bounding box only covering the partial observations (bottom)
leads to misalignment, thus affecting the reconstruction performance.

completion and reconstruction networks to lower the
training difficulty without latent space regularization
and produce good results with short training time.

(iii) We propose a series of effective confidence scores
for low-confidence sample filtering considering the
quality of instance segmentation, bounding box de-
tection, semantic classification and mesh reconstruc-
tion at the same time.

We demonstrate the effectiveness and superiority of our
JIMR compared to SOTA methods both quantitatively and
qualitatively with a significant margin on public benchmark
datasets, and verify the contributions of all the above core
designs by extensive ablation experiments.

2 RELATED WORK

Instance Mesh Reconstruction. 3D reconstruction from
large scenes [11], [12], [13], [14] often yields incomplete
instances caused by view constraints or occlusions between
nearby objects. To recover occluded instances and recon-
struct the associated meshes, instance mesh reconstruction
given point scenes has been explored in recent years. RfD-
Net [15] was the pioneer to propose a detect-segment-
reconstruct process by first employing a detection network
[19] to obtain bounding box proposals, and then using a
small segmentation network to filter out background points,
followed by an Occ-Net [18] to produce meshes. Recently,
DIMR [16] replaced the detection backbone with a seg-
mentation one to reduce false positives. Instead of directly
regressing implicit fields as in RfD-Net, DIMR regressed
the latent codes of complete instances and then used a pre-
trained shape decoder [20] to output meshes.

Note that, both RfD-Net and DIMR need to use the
detected incomplete instances (points) to train a reconstruc-
tion network to produce the associated complete meshes.
Hence, the input incomplete instances should be aligned
with the ground-truth meshes for better feature learning. To
do so, both methods conducted a canonical transformation
for instance points based on predicted bounding boxes.
However, DIMR’s canonical transformation is performed
directly using incomplete instance bbox, i.e., the bbox that
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only covers the observed partial points; see the red 3D
box in the bottom part of Figure 2. Yet, the ground truths
are complete, thus leading to misalignment. In our work,
we propose to conduct the transformation based on the
predicted complete instance bbox (i.e. the bbox that covers
both the observed partial points and the missing parts; see
the top row in Figure 2), so that the transformed instance
points will be better aligned with the ground truth meshes,
helping the network to learn better.

3D Instance Segmentation and Object Detection. In-
stance segmentation and object detection are two important
and relevant tasks in 3D scene understanding. Existing
works either choose one task as the focus and the other as an
auxiliary, or treat both tasks equally. In general, detection-
for-segmentation methods [15], [21], [22] predict bound-
ing boxes first, and then in each box, they segment fore-
ground points as the instance segmentation results. While
segmentation-for-detection methods [23], [24], [25] conduct
foreground or semantic segmentation first, and then regress
a bounding box proposal for each detected foreground
point. These proposals are filtered by non maximum sup-
pression (NMS), and then may be fed into further steps for a
second-stage refinement. Joint segmentation-and-detection
methods [26], [27], [28], [29] regard the two tasks equally
and leverage the advantages of both. In these approaches,
two parallel branches for segmentation and detection are
designed. For each segmented instance, they calculate its
bounding box by averaging boxes of all or top-K points
of it, instead of using NMS. This kind of methods have
shown that sharing features for segmentation and detection
branches promotes both tasks and are suitable for tasks that
require both segmentation and detection results, like our
instance mesh reconstruction.

Single Object Completion. Single object completion
aims to predict complete single objects from incomplete in-
puts. Voxel-based methods [30], [31] usually use 3D CNNs,
which are memory-consuming due to their cubic complex-
ity. Point-cloud-based methods [17], [32], [33], [34], [35], [36],
[37], [38], [39] are usually based on modified PointNet++
[40] or transformers [41]. While most methods follow a su-
pervised learning style that takes pairs of complete and par-
tial shapes for training, some recent works [42], [43] adopt
auto-regressive models to achieve impressive performance,
but they are expensive regarding time and memory. In this
work, we propose to use a simple point cloud completion
network (i.e., PCN [17]) followed by an implicit function-
based mesh reconstruction network (i.e., Occ-Net [18]), to
balance performance, time, and memory consumption.

3 METHOD

3.1 Overview
We illustrate the network architecture of our JIMR in Figure
3. Generally, our pipeline consists of two cascaded stages:
point-wise joint segmentation & detection and instance-wise
completion & reconstruction, with an instance merging and
transforming module for connecting the two stages. Note that
the merging and transforming module involves no network
training. Given a 3D scene with N points as input, the first
stage employs a sparse 3D U-Net [16] for feature extraction
followed by joint instance segmentation and 3D bounding

box generation. For the instance segmentation branch, it
outputs per-point semantic logits l and per-point offsets o
pointing to instance centers. For the bounding box genera-
tion branch, it outputs per-point complete 3D box parame-
ters b, which are then decoded into the standard 7-dim box
representation b′. Based on o and l, we first group N points
into L proposal instances, then merge (i.e., average) all the
box parameters b′ of points belonging to each grouped
proposal to obtain instance boxes B. Note that, the predicted
boxes B are complete even if predicted from partial inputs,
thus assisting in better alignment. Next, randomly sampled
instance proposal points are transformed into their local
canonical coordinate systems using B, and then sent to the
second stage for completion and reconstruction.

The second stage starts with an instance encoder [17]
to extract proposal-level features F, which are then used in
two parallel branches. In the confidence score branch, four
MLPs are used to predict segmentation, semantic, bbox and
mesh scores, which are multiplied to form the final confi-
dence scores for proposal filtering. In the completion and
reconstruction branch, we first use a point cloud completion
decoder [17] to create completed proposal point clouds IC ,
and then feed them to a mesh generation network [18] to
predict occupancy values. The final instance meshes are
reconstructed via the Marching Cubes algorithm [44].

3.2 Point-wise Joint Segmentation and Detection

To obtain object-level instance proposals for subsequent
mesh reconstruction, existing works adopt either a 3D bbox
detection backbone or an instance segmentation one. For ex-
ample, RfD-Net [15] puts more focus on bbox detection and
only conducts light-weight foreground point segmentation
for each proposed box. However, the segmentation quality
is relatively low due to the small size of the segmentation
network and the error introduced from previous detec-
tion. DIMR [16], on the other hand, takes a segmentation
backbone in the first stage, canonically transforms instance
points, and predicts residual bboxes and shape latent codes
in parallel in the second stage. However, the canonical
transformation happens before predicting complete bboxes,
which means that the shape latent codes are regressed with
misaligned points.

In our work, to realize both accurate instance segmen-
tation and complete bounding box regression, we propose
joint object segmentation and detection motivated by [26],
[27], [28], [29]. Specifically, we follow [16] to first voxelize the
input point scene P = {pi}Ni=1 with N points and adopt a
sparse 3D U-Net as the backbone for feature extraction. The
voxel-wise output features are mapped back to point-wise
features, which are then fed into two parallel MLP branches:
instance segmentation and 3D bbox generation.

Instance segmentation branch. We follow the common
routine [4], [6], [16], [26] to design this branch with two
output heads: an offset head and a semantic head. The offset
head predicts the offset oi = (∆xi,∆yi,∆zi) of each point
pi, denoting the vector from pi to its instance center. The
semantic head predicts the classification logits li ∈ RC for
pi, where C is the number of semantic categories. The losses
used for the offset head consist of a norm loss Loffset

norm and a
direction loss Loffset

dir , where the former is the L1 distance
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Fig. 3. Overview of our approach. In Stage 1, the network predicts point-wise offsets o, semantic logits l, and bounding box parameters b. A
grouping operation clusters N points into L instances I. Decoded point-wise box parameters b′ are merged by instance to form the instance boxes
B, with which the randomly sampled Np points of each instance are canonically transformed into local coordinate systems as IT . In Stage 2,
an encoder extracts instance features F, followed by a point cloud completion decoder and a mesh generation network to reconstruct meshes. A
confidence score branch is used to learn various scores for filtering out low-quality instance proposals.

between the predicted and ground-truth offsets, and the
latter is the opposite of the product of predicted and ground-
truth offset direction vectors. For more details, please refer
to [4]. The loss used for the semantic head is the cross
entropy loss referred as Lsem

cls .
3D bbox generation branch. In this branch, we

regress bbox parameters for each foreground point pi (i.e.
points that belong to any ground-truth instance). Specif-
ically, we follow FCAF3D [45] to predict the distances
from pi to its corresponding instance bbox’s six surfaces
(d1, d2, d3, d4, d5, d6) instead of directly predicting box cen-
ters (x, y, z) and scales (w, l, h). Note that, the angle repre-
sentation of FCAF3D’s Mobius box parametrization is not
suitable for our case. It is originally proposed to deal with
ambiguous orientations of symmetric shapes, and can only
produce an angle r ∈ (−π/2, π/2) due to its inverse tangent
operation. However, we need r ∈ [−π, π). Therefore, we use
bin-based angle representation [16], [23] instead, by equally
dividing the range [−π, π) into 12 bins and predicting which
bin r lies in, and then predicting a residual angle offset
inside the bin. In total, we predict the following eight
box parameters: (d1, d2, d3, d4, d5, d6, rbin, rres). The eight
parameters are then decoded to the standard 7-dim box rep-
resentation as (x, y, z, w, l, h, r) for loss calculation. Please
refer to our supplementary file for the detailed decoding
process. We use three losses for the bbox generation branch:
rotated bounding box IoU loss Lbbox

iou , angle bin classification
loss Langle

cls (cross entropy loss), and residual angle regression
loss Langle

reg (smooth L1 loss).
The overall loss function of the first stage is the weighted

sum of the above-mentioned losses:

Lstage1 = w1 × Loffset
norm + w2 × Loffset

dir + w3 × Lsem
cls

+w4 × Lbbox
iou + w5 × L

angle
cls + w6 × Langle

reg ,
(1)

where the weights {wi}6i=1 are used to balance each term.

3.3 Instance Merging and Transforming

The first stage outputs point-wise features in the global coor-
dinate system, while the second stage needs instance-wise
data in the local canonical coordinate systems. Therefore,
as shown in Figure 3, we perform instance merging and
transforming on the point-wise outputs of Stage 1 to prepare
instance-wise inputs for Stage 2. In detail, given point-
wise offsets o and semantic labels max(softmax(l)), we first
group the N points into L proposal instances as I = {Ii}Li=1.
Then, to get the bbox for each proposal Ii, we average the
7-dim box parameters of all points in Ii to get the merged
mean box Bi = {xi, yi, zi, wi, li, hi, ri}. Unlike detection-
based methods that first propose numerous bboxes and
then filter them by NMS, our “Group and Merge” operation
naturally keeps only one bbox for each segmented proposal,
where averaging bbox parameters may also improve ro-
bustness to yield more accurate bboxes. Since each instance
Ii contains different numbers of points, but the networks
in Stage 2 require fix-number point clouds as input, we
thus randomly sample Np points from each instance as
IS =

{
ISi

}L
i=1

. We adopt sampling with replacement in case
some instances contain points fewer than Np. With Bi, we
transform ISi into its local canonical coordinate system by
moving it to Bi’s center ci = {xi, yi, zi}, rotating it around
z-axis for −ri, and then dividing it by its maximum scale
max(si) where si = {wi, li, hi} so that coordinates of all
points are within [−0.5, 0.5]. The canonically transformed
proposal point instances are referred as IT =

{
ITi

}L
i=1

.

3.4 Instance-wise Completion and Reconstruction

Existing works [15], [16] directly use mesh generation net-
works [18], [20] to create instance meshes from partial
point clouds. However, the employed mesh generation net-
works are originally designed for processing complete point
clouds without the capability of shape completion. Though
DIMR has proposed to disentangle completion and mesh
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generation, it only performs implicit completion in latent
space. Motivated by existing powerful shape completion
methods, we propose to explicitly incorporate a small com-
pletion network before mesh reconstruction. In this way,
we disentangle the challenging mesh reconstruction task
into two sub-tasks: (i) to generate complete instance points
from partial observations first, and then (ii) to reconstruct
meshes from predicted complete points. Compared with
reconstructing meshes from partial observations in one step,
this disentanglement scheme effectively relieves the burden
of network learning.

To balance performance, time, and memory consump-
tion, we use a simplified PCN [17] for explicit shape com-
pletion, followed by an Occ-Net [18] for mesh reconstruc-
tion, both of which are simple yet effective. Particularly,
experiments found that by using the pre-trained weights
of PCN and Occ-Net, the network can produce reasonable
meshes with very few epochs of the second-stage training.
Specifically, as shown in Figure 3, the L canonically trans-
formed instance point clouds IT are fed into an instance
encoder. We directly use the encoder in PCN [17], which
is a modified PointNet [46] and outputs instance features
F ∈ RL×D , where D is the feature dimension. After that, F
is fed into two branches: one for mesh generation and the
other for confidence score regression.

Mesh generation branch. In this branch, we first feed F
into a decoder for point cloud completion. The original PCN
decoder contains a coarse MLP-based decoder to output
1024 points per object and a detailed folding-based decoder
for expanding the point number by 16 times. We only adopt
the coarse one since 1024 points are already enough for Occ-
Net to yield satisfying reconstruction results. After that, the
predicted complete instance point clouds IC =

{
ICi

}L
i=1

are
fed into an Occ-Net to predict implicit fields for mesh gen-
eration. The Occ-Net adopts an encoder-decoder structure.
The encoder outputs a latent code z for each object. The
decoder outputs the occupancy values of points sampled
inside a canonical cube (a cube located at the origin and with
a length of 1.0), which indicates whether they are inside or
outside of the shape surface. To guide the learning of Occ-
Net, besides the commonly-used binary cross entropy (BCE)
loss to supervise the occupancy values, inspired by [16], [47],
we further encourage the latent code z to be similar to a
pre-trained teacher Occ-Net, which is trained using points
sampled from ground-truth meshes.

Hence, the losses used in this branch consist of three
parts: the completion loss L

comp
CD , the Occ-Net latent code

loss Lmesh
latent, and the occupancy value loss Lmesh

cls for mesh
prediction. Lcomp

CD is the Chamfer distance of predicted and
ground-truth complete point clouds. Lmesh

latent is the the smooth
L1 loss of the predicted and teacher latent code z. And Lmesh

cls
is the BCE loss of occupancy values.

Confidence score branch. The instance proposals pro-
duced by the first stage contains too many false positive
samples. A commonly-used routine during inference is to
filter them by NMS and a pre-defined score threshold, both
based on confidence scores. To achieve this, we predict
the confidence scores for each proposal via a MLP-based
branch. Unlike DIMR [16] that only uses a segmentation
score, we argue that the semantic classification, bounding

box prediction and mesh reconstruction quality also influ-
ence the results. Hence, as shown in Figure 3, we design
four MLP-based heads to regress these scores. The final
confidence score is the product by multiplying the four
scores. Compared with other operations such as addition
or power on the four scores, the multiply operation acts
as a one-vote-veto mechanism that requires all scores to
be higher than a threshold, thus requiring each task to be
learned well and naturally preventing a few extremely high
scores from dominating the final score.

To guide the learning of these heads, we use BCE loss
to supervise the segmentation score by the IoU between
segmented and groud-truth instance points, bbox score
by the IoU between predicted and ground-truth bounding
boxes, and the mesh score by the accuracy of predicted
occupancy values and ground-truth ones. For the semantic
classification head, we supervise it by cross entropy loss and
take the probability of the final class calculated by softmax
as the semantic score. The overall loss function of the second
stage is the weighted sum of the above-mentioned losses:

Lstage2 = w7 × L
comp
CD + w8 × Lmesh

latent + w9 × Lmesh
cls

+w10 × Lseg score + w11 × Lcls score

+w12 × Lbox score + w13 × Lmesh score.

(2)

3.5 Network Training and Inference
We follow the same training and inference pipelines as
DIMR and RfD-Net. Specifically, since Stage 1 is the founda-
tion of Stage 2, we first train Stage 1 till converging, and
then jointly train both stages based on pre-trained PCN
and Occ-Net weights. During the second-stage training, we
only conduct point cloud completion and occupancy value
prediction for instances with ground-truth segmentation
IoU bigger than 0.5. Note that we freeze the Occ-Net de-
coder during training as this works better experimentally.
Please refer to our supplementary file for more details.
During inference, we use NMS, a minimum-point-number
threshold of 100, and a confidence score threshold of 0.01
to filter proposals. Note that this confidence score threshold
is much lower than that of DIMR, since we multiply four
scores as the final one. The selected proposals are sent to the
completion and reconstruction branch to predict instance
occupancy grids, from which meshes are generated by
Marching Cubes [44]. We set the resolution of occupancy
grids to be 32 following RfD-Net. We shall release the code and
trained networks upon publication of this work.

4 EXPERIMENTS AND RESULTS

4.1 Experimental Settings
Datasets. We follow DIMR [16] to evaluate our method
using three datasets: ScanNet v2 [48], ShapeNet [49], and
Scan2CAD [50]. ScanNet v2 consists of 1513 real-world
indoor scene scans, from which we use the point clouds
as inputs, and the point-wise semantic and instance la-
bels for our first-stage segmentation supervision. Scan2CAD
aligns ScanNet instances with ShapeNet model meshes and
provides corresponding semantic labels and 3D bounding
boxes for our first-stage detection supervision. For the
second-stage supervision, we randomly sample points from
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TABLE 1
Comparisons on mesh reconstruction quality. We report mAP measured with IoU, CD and LFD at different thresholds. A higher value indicates a

better result and the best results are marked in bold. Clearly, our JIMR outperforms others on most metrics significantly.

IoU@0.25 IoU@0.5 CD@0.1 CD@0.047 LFD@5000 LFD@2500

RfD-Net (CVPR’21) [15] 42.52 14.35 46.37 19.09 28.59 7.8
DIMR (ECCV’22) [16] 46.34 12.54 52.39 25.71 29.47 8.55

JIMR (Ours) 49.20 15.68 50.67 25.99 31.33 11.50

Fig. 4. Qualitative results of instance mesh reconstruction on ScanNet v2. Note that the results of RfD-Net are obtained by running their official
code and the results of DIMR are provided by their authors.

the ShapeNet models as ground-truth complete point clouds
to train our simplified PCN, and follow [15], [18] to create
ground-truth occupancy values to train our Occ-Net. We
follow the compatible label system of DIMR [16] to handle
the inconsistency between ScanNet semantic labels, ScanNet
instance labels, and Scan2CAD mesh labels. We use the
same train-test data split following RfD-Net and DIMR.

Metrics. We follow [16] to use 3D intersection over
Union (IoU), Chamfer Distance (CD) and Light Field Dis-
tance (LFD) as evaluation metrics. 3D IoU reflects the simi-
larity of shape occupancy grids, CD measures the distances
between mesh surface points, and LFD focuses more on
visual appearance. For a thorough comparison, we adopt all
the three metrics with different thresholds to determine how
well the predicted meshes match their associated ground

truths, and report the mean average precision (mAP) over
all classes. Please refer to [16] for more details.

Implementation details. We set most hyper parameters
following DIMR [16], including voxel size, learning rates,
etc. More details are provided in the supplementary file. We
train the first stage for 300 epochs, and then jointly train
both stages for only 4 epochs. The training takes around 60
hours for the first stage and 2 hours for the second.

4.2 Comparisons to State-of-the-Arts

Quantitative comparisons. We compare our work on in-
stance mesh reconstruction with state-of-the-art works RfD-
Net [15] and DIMR [16] using the same test set with 311
scenes. Table 1 summarizes the quantitative comparisons,
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Fig. 5. Ablation comparisons of our complete joint learning pipeline against removing detection, segmentation or completion module.

where we report mAP measured with IoU, CD and LFD
at different thresholds. Note that, a higher value indicates
a better result. For IoU, a higher threshold is more strict,
while for CD and LFD, a lower threshold is more strict. The
results of RfD-Net and DIMR are taken from the paper of
DIMR. From the results, we can see that our JIMR achieves
the highest values on five out of six metrics. Particularly, for
strict metrics like IoU@0.5, CD@0.047 and LFD@2500, our
produced mAP scores are all higher than others.

To be honest, our method has no obvious advantage in
terms of CD compared to DIMR. We think that this is caused
by the reconstruction network. In DIMR, BSP-Net [20] is
used for mesh reconstruction. It has a natural advantage
regarding CD since it produces thinner and more compact
meshes with delicate local structures so that the mesh
vertices can be closer to ground truths, resulting in better
CD scores. Nevertheless, the Occ-Net [18] employed by us
is superior in IoU, because it produces relatively thicker
meshes. It’s more likely to occupy target voxels to obtain a
higher IoU, but a lower CD. As for LFD that mainly focuses
on visual effects, our JIMR reaches the highest scores. This is
consistent with the visual comparisons in Figure 4 that our
method produces meshes with higher quality.

Qualitative comparisons. Figure 4 illustrates scene-level
qualitative results. Unlike RfD-Net with thick and redun-
dancy structures (a) or DIMR with a low-poly abstract style
(b), our method produces more realistic object meshes with
better local details (c), especially for toilets and office chairs.
More results are provided in the supplemental file.

TABLE 2
Ablation study of proposed modules. The first row is our full pipeline,
and for other rows, we only remove one module (marked by%) at a

time from our full pipeline.

Detection Segmentation Completion
Confidence scores

CD@0.1 CD@0.047Seg Cls Bbox Mesh

- - - - - - - 50.67 25.99
% - - - - - 48.70 25.77
- % - - - - - 49.44 24.53
- - % - - - - 22.97 7.04
- - - % - - - 48.95 25.23
- - - - % - - 47.41 22.58
- - - - - % - 49.05 25.38
- - - - - - % 48.98 25.23

4.3 Ablation Study

We conduct ablation studies on the full test set to verify
the contribution of our major components by removing one
component from our full pipeline at a time to observe the
results. We present the quantitative results in Table 2, where
the first row is our full pipeline with all components. We
also provide some qualitative comparisons in Figure 5.

Effect of joint segmentation and detection: When remov-
ing ‘Detection’, it means that we follow DIMR to adopt
a segmentation backbone instead of a joint one, and only
use the calculated incomplete bounding box based on the
segmented partial instance points for shape alignment. It
causes a performance drop as shown in Table 2, and tends
to yield worse reconstruction quality regarding object sizes
or shape details, as shown in Figure 5 (a).

When removing ‘Segmentation’, it means that we fol-
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Fig. 6. (a) When using neither latent space regularization nor explicit completion module, the network cannot converge. (b) When applying different
latent space regularization methods, the mesh quality is still worse than ours with explicit completion but without any constraint. (c) The explicit
completion module enables pre-trained mesh generator weights, and thus making the training process faster and easier.

Fig. 7. Qualitative ablation comparing ‘BSP-Net + latent regularization
(BSP-Reg)’ with our ‘Occ-Net + explicit completion (Occ-Comp)’ strat-
egy.

low RfDNet to adopt a detection backbone, and use all
points in the predicted bounding boxes to feed into the
subsequent completion and reconstruction modules. Table 2
shows that it leads to an inferior performance compared
to our complete pipeline. Figure 5 (b) shows that the pure-
detection backbone tends to result in excessive false positive
proposals, as mentioned by the authors of DIMR [16].

Effect of the disentanglement scheme: When removing
‘Completion’, it means that we remove the explicit com-
pletion module by directly connecting the decoder of the
mesh reconstruction network after the instance encoder to
obtain instance meshes from partial observations. As shown
in Figure 5 (c), without completion, the network fails to
learn reasonable shapes and leads to extremely low scores
as shown in Table 2. We think the reason may be that we
adopt no constraint or regularization technique over our
Occ-Net latent space (such as the CVAE adopted by DIMR),
making it hard for the network to learn directly from partial
points. Introducing the explicit completion module solves
this issue by providing the Occ-Net with complete points
as input, and it requires no constraints on the latent space.
More discussion can be found in Section 4.4.

Effect of each confidence score: In the bottom four rows
of Table 2, ‘Seg’, ‘Cls’, ‘Bbox’, and ‘Mesh’ stands for the
confidence scores of instance segmentation, semantic clas-
sification, bounding box regression and mesh prediction,
respectively. Removing each one means to multiply the
other three as the final confidence score. Clearly, compared
to our full pipeline (the first row), removing each confidence
score results in a worse performance.
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Fig. 8. Intermediate visual results of major steps in our pipeline. For clarity, we only visualize one instance in each scene.

TABLE 3
Using ground-truth segmentation and detection results significantly

improves instance mesh reconstruction results.

CD@0.1 CD@0.047

RfD-Net [15] 46.37 19.09
DIMR [16] 52.39 25.71

JIMR (ours) 50.67 26.14

GT det seg 85.07 52.90

TABLE 4
Comparisons of 3D detection and segmentation performance reported
by mAP measured at bbox IoU and segmentation IoU with threshold

0.5. DIMR and JIMR detection results are evaluated on the full test set
following RfD-Net, and the results of RfD-Net are from the authors.

Detection Segmentation

stage IoU@0.5 IoU@0.5

RfD-Net [15] 1-stage detection 35.10 -
DIMR [16] 2-stage detection 39.16 53.34

JIMR (ours) 1-stage detection 40.19 61.73

4.4 Analysis and Discussion

We conduct extra experiments to further analyze our JIMR
and give some discussions.

Importance of high segmentation and detection accuracy.
We design our framework based on the hypothesis that high
segmentation and detection accuracy promote final recon-
struction quality. To verify this, we conduct experiments by
directly feeding ground truth segmentation and detection
results to the subsequent completion and reconstruction
modules. The results are reported in Table 3. We can see
that using GT results indeed improves IMR performance by
about 25% - 35%, thus proving our hypothesis.

Comparisons of detection and segmentation performance.
As mentioned before, our proposed joint segmentation and
detection backbone can make the two tasks promote each

other. We now report the comparisons of bbox detection
and instance segmentation in Table 4. Note that our network
structure in the first stage is exactly the same as DIMR ex-
cept that we further add a bbox regression head. Clearly, our
method achieves higher accuracy in terms of both detection
and segmentation within a single stage thanks to the joint
learning strategy.

Discussion on explicit completion module. As shown in
Table 2, when removing the completion module from our
full pipeline, the reconstruction quality degrades dramati-
cally; see the left part in Figure 6 (a) for the visual results.
Clearly, compared to the ground truth mesh (right), when
we remove completion, the network fails to converge to
generate reasonable shapes.

Then, a natural question is: why can DIMR generate
reasonable meshes with no explicit but only an implicit
completion module? Actually, in DIMR, to facilitate the
second-stage network to regress latent codes of a complete
shape, latent space regularization is used to ensure that
the latent codes produced by pre-trained mesh generator
follow a standard normal distribution. Following this idea,
we also tried latent regularization when training our pre-
trained mesh generator. Yet, as shown in Figure 6 (b), though
we have tried two different regularization techniques (i.e.,
L2 regularization and batch normalization), the associated
performance is still worse than adopting no latent space
constrain. This is consistent with the observation in [51]
that a more regularized latent space comes at the cost
of sacrificing performance to some degree. Therefore, we
employ explicit completion instead of latent regularization.

Besides disentanglement of sub-tasks (completion and
reconstruction) and high-quality mesh generation without
sacrificing performance for latent regularization, the disen-
tangled completion and reconstruction design has another
advantage: enabling the usage of the pre-trained weights
from existing powerful completion and reconstruction net-
works. As a result, reasonable meshes can be yielded even at
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Fig. 9. Qualitative results of replacing our segmentation and completion modules from PointGroup and PCN to state-of-the-art ISBNet and
SnowFlakeNet. The substitution slightly improved mesh reconstruction quality by capturing finer details.

the beginning of the second stage training, thus making the
network training faster and easier. Specifically, we only train
our JIMR for 4 epochs in the second stage that can already
provide promising reconstruction results, as compared to
DIMR with 256 epochs; see Figure 6 (c) for the reconstructed
meshes in different early epochs.

To further evaluate the effect of our stage-2 strategy
(i.e. Occ-Net with explicit completion), we adopt the same
stage-1 network as our JIMR, and train a stage-2 network
following DIMR (i.e. BSP-Net with latent regularization) till
convergence with 300 epochs. Figure 7 demonstrates some
qualitative comparisons using these two different stage-2
strategies. Clearly, our method yields better mesh recon-
struction performance with only 4 epochs. Since BSP-Net
represents 3D shapes by planes and lacks the ability to pre-
cisely model curved surfaces, it often produces meshes with
a low-poly style or uneven artifacts, and fails to reconstruct
complicated shapes like the office chair.

Visual results of segmentation, detection, completion &
reconstruction. Figure 8 shows the intermediate visual re-
sults of major steps in our pipeline, including instance seg-
mentation, object detection, point cloud completion and the
final mesh reconstruction. For clarity, we only visualize one
instance in each scene. Generally, given a successfully seg-
mented instance, our method can predict a complete bound-
ing box. The completion network can also recover miss-
ing regions, thus facilitating a high-quality reconstructed
instance mesh.

TABLE 5
Quantitative results of module substitution experiments on the full test

set of ScanNetV2 by replacing our segmentation and completion
modules from PointGroup and PCN to state-of-the-art ISBNet and

SnowFlakeNet. The substitution further enhances the performance.

Method Segmentation Module Completion Module CD@0.1 CD@0.047

JIMR original PointGroup [4] PCN [17] 50.67 26.14

JIMR variant1 PointGroup [4] SnowFlakeNet [35] 50.83 27.12
JIMR variant2 ISBNet [3] PCN [17] 51.33 30.76
JIMR variant3 ISBNet [3] SnowFlakeNet [35] 53.41 33.02

Module substitution analysis. In our initial JIMR imple-
mentation, we adopted the same segmentation module
PointGroup [4] as in DIMR for a fair comparison, and we
adopted PCN [17] as the completion module by considering
the computation efficiency. We argue that our main contri-
bution is a unified framework where the sub-modules can
be replaced by existing ones. Hence, we conducted extra
experiments by replacing our segmentation and completion
modules with existing SOTA ones. By considering the ease
of implementation and the network performance, we here
choose ISBNet [3] for instance segmentation and SnowFlak-
eNet [35] for shape completion. Specifically, when adopting
SnowFlakeNet, we directly used it to replace PCN. When
adopting ISBNet, we added an oriented bounding box head
to its point-wise prediction module, like we did to Point-
Group as in JIMR. Table 5 shows the quantitative results,
where JIMR variants with stronger sub-modules outperform
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TABLE 6
Run time analysis. Our method is the fastest with a medium number of

network parameters.

Avg. Time Per Scene (s) Parameters

RfD-Net [15] 3.308 15.23M
DIMR [16] 15.320 53.51M

JIMR (Ours) 2.074 33.17M

our original implementation. Figure 9 shows the visual
results. In general, we have the following observations by
viewing the reconstructed meshes of these methods.

• Firstly, our JIMR and its variants with SOTA sub-
modules exhibit a competitive visual effect compared
to DIMR.

• Secondly, the three JIMR variants with SOTA sub-
modules yield sometimes, though not always, finer
details than the original JIMR implementation, such
as the hollowed-out armrest, toilet top, small sofa
legs, office chair legs, etc., as marked by red boxes
in Figure 9. We believe that stronger sub-modules
promote the network’s ability to capture fine details
when reconstructing meshes.

• Lastly, all JIMR variants share the same “mesh style”
as JIMR, compared to the low-poly style of DIMR.
This is natural since they only differ in detailed
implementation of sub-modules, but share the same
overall framework and mesh reconstruction module.

Run time analysis. Table 6 shows the average inference
time per scene and the number of parameters of RfD-Net
[15], DIMR [16] and our JIMR. We run the inference code
on the same test set for all the three methods and calculate
the average time. Our method is the fastest and RfD-Net
is slightly slower than ours, both of which are significantly
faster than DIMR since the Marching Cubes algorithm of
Occ-Net in RfD-Net and our JIMR with resolution 323 is
much faster than Constructive Solid Geometry method of
BSP-Net in DIMR. We have the medium parameter number
compared with DIMR and RfD-Net, since we have a voxel-
based backbone as in DIMR, and a point-based second-stage
network as in RfD-Net.

5 CONCLUSION

We propose JIMR, a joint framework for point-based indoor
scene instance mesh reconstruction, where sub-modules can
be flexibly substituted. It adopts a two-stage pipeline for
both semantic and geometry learning. The first stage is
a joint segmentation and detection network to produce
proposal instance point clouds and 3D bounding boxes
together, which are used in the second stage to complete the
point clouds and then reconstruct instance meshes. Experi-
ments show that our method improves mesh reconstruction
quality by a significant margin compared to state-of-the-art
approaches, especially regarding the visual effect. Failure
case analysis is provided in the supplementary file. In the
future, we plan to investigate the possibility of adopting
generative models to enhance the local details of produced
instance meshes. Further, we may also consider exploring

2D supervision by rendering 3D instances into 2D images
for better mesh reconstruction.
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