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Listen with Seeing: Cross-modal Contrastive
Learning for Audio-Visual Event Localization
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Abstract—In real-world physiological and psychological sce-
narios, there often exists a robust complementary correlation
between audio and visual signals. Audio-visual event localization
(AVEL) aims to identify segments containing audio-visual events
(AVEs) within unconstrained videos featuring both audio and
visual tracks. Prior studies have predominantly focused on audio-
visual cross-modal fusion methods, overlooking the fine-grained
exploration of the cross-modal information fusion mechanism.
Moreover, due to the inherent heterogeneity of multi-modal
data, inevitable new noise is introduced during the audio-
visual fusion process. To address these challenges, we propose a
novel AVEL cross-modal contrastive learning network (CCLN),
comprising a backbone network and a branch network. Within
the backbone network, drawing inspiration from physiological
theories of sensory integration, we elucidate the process of
audio-visual information fusion, interaction, and integration from
an information-flow perspective. Notably, the Self-constrained
Bi-modal Interaction (SBI) module is a bi-modal attention
structure integrated with audio-visual fusion information, and
through gated processing of the audio-visual correlation matrix,
it effectively captures inter-modal correlation. The Foreground
Event Enhancement (FEE) module emphasizes the significance of
event-level boundaries by elongating the distance between scene
events during training through adaptive weights. Furthermore,
we introduce weak video-level labels to constrain the cross-
modal semantic alignment of audio-visual events and design a
weakly supervised cross-modal contrastive learning loss (WCCL
Loss) function, which enhances the quality of fusion repre-
sentation in the dual-branch contrastive learning framework.
Extensive experiments conducted on the AVE dataset for both
fully supervised and weakly supervised event localization, as
well as cross-modal localization (CML) tasks, demonstrate the
superior performance of our model compared to state-of-the-art
approaches, thus validating its efficacy. The code will be available
from https://github.com/Supersunn/CCLN.

Index Terms—Audio-visual Information Integration, Audio-
visual Event Localization, Cross-modal Contrastive Learning.

I. INTRODUCTION

IN a noisy environment, understanding the speaker’s con-
tent becomes easier when observing the speaker’s facial

expressions and body movements in addition to listening to
their voice. Similarly, upon hearing a train whistle, individuals
instinctively scan their surroundings to locate the source.
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(a) Illustration of fully supervised audio-visual event localization task.

(b) Illustration of cross-modality localization task.

Fig. 1. Illustration of audio-visual event localization tasks. (a) Illustration
of fully supervised AVEL. We sample the corresponding audio and visual
frames at equal intervals from a 10-second video. The visual frames depict
three objects: “pot”,“man”, and “food”, while the audio frames capture two
sound events: “man speaking” and “frying”. An audio-visual event is identified
only when the visual object aligns semantically with the sound event, such
as “frying food”. All other combinations of audio and visual cues are labeled
as “background”. (b) Illustration of cross-modality AVEL. It aims to query
the event boundary of one modality from the corresponding input of another
modality. Specifically, visual localization from an audio sequence query is
referred to as “vision-to-audio”, and audio localization from a video sequence
query is referred to as “audio-to-vision”.

These examples underscore the cognitive ability of the brain to
integrate audio and visual information [1]. According to the
Sensory Integration Theory [2], various sensory information
inputs (visual, auditory, olfactory, etc.) are transmitted and
interact as bio-electrical signals, culminating in integration
within the cerebral cortex, thereby facilitating decision-making
and consciousness [3].

As multimedia becomes the predominant information
medium, the advent of video platforms like YouTube has
opened avenues for multimodal tasks in artificial intelli-
gence [4]. Numerous endeavors, spanning lip-reading [5], [6],
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Fig. 2. Illustration of the sensory integration flowchart of the brain. audio
and visual signals are transmitted in the form of bio-electricity to the occipital
and temporal lobes respectively. Then they are further integrated in the
cortex to form primary and advanced integration consciousness. If the audio-
visual sensory integration process is incomplete or dysfunctional, it will lead
to audio-visual dysfunction. We extract three stages from this information
process: fusion, interaction, and integration.

sound/video event detection [7]–[10], sound synthesis [11],
emotion recognition [12], [13], and more, aim to endow
machines with human-like perception of external stimuli [4].
The complementary relationship between audio and visual
cues enriches our understanding of objects and scenes, leading
to significant advancements in tasks reflecting audio-visual
coordination. These tasks include audio-visual correspondence
(AVC) [14], [15], audio-visual instance discrimination (AVID)
[16]–[18], and audio-visual event localization (AVEL) [19]–
[21]. AVEL represents an artificial intelligence task centered
around the integration of audio-visual information and the
localization of audio-visual events. The Audio-Visual Event
(AVE) dataset [19], derived from Audioset [22], a large-scale
dataset of audio-visual events sourced from YouTube videos,
serves as the foundation for AVEL. Each sample in the AVE
dataset is an unconstrained video with both audio and visual
tracks, encapsulating an audio-visual event (illustrations are
presented in Figure 1).

Physiological and psychological research has elucidated that
semantic coherence plays a pivotal role in the integration of
multi-sensory input [3], while signal synchronization stands
out as a key factor in cross-modal perception integration [4].
As depicted in Figure 2, incomplete or dysfunctional audio-
visual sensory integration processes can lead to advanced
audio-visual dysfunction. Indeed, the issue of audio-visual
modality misalignment (or inconsistency) pervades real-life
unconstrained videos, primarily manifesting in two dimen-
sions. (1) From a visual modality perspective, the susceptibility
of two-dimensional sound signals to noise and the complexity
of sound sources render the audio content more uncontrollable.
In certain scenarios, the sound producer may not be visible in
the video (e.g., voice-over), while in others, multiple sound
sources in the environment can introduce interference. (2)
From an audio modality perspective, visual scenes tend to
harbor more content targets and richer external interference
(e.g., exposure, deformation, watermarking, etc.), further com-

(a) Self-supervised Contrastive Learning

(b) Weakly-supervised Cross-modal Contrastive Learning

Fig. 3. The different procedures between self-supervised contrastive learning
and our proposed weakly-supervised cross-modal contrastive learning. Self-
supervised contrastive learning (illustrated in Figure (a)) contrasts each
anchor sample and its augmentation with the remaining negative samples
in the batch, which can be seen as a semantic clustering problem. Our
weakly-supervised cross-modal contrastive learning (illustrated in Figure (b))
generates a classification sub-hypersphere guided by weak labels. Inside the
sub-hypersphere, all samples of the same class undergo semantic clustering
to reduce intra-class distance; outside the sub-hypersphere, all samples of the
same class serve as positive samples and contrast with the negative samples
in the batch to stretch inter-class distance.

plicating the identification of audio content.
Early works address the audio-visual modality misalignment

for AVEL using fusion-based frameworks. They tend to focus
on intra-modal information fusion methods. In their fusion
stages, single-modal features are input into an attention module
[19], [23], a Long Short-Term Memory (LSTM) network [24],
a Multimodal Factorized Bilinear (MFB) model [25], or a well-
designed Transformer module [26]. Subsequently, many works
[20], [21], [27]–[32] introduce residual lines or self-attention
modules to interact cross-modal information, enhancing the
model’s audio-visual matching capability. To facilitate a fine-
grained exploration of the fusion mechanism of audio-visual
information, inspired by the sensory integration theory, we
attempt to explain the AVEL problem from the perspective of
information flow. Hence, we abstract the audio-visual signal
processing into three stages (as shown in Figure 2): merging
the original audio-visual signals into a new signal (Fusion-
stage), independently incorporating the new signal into the
audio or visual signal (Interaction-stage), and aggregating the
incorporated audio or visual signals into a decision signal
(Integration-stage). Based on the above analysis, we summa-
rize three main issues of AVEL: (1) Pure global fusion is
insufficient to better represent audio-visual information, and
it is necessary to explore fine-grained intra-modal and inter-
modal feature fusion methods for audio-visual pairs; (2) To
align the semantic of audio-visual events, the event boundaries
in the audio modality are often not prominent, while events
in the visual modality are often influenced by changes in
camera angles. This directly leads to challenges in capturing
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the semantic boundaries of audio-visual events; (3) In terms of
model structure, models with interaction stages have poor ro-
bustness to misaligned audio-visual events. Misaligned audio-
visual pairs are more prone to amplifying semantic errors
during cross-modal information interaction, which is inevitable
in the structure of fusion-based frameworks.

To address these issues, we propose a novel Cross-Modal
Contrastive Learning Network (CCLN) framework for AVEL,
which comprises a backbone network and a branch net-
work. The backbone network is a fusion-based architecture
aimed at fully exploiting intra-modal and inter-modal event
information. In the backbone network, we decompose the
perception integration process of audio-visual events into three
stages: fusion, interaction, and integration, delving into the
fine-grained investigation of audio-visual fusion mechanisms.
The Self-constrained Bi-modal Interaction (SBI) module is
specifically designed for the fusion and interaction of audio-
visual information. It computes audio-visual correlation matri-
ces in a self-attention manner, which are then fused separately
into the visual and audio modalities after gate threshold-
ing. The SBI module effectively serves as both a visual-
guided audio and an audio-guided video fusion pluggable
structure. The fused features capture additional cross-modal
details that positively contribute to information interaction.
Additionally, we address the event-level audio-visual semantic
enhancement, which has been rarely considered in previous
models. In the backbone network, we propose the Foreground
Event Enhancement (FEE) module, which strengthens event
semantic boundaries with adaptive weights while reducing
the impact of background event noise. To reduce new noise
interference introduced by audio-visual integration and capture
weak cues of audio-visual associative semantics, we introduce
weak labels to enhance the self-supervised contrastive learning
framework, transforming it into a cross-modal feature seman-
tic aggregation problem within the weak label domain (as
shown in Figure 3 (b)). Unlike most anchors that consider
only single-modal and single-positive factors, our Weakly-
supervised Cross-modal Contrastive Learning Loss (WCCL
Loss) considers more multi-modal negative and positive fac-
tors. These positives come from samples of the same category
as the anchor, rather than from anchor data augmentation. The
main innovations of our work are:

• We investigate and elucidate the audio-visual fusion
mechanism of the AVEL task from the perspective of
information flow, dividing the audio-visual fusion process
into three stages: fusion, interaction, and integration. This
provides a novel approach to uncovering hidden cross-
modal complementary information and enhancing the
coupling of audio-visual pairs.

• We incorporate pluggable SBI and FEE modules in the
fusion-based backbone network. The SBI module utilizes
a bi-modal attention structure integrated with audio-
visual fusion information to effectively capture inter-
modal correlations, while the FEE module emphasizes the
significance of event-level boundaries, better capturing
the weak semantic boundaries of audio-visual events.

• We propose a two-branch contrastive learning framework

for AVEL for the first time to reduce the new noise intro-
duced during audio-visual fusion. To solve the semantic
alignment problem of cross-modal contrastive learning,
we introduce weak labels to constrain the audio-visual
event semantics, so that the model can obtain better cross-
modal semantic features.

• Experimental results on the extensively utilized AVE
dataset demonstrate that our proposed model surpasses
the state-of-the-art methods for both fully supervised and
weakly supervised event localization, as well as cross-
modal localization tasks.

II. RELATED WORK

A. Audio/video Anomaly Event Detection

Traditional audio/video anomaly event detection entails a
binary classification task aimed at discerning the presence of
audio/visual anomaly events throughout the entire audio/video
scene. Treating an audio/video abnormal segment as an event
broadens the purview of audio/video anomaly detection to en-
compass single-modal (i.e., audio or visual) event localization.
Anomalies (i.e., anomalous events) typically manifest for brief
durations in real-world scenarios. Therefore, prior endeavors
have endeavored to establish normal patterns using various
statistical models and classify segments diverging from these
patterns as abnormal events. Commonly employed methods
for identifying outliers as anomalies include Hidden Markov
Model (HMM) [33], Gaussian process modeling [34], sparse
reconstruction methods [35], and clustering-based approaches
[36]. However, these methods may not effectively capture
audio/video time-series cues.

With the significant advancements in deep learning, some
researchers have turned to generative models for constructing
normal behavior patterns, including Generative Adversarial
Networks (GAN) [37] and Autoencoders [8], [9]. Additionally,
the Seg2Seg framework [38] has been widely applied to
leverage the temporal continuity of audio/video data. Sultani et
al. [39] propose a multi-instance weakly supervised framework
for predicting visual normal/abnormal behavior, departing
from the sole modeling of normal behavior. This approach
has yielded promising results and has been further explored
[38], [40]. In recent years, self-supervised learning models
[41], [42], relying on data augmentation, have also gained
considerable attention in the anomaly detection domain. These
models generate spatial and temporal pseudo-abnormal data
for self-supervised training alongside normal data. While these
methods typically focus on either audio or visual signals, we
concurrently consider two types of heterogeneous data from
different modalities. Similar to single-modal event detection
methods, we extract event features from segments.

B. Audio-visual Representation Learning

Audio-visual representation learning endeavors to obtain
high-quality joint representations of audio-visual pairs, requir-
ing the comprehensive utilization of complementary informa-
tion within and across audio-visual modalities. Early methods
for audio-visual representation were limited by computational
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resources and mainly relied on mathematical and statistical ap-
proaches. However, with the rise of deep learning, audio-visual
representation has undergone significant evolution, embracing
fusion strategies rooted in both supervised and unsupervised
learning paradigms.

In most models, the prevailing paradigm operates under su-
pervised learning. These models typically utilize dual branches
to extract and process features from audio and visual channels,
subsequently employing a fusion module to integrate these
features. They are trained using actual audio-visual labels as
supervised signals [43]–[46]. For instance, Min et al. [43]
devise four distinct families of objective A/V quality predic-
tion models employing diverse multi-modal fusion strategies.
Xue et al. [44] introduce a co-attention model to supplant
direct multi-modal fusion, leveraging spatial and semantic
correlations between audio and visual features. Delving deeper
into audio-visual relationships with attention-based networks,
Liu et al. [45] employ a dense modality interaction network
integrating two innovative modules to harness audio-visual
information. Conversely, significant strides have been made
in audio-visual representation learning through unsupervised
(including self-supervised) strategies. These approaches hinge
on semantic alignment achieved via contrastive learning losses.
For example, Owens et al. [47] endeavor to learn joint cross-
modal representations, considering sound and corresponding
visual images as supervisory signals in an unsupervised man-
ner. Zheng et al. [48] seek to generate modality-independent
representations for each individual in each modality via ad-
versarial learning, concurrently learning robust similarity for
cross-modal matching through metric learning. In this study,
the fusion-based backbone network we propose is rooted in the
analysis of information-flow transfer stages, with pluggable
SBI and FEE components designed to enhance the internal
correlation of audio-visual representation.

C. Audio-visual Event Localization

Audio-visual event localization aims to identify audio-visual
events of interest within unconstrained, long video sequences
and predict the category to which these events belong. Specifi-
cally, the AVE task involves discovering event-matching video
segments within video sequences that contain both audio and
visual events (with the background considered as one event).
Subsequently, predictions are made regarding the categories
of audio-visual events, either at the segment level or video
level. Early models primarily focused on fusion methods for
audio-visual signals, including early fusion of audio-visual
features and late fusion into predictions (i.e., integration).
Tian et al. [19] were the first to propose the AVE task and
demonstrate the effectiveness of audio-guided visual attention
(AGVA), which has become an important component of most
subsequent models. Lin et al. [24] leverage the temporal-
dependence properties of LSTM to concatenate audio-visual
single-modal features for predictions. Ramaswamy et al. [25]
incorporate a bi-linear model to integrate the extracted audio-
visual features. Lin et al. [26] construct a complex audio-visual
Transformer structure with an AGVA module to capture the
relationship information between audio and visual features.

Xu et al. [23] design an attention structure and integrate
predictions using matrix dot product.

To further explore the complementary information of audio
and visual signals, and to reduce the noise generated during the
process of audio-visual fusion, many researchers have focused
on the multi-modal information interaction and integration
processes to construct more sophisticated networks. Wu et
al. [27] introduced a self-attention module to integrate intra-
modal information dependencies and incorporated residual
connections for basic inter-modal information interaction.
Xuan et al. [29] utilized self-attention, adaptive attention,
and LSTM modules to create a network structure for audio-
visual information interaction through residual connections.
Ramaswamy et al. [28] leveraged bilinear methods to achieve
a more complex audio-visual information interaction process,
considering additional interaction information during predic-
tion generation. Zhou et al. [30] employed a threshold to
filter out strongly related event segments during the informa-
tion interaction stage but also discarded potentially valuable
relevant information. Xia et al. [20] improved the design of
the information integration stage and used an attention-based
approach to suppress noise at both the temporal and event
levels. Wang et al. [21], [32] emphasized the importance of
event boundaries, advocating for finer-grained modulation of
segment-level semantics and event-level relationships follow-
ing the fusion and interaction stages.

In our model, we thoroughly explore the fusion mechanism
of audio-visual information, refine the structural design, and
propose a cross-modal contrastive learning paradigm to reduce
the new noise generated by audio-visual fusion, conducting in-
depth research on various structural aspects.

D. Audio-visual Contrastive Learning

In recent years, self-supervised contrastive learning models
have witnessed significant advancements across various do-
mains [49]. Typically, the input to a self-supervised contrastive
learning model involves utilizing a positive pair, chosen
through co-occurrence [49], [50] or data augmentation [51],
for each anchor sample. This selection method is often based
on limited prior knowledge, such as frames from different
videos or patches from distinct images, aimed at enhancing
the model’s accuracy. Tian et al. [50] were the pioneers in
exploring the multi-view coding (CMC) technique within a
contrastive learning framework, intending to encode various
data views (e.g., brightness, optical flow) from the same image
sample. However, these data views primarily pertain to the
visual modality and inherently possess pre-existing semantic
features. An intriguing concept in self-supervised contrastive
learning involves substituting the positive pairs of the same
modality with embeddings from different modalities, such as
audio and video [16], [17].

Typically, contrastive loss is employed during the training
stage to minimize the distance between representations in the
last layer of a deep network. However, for multi-modal tasks,
the heterogeneity across modalities significantly reduces con-
fidence in representations based solely on feature similarity.
Furthermore, self-supervised contrastive learning based on a
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((a)) Fusion-based Frameworks (mainly focus on the fusion-stage)

((b)) Fusion-based Frameworks (with fusion, interaction, integration) ((c)) Two model frameworks

Fig. 4. Comparison of audio-visual information processing frameworks for AVEL. The networks in subfigure (a) only highlight the role of the Fusion-stage
and give little consideration to information interaction and integration. The networks in subfigure (b) contain fusion, interaction, and integration stages, most
of which do not have a clear and complete structural design. These networks can be abstracted into the fusion-based framework (shown on the left of subfigure
(c)). To reduce the noise generated by information fusion, we propose a cross-modal contrastive learning network framework (shown on the right of subfigure
(c)), which is the first dual-branch architecture framework for AVEL. The performance results reported in these figures are all under the fully supervised
setting.

single modality often requires heavy data augmentations to
generate diverse views. To address the challenges posed by
self-supervised contrastive learning in the presence of multi-
modal heterogeneity, an effective approach is to introduce
labels to narrow or push the distance between multi-modal
samples. Kamnitsas et al. [52] introduce a novel regularization
method and apply it to joint training classification heads
with contrastive embeddings. Subsequently, Khosla et al. [53]
increase data augmentation, normalize the contrastive embed-
dings, and propose a supervised contrastive loss (SupCon loss),
which achieves remarkable results across numerous pretext
tasks. Inspired by the SupCon loss, we introduce weak labels
to mitigate noise introduced by modality heterogeneity in
cross-modal representation learning. However, our approach
differs from the SupCon loss in that we deal with multi-modal
data with weak labels at the segment or video level, while the
SupCon loss is applied to single-modality (image) data with
fine labels. Additionally, the SupCon loss establishes a multi-
positive pattern for each anchor, whereas, in the AVEL task,
we must consider not only the label for each feature but also
the alignment of multi-modal data within the same sample.

III. MOTIVATION

Traditionally, the fusion-based framework for AVEL has
predominantly focused on integrating audio and visual in-

formation flows, beginning from low-dimensional data and
progressing to higher-dimensional semantic information. Anal-
ogous to the way human auditory and visual signals are
transmitted and integrated into the cerebral cortex to facilitate
advanced audio-visual functions, the design of AVEL frame-
works should meticulously consider audio-visual information
processing. Hence, we have delineated three stages of audio-
visual information processing: fusion (Fusion-stage), interac-
tion (Interaction-stage), and integration (Integration-stageF),
mirroring the mechanism by which humans process audio-
visual signals. However, are all three stages indispensable
for AVEL? What challenges may arise from the fusion-based
model paradigm, and how have they been addressed? We aim
to distill the essential elements of mainstream AVEL frame-
works to analyze the mechanism of audio-visual information
processing, as illustrated in Figure 4.

Is the Fusion-stage necessary? Almost none of the model
architectures depicted in the first row of Figure 4 incorporate
an information Interaction-stage; instead, they solely focus on
information fusion. The AGVA model [19] demonstrates the
efficacy of audio-guided visual attention for the first time,
with its fusion architecture serving as the basis for most
subsequent models. In contrast to AGVA, the AVSDN model
[24] concatenates LSTM-encoded audio-visual features into
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a global LSTM for fusion. The ASA model [25] introduces
a self-attention-like module based on AGVA and computes
cross-modal fusion information using addition. The AV-Trans
model [26] integrates a fusion module with a larger param-
eter scale, aiming to construct more refined temporal/spatial
fusion methods using the Transformer [54] architecture. The
CMRAN model [23] adopts multiple attention modules, intro-
ducing temporal information to enhance AGVA and fusing
single-modal information with two self-attention structures,
respectively. Comparative analysis reveals that both AVSDN
and ASA outperform the baseline AGVA, suggesting that
the designed Fusion-stage effectively enhances model per-
formance. Furthermore, the performance results of AV-Trans
and CMRAN indicate that a sophisticated fusion module
with a large parameter scale can significantly leverage the
complementarity of cross-modal information.
Is the Interaction-stage necessary? The model architectures
depicted in Figure 4 (b) encompass, to varying extents, the
three stages of information processing (fusion, interaction, and
integration). However, they often lack emphasis on the design
of the information integration stage, frequently implementing
it through simplistic operations such as addition, multiplica-
tion, or concatenation. For instance, the DAM model [27] and
CMAN model [29] introduce straightforward residual lines
to facilitate cross-modal information interaction. The AVIN
model [28] focuses on designing a complex information inter-
action module but overlooks early information fusion, achiev-
ing results comparable to AV-Trans despite having smaller-
scale parameters. Conversely, the PSP model [30] adopts
a more comprehensive architecture design, incorporating an
interaction module that leverages earlier fusion information.
Following the fusion stage in the CMBS model [20], a more
intricate interaction module is established, and improvements
are made to the integration stage, resulting in enhanced model
performance. Notably, the frameworks presented in Figure 4
(b) consistently achieve improved model performance with the
addition of an Interaction-stage, even if they have a simpler
Fusion-stage (e.g., AVIN) compared to the baseline AGVA.
Particularly, PSP (with an Interaction-stage) outperforms AV-
Trans (without an Interaction-stage but with a larger parameter
scale) and CMRAN (with a more complex fusion module
but a weak Interaction-stage), highlighting the critical role
of the Interaction-stage. The overall performance results of
these models further affirm that well-designed information
interaction significantly benefits AVEL.
Is the Integration-stage necessary? Among the models illus-
trated in Figure 4 (b), SRMN stands out for its comprehensive
design of audio-visual information processing, encompass-
ing fusion, interaction, and integration stages, and it has
demonstrated superior performance compared to other models.
However, attributing the superior performance of SRMN solely
to the design of the information processing stages or to the
influence of the event proposal modulation strategy remains
challenging. Similarly, previous studies either overlook or
incompletely address the design of the information Integration-
stage, making it difficult to draw definitive conclusions. Upon
examining Figure 4 (a), we observe that despite the complex
fusion-stage designs in AVSDN and ASA (which lack an

integration-stage), their performance is notably inferior (by
approximately 3% on average) compared to AV-Trans and
CMRAN (both of which incorporate a simple integration-
stage). This observation suggests that the integration-stage
may indeed play a beneficial role in audio-visual cross-
modal information processing. Nonetheless, specific ablation
experiments are necessary to validate this hypothesis.
Assumption. Based on the above analysis, we can outline
a general audio-visual information processing paradigm for
AVEL, as depicted on the left side of Figure 4 (c). Addi-
tionally, insights drawn from previous frameworks (illustrated
in (a) and (b) of Figure 4) provide valuable inspirations for
designing our framework: (1) Attention mechanism has been
proven to be beneficial in the information Fusion-stage, and
its reasonable use can achieve good model performance (refer
to the results of CMRAN); (2) Using LSTM to enhance
the dependency of intra-modal information is a good choice;
(3) The larger the model parameter scale, the greater the
performance advantage (refer to the results of AV-Trans), but it
also introduces more noise; (4) Information interaction should
be considered, as demonstrated by high-performance models
such as the SRMN; (5) The contribution of the information
integration-stage requires further experimental exploration,
and the treatment of new noise in the audio-visual information
processing should also be considered.

Fig. 5. The four contrastive branch structures of CCLN are illustrated. In
the figure, (a) mode denotes only the audio-visual fusion branch (AV), (b)
mode represents contrastive learning between the audio-visual fusion branch
and the visual branch, and the audio branch (AV+V+A), (c) mode indicates
contrastive learning between the audio-visual fusion branch and the visual
branch only (AV+V), and (d) mode signifies contrastive learning between the
audio-visual fusion branch and the audio branch only (AV+A).

Based on the considerations outlined above, we introduce
a novel AVEL model paradigm (depicted on the right side
of Figure 4 (c)). This paradigm incorporates a backbone
network comprising three stages: information fusion, interac-
tion, and integration, which collectively constitute the Cross-
Modal Contrastive Learning Network (CCLN). The detailed
methodology of our entire model is delineated in Section IV,
while Section V-B presents the fundamental aspects of each
stage through experimental analyses. In Figure 5, we illustrate
four specific branch structures of the CCLN, and a comparative
investigation is further conducted in Section V-B.

IV. METHODOLOGY

Analogous to the human brain’s integration of multi-sensory
information, we conceptualize audio-visual event localization
as a process involving the fusion, interaction, and integration
of audio-visual pairs to predict and categorize events at either
the segment or video level.
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Fig. 6. The overall architecture of our CCLN model. Preprocessed audio and visual raw data are input into pre-trained deep convolutional networks to extract
single-modal high-dimensional features, which are then fed into the CCLN dual-branch network. In the fusion-based backbone branch, audio and visual
features undergo processing through three stages: fusion, interaction, and integration. In the fusion stage, we employ an audio-guided visual attention module
and a Bi-LSTM module for intra-modal information enhancement and initial inter-modal fusion. In the interaction stage, we design the SBI module, where
the correlation matrix after audio-visual fusion is used to construct cross-modal attention, which is then fused into audio and visual features after the threshold
gate. In the integration stage, the FEE module further filters and integrates to generate event-level predictions, enhancing the boundaries of audio-visual events.
The CCLN model utilizes the visual branch after the fusion stage as the contrastive branch.

A. Notations and Problem Statement

The goal of AVEL is to identify synchronously related
audio-visual pairs, content-matching audio and visual events,
from an unconstrained video. Suppose a video sequence
containing audio and visual modalities is {Sv

t , S
a
t }Tt=1. Sv

t

and Sa
t represent the visual and audio channels of the video

sequence respectively. The video sequence is divided into non-
overlapping T segments at equal intervals, and the sampling
interval is taken as one second in this paper. Consistent with
the baseline [19], AVEL explores learning under both fully
supervised and weakly supervised learning settings. The model
of cross-modal localization task, however, is learned under a
fully supervised learning setting.
AVEL under Fully Supervised Learning. In the fully su-
pervised learning setting, each audio-visual video segment is
assigned an event category label, and the model is trained
to predict the event category at the segment level. yft =
{yfkt |yfkt ∈ {0, 1},

∑C+1
k=1 yfkt = 1} represents the label of

the tth segment, where t ∈ {1, 2, ..., T}. Note that we treat
the background as an independent event category, where C
is the number of label categories of a dataset, so the total
number of event categories is C + 1. Thus, define Y full =
{yf1 , y

f
2 , · · · , y

f
T } ∈ RT×(C+1) as the label of the entire video

sequence. The prediction score of the tth audio-visual pair in
the fully supervised training setting can be used to judge the
event category of the segment.
AVEL under Weakly Supervised Learning. In the weakly
supervised learning setting, we can only get the video-level
labels. Y weak = {ywk|ywk ∈ {0, 1},

∑C+1
k=1 ywk = 1} ∈

R(C+1) is denoted the label of an entire video. This setting

is more suitable for real-world general situations where fine
annotations are not readily available but poses a higher chal-
lenge to the robustness of the model. In this paper, we perform
linear transformation and average pooling on Y full to obtain
the video-level labels.
Cross-modality Localization Task of AVEL. The cross-
modal localization task of AVEL aims to determine the bound-
aries corresponding to audio-visual events and is conducted
under fully supervised training at the segment level. In either
the audio or video modality, each segment’s label is binary,
denoted as 0 or 1. Consequently, the label for the entire video
segment can be represented as Y cml = {(y1, y2, · · · , yT )|yt ∈
{0, 1}} ∈ RT×1. It is noteworthy that the model for the CML
task does not necessitate the design of an audio-visual fusion
structure or a classification head; its ultimate objective is to
compute the distance between predicted segments in the query
modality and given modality event segments.

B. Overall Model Structure

Figure 6 illustrates the overall structure of our CCLN model,
which primarily comprises a backbone network and a branch
network (visual branch). The backbone network is composed
of five key modules: (1) Feature Embedding: This module
separates audio and visual frames from an unconstrained long
video, transforms and encodes them into high-dimensional
feature vectors; (2) Fusion-Stage: Using audio embeddings to
guide visual embeddings through a co-attention strategy, this
module achieves cross-modal fusion and enhances inter-modal
temporal dependence; (3) Interaction-Stage (SBI module): In
this stage, audio and visual information interact, with the
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degree of interaction controlled by adaptive parameters;(4)
Integration-Stage (FEE module): Based on the integration
of inter-modal information, this module employs the FEE
branch to reduce background event noise; (5) Classification:
In this module, decision information is utilized to train a
classifier under the constraint of the loss functions, which
makes predictions based on the training results.

The preprocessed audio and video segments are fed into the
feature embedding module, where a deep convolutional net-
work abstracts them into high-dimensional semantic features
respectively. In the Fusion-stage, the audio-visual features are
aligned by a spatial attention structure ( i.e. audio-guided
visual attention model [19]), and then a Bi-LSTM component
[24] and a self-attention component is applied to the audio and
visual modalities separately to strengthen the long and short
term dependence of the intra-modal information. Subsequently,
the encoded feature vF and aF , corresponding to audio and
visual, are sent to the SBI module for refined interaction of
audio-visual signals. In the Interaction-stage, a bi-attention
structure is designed to filter and fuse the correlation infor-
mation between audio-visual modalities, and the correlation
information as well as the cross-modal residual information
are used to guide the generation of visual feature vI and audio
feature aI . Then, in the Integration-stage, based on integrating
the intra-modal information of audio and visual modality, the
adaptive weight branch of the FEE module is introduced to
improve the attention of foreground events. Finally, in the
classification module, the integrated information vZ and aZ

are linearly transformed to generate the audio-visual event
predictions. Note that vF , aF , vI , aI , vZ and aZ are all vectors
of dimension RB×T×dv .

C. Feature Embedding

The task of the feature embedding module is to extract and
encode abstract audio and visual representations and unify
them into feature vectors of the same dimension. First, the raw
audio and visual channels are separated from the unconstrained
video containing audio and visual pairs. The visual channel
samples T cubes Sv at the same interval, and the audio
Mel-spectrum Sa is also sampled at equal intervals into T
segments after the Mel-scale filter banks. Each image cube
or audio Mel-spectrogram segment is then fed into an inde-
pendent pre-trained deep convolutional neural network (CNN)
to extract high-dimensional feature vE ∈ RT×H×W×dfv or
aE ∈ RT×dfa . H and W are the height and width of the
video frame respectively, and the dimensions of dfv and dfa
are not equal here.

D. Backbone Network

Analogous to the way audio and visual signals are analyzed
and transmitted in human brain regions related to audio-visual
integration, the backbone branch network serves the purpose
of filtering and fusing intra and inter-modal signals in our
model. The backbone network mainly consists of three audio-
visual information processing modules: the Fusion-stage, the
Interaction-stage, and the Integration-stage.

Fig. 7. The architecture of the SBI module (left) and FEE module (right). SBI
is a size-invariant pluggable component with dual input and dual output, used
for the interaction of audio-visual information under parameter constraints
in the interaction stage, effectively balancing cross-modal complementary
information and new noise information. In the FEE module, we design a
weight-adjustable branch containing only foreground events to capture event
boundaries at the event level, reducing noise from background events. Note
that the data dimensions in the figure correspond to the fully supervised AVEL.

Fusion-stage. The Fusion-stage is used to effectively ob-
tain the early audio-visual fusion information and enhance
intra-modal information dependence. The audio-guided visual
attention (AGVA) mechanism [19] has fully demonstrated
that it can adaptively find the corresponding audio object
or visual activity from the visual modality of each video
segment. Therefore, we employ this spatial attention approach
to compensate for audio-visual information in visual features.
Then, we adopt Bi-directional Long Short-Term Memory (Bi-
LSTM) to establish long short-term dependence information
for audio or visual features along the time direction, and the
visual representation vF ∈ RT×dv and audio representation
aF ∈ RT×da are obtained after a self-attention structure.
In this process, the dimension dv of audio features and
dimension da of visual features are already equal after linear
transformation. The whole process can be recorded as:

vA = AGV A(vE , aE) (1)

vF = Sa(Bl(vA)) (2)

aF = Sa(Bl(aE)) (3)

where Bl(·) and Sa(·) represent Bi-LSTM and self-attention
operations, respectively.
Interaction-stage (SBI Module). Although the use of a
more complex Fusion-stage design [26] can improve the
performance of the model, it also introduces unexplained
and uncancelable noise, which limits the final performance
of the model. At the same time, the computational resource
consumption caused by a large number of parameters is not
necessary for the model performance, and we can exceed
its performance by optimizing the information flow. PSP
[30] clearly simulates the processing of intra and inter-modal
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information flows, attempting to find strongly correlated audio-
visual pair through a one-hot encoded correlation matrix, but
the hard threshold also inadvertently loses richer multi-modal
interaction information. CMBS [20] designs a more complete
information interaction structure, but the redundancy in the
structure often introduces new fusion noise. In the Interaction-
stage, we design the SBI module to exchange audio-visual
information through a bi-attention structure and apply cross-
residual information to compensate for missing information.

The detailed structure of our designed cross-modal infor-
mation interaction component, the SBI module, is shown in
Figure 7. Among feature representation methods, the attention
mechanism is superior to the recurrent and convolutional
layers in terms of computational complexity and path length
between long-term dependencies. The output vectors vF and
aF of the fusion-stage module are linearly transformed as
V1, V2 and A1, A2, respectively. They are all of the same
dimension RT×d, and d is equal to da. First, we choose Scaled
Dot-Product Attention (SDPAtt) to calculate the fusion feature
hva of V2 and A1, since it can be implemented using highly
optimized matrix multiplication code to achieve much faster
and more space-efficient performance. And then the audio-
visual correlation matrix hva is transposed to obtain the hav

matrix. Subsequently, hva and hav are filtered and normalized
with hyperparameter τ and dot multiplied with V1 and A2 to
generate the fused visual feature vM and audio feature aM .
This process is represented as:

V1, V2, A1, A2 = lin(vFW1, v
FW2, a

FW3, a
FW4) (4)

hva = σ(
V2 ⊗A1

T

√
d

) (5)

hav = T (hva) (6)

vM = V1 ⊗ hva(τ) (7)

aM = A2 ⊗ hav(τ) (8)

where W1, W2, W3 and W4 are linear transform weights, all
with dimension Rd×d. lin(·) denotes the linear transformation,
σ(·) denotes the Softmax function, ⊗ is the dot product, and
T (·) denotes the matrix transpose operation.

The SBI module aligns the relevant salient information of
the audio and visual features through the fusion strategy, and
we adopt the information interaction strategy to further reduce
the background noise of the audio-visual pairs. Just as the
fusion and interaction of different modality information in the
human brain are carried out simultaneously, the interaction
process and the fusion process in our model are also carried
out simultaneously, which is realized by the residual line. The
encoded initial features are cross-added with the fused features
vM and aM to obtain the interactive features vI and aI . The
SBI module can be regarded as a dimension-invariant dual-
input-output pluggable device for bi-modal interaction. This
process is written as,

vI = vF ⊕ aM (9)

aI = aF ⊕ vM (10)

Integration-stage (FEE Module). Previous audio-visual in-
tegration strategies have mostly relied on simple dot products
and element-wise multiplication, which can easily result in

information loss and introduce noise. Therefore, we employ
self-attention structures and Layer normalization to further in-
tegrate single-modal information. Additionally, previous meth-
ods mostly generate segment-level classification heads, utiliz-
ing segment-level or video-level labels for supervised learning.
This strategy overlooks the learning of event-level knowledge,
making it difficult to distinguish boundaries between audio-
visual events. In our FEE module, we construct event-level
classification heads, enabling the model to better localize event
boundaries.

In the Integration-stage, we integrate the interactive audio-
visual information to form the prediction for classification
decisions. Firstly, vI and aI are pushed into a self-attention
component to enhance intra-modal information integration
of audio and visual modalities. The output results are then
processed by a simple position-wise fully connected feed-
forward layer and a normalization layer (i.e. Fl+Ln layer) in
turn to produce the vZ and aZ features. Finally, the output is
simply averaged to get a preliminary decision value of P out,
and P out is transformed by different linear transformations to
get three different predictions P f , P fe and P o. The process
is summarized as follows,

vZ = Ln(Fl(Sa(vI))) (11)

aZ = Ln(Fl(Sa(aI))) (12)

P out =
1

2
(vZ ⊕ aZ) (13)

P o = lin(P out ⊗W5) (14)

P f = lin(P out ⊗W6) (15)

P fe = Max(lin(P out ⊗W7)) (16)

where W5 ∈ Rd×(C+1), W6 ∈ Rd×1 and W7 ∈ Rd×C are
linear transform weights. The dimensions of vZ , aZ and P out

are both RT×d. Fl(·) and Ln(·) denote the feed-forward layer
and normalization layer.

In particular, we calculate prediction labels for CML tasks
from formulas (11) and (12) :

P o
cml = sqrt(Max((vZ − aZ)2, 0)) (17)

where sqrt(·) means to find the square root, and P o
cml ∈ RT×1

Due to the high uncertainty of the background event, the
FEE module is used to widen the distance between foreground
events and background even to reduce background noise. The
C dimension of P fe is the category number of audio-visual
events in a dataset, that is, the number of foreground events
relative to background events. We design another weight
branch to calculate the final foreground event prediction. vI

and aI after linear transformation screen out the first K values
through TopK function. The average values of the results are
calculated and transformed into ve ∈ RC and ae ∈ RC after
the activation function. After multiplying ve and ae, multiply
with P fe to get foreground event prediction P e ∈ RC . This
process can be expressed as,

ve = ρ(Mean(TopK(lin(vI)))) (18)

ae = ρ(Mean(TopK(lin(aI)))) (19)

P e = P fe ⊗ (ve ⊗ ae) (20)
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where TopK(·) and Mean(·) represent sorting and averaging
operations, respectively. ρ is the Sigmoid activation function.

E. Classification

Prediction P o is processed differently under different train-
ing settings. We defined W5 as Wf5 (under full supervised
settings) and Ww5 (under weak supervised settings) respec-
tively. This transformation can be described as,

Pfull = lin(P out ⊗Wf5) (21)
Pw = lin(P out ⊗Ww5) (22)

where the dimension of weight Wf5 and Ww5 are Rd×(C+1).
So the predictions Pfull and Pw have the same dimen-
sion RT×(C+1). In the fully supervised setting, Pfull =

{pf1 , p
f
2 , · · · , p

f
T } ∈ RT×(C+1) is the final prediction

score and the tth prediction is represented as pft =
{pfkt |pfkt ∈ {0, 1},

∑C+1
k=1 pfkt = 1, t = 1, 2, ..., T}.

We add a weighted branch in the weakly supervised setting
to improve the correlation of captured video-level synchronous
audio-visual pairs.

Θ = ρ(R(lin(Pw ⊗Wb))) (23)
Pweak = Pw ⊗Θ (24)

where Wb ∈ R(C+1)×1 is learnable parameters in the linear
layers. R denotes the ReLU activation function. Θ ∈ RT×1 is
the weight vector we get from the linear weight branch. Thus,
video-level prediction under weakly supervised setting can be
expressed as Pweak = {pwk|pwk ∈ {0, 1},

∑C+1
k=1 pwk = 1} ∈

R(C+1).
In addition, we take the features after the fusion stage as

the input of the branch network and get the prediction features
P v (or P a) after processing by the self-attention component
and linear layer. P f , P v and P a all have dimensions RT×1.

P v = Ln(Fl(Sa(vF ))) (25)

P a = Ln(Fl(Sa(aF ))) (26)

F. Loss Design

In our CCLN framework, our weakly-supervised cross-
modal contrastive learning loss (WCCL loss), introduces
video-level event weak labels rather than semantics to bring
related audio-visual pairs closer together. Specifically, regard-
ing the prediction Pi of one modality as the anchor, all the
corresponding predictions Pp with the same label within a
batch are positives. i ∈ I ≡ {1 · · · 2N} is the index of any
anchor within a batch, and define the index domain except
anchor as A(i) ≡ I\{i}. p is the index of all positives with the
same label within a batch, and its value domain can be written
as B(i) ≡ {p ∈ A(i), ywi = ywp }. The other 2(N −1) samples
within the same batch are called negatives. Our WCCL loss
can be defined as,

Lwccl = −
∑
i∈I

log(
1

|B(i)|
∑

p∈B(i)

exp(Pi ⊗ Pp/δ)◁ Y∑
a∈A(i) exp(Pi ⊗ Pa/δ)◁ Y

)

(27)

where, δ ∈ R+ is a scalar temperature parameter.

AVEL in the fully supervised setting is a segment-level
multi-class classification problem. We adopt multi-class focal
loss Lmfl on P o

full ∈ RT×(C+1) with Y full ∈ RT×(C+1)

and foreground event enhancement loss (i.e. multi-class cross-
entropy loss) Lmfe on P e

full ∈ RT×C with Y e
full ∈ RT×C .

In addition, we contrast the visual branch prediction P v and
the fusion prediction P f are guided by label Y f

full ∈ RT×1

for contrastive learning using our WCCL loss (see Table II for
details). Losses function in this setting is defined as,

Lmfl = − 1

T

T∑
t=1

C+1∑
k=1

FL(P o
full, Y

full, α, γ)) (28)

Lmfe = − 1

T

T∑
t=1

C+1∑
k=1

Y e
fulllog(P

e
full) (29)

Lmcl = Lwccl(P
v, P f , Y f

full) (30)

Lfull = Lmfl + λLmfe + ηLmcl (31)

where FL(.) denotes binary focal loss.
The AVEL task can be regarded as a binary classification

problem in the weakly supervised setting. We consider binary
focal loss Lbfl on P o

weak ∈ RC+1 with Y weak ∈ RC+1 and
foreground event enhancement loss Lbfe on P e

weak ∈ RC

with Y e
weak ∈ RC . Similarly, we contrast the visual branch

prediction P v
weak and the fusion prediction P f

weak with label
Y f
weak for contrastive learning using WCCL loss. These loss

functions can be denoted as,

Lbfl = −
C+1∑
k=1

FL(P o
weak, Y

weak, α, γ)) (32)

Lbfe = −
C+1∑
k=1

Y e
weaklog(P

e
weak) (33)

Lbcl = Lwccl(P
v, P f , Y f

weak) (34)
Lweak = Lbfl + λLbfe + ηLbcl (35)

Unlike the preceding tasks, the CML model does not require
a classification head. We consider binary cross-entropy loss
Lbfe on P o

cml ∈ RT×1 with Y cml ∈ RT×1. The design
of contrastive learning loss is the same as that of weakly
supervised AVEL.

Lbfe = −
T∑

k=1

Y cmllog(P o
cml) (36)

Lbcl = Lwccl(P
v, P f , Y cml) (37)

Lcml = Lbfe + λLbcl (38)

V. EXPERIMENTS

A. Experimental Descriptions

Datasets. The Audio-Visual Event (AVE) dataset [19], which
contains 4143 samples covering 28 event categories, is used
to evaluate model performance for the AVEL task. It contains
audio and visual events, and the temporal boundaries of audio-
visual events are manually annotated. It extensively covers
real-life scenes and objects such as the church bell, frying
food, train horn, toilet flush, baby cry/infant cry, etc. The
AVE dataset has segment-level and video-level labels with
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clear temporal boundaries. The number of samples for each
event category is between 60 and 188, each sample lasts 10
seconds long, and the sample is guaranteed to contain at least
one audio-visual event that lasts 2 seconds long. Despite the
rigorous hand-picked annotation, the AVE dataset also has
problems such as content misalignment, viewpoint mutation,
missing visual events, etc., but it is the most widely used large-
scale audio-visual event dataset at present.
Parameters Setup. The video channel of the raw sample
is at a frame rate of 30 fps and is 10 seconds long, cut
into segments at one-second intervals. We adopt the VGG-19
network [55] pre-trained on ImageNet [56] to extract visual
feature vectors. Each segment then is averaged and aggregated
into one visual frame of the segment, sampling the video as a
visual frame cube with dimension R10×7×7×512. In particular,
the dimension of the visual input feature in the CML task is
R10×512. Each segment-level audio feature is a 80−bin log
Mel filter bank, calculated by short-time Fourier transform
(STFT) and fast Fourier transform (FFT). Then, the Mel filter
bank features are extracted from each short-time frame, and
combined with frame-level features to form a time-frequency
representation. The VGG-like network [57] pre-trained on
AudioSet [22] is used to extract audio feature vectors with
dimension R10×128.

We implement our experiments on one NVIDIA Tesla V100
SXM2 under the PyTorch framework, Dropout function to reg-
ularize all the linear mappings. According to our experience,
in the SBI module, we set τ = 0.05 under the fully supervised
setting and τ = 0.06 under the weakly supervised setting. We
balance the contribution of each loss by empirically selecting
the optimal parameters (λ = 150 and η = 25 under the fully
supervised setting, λ = 100 and η = 50 under the weakly
supervised setting). Focal loss parameters α and γ use default
parameters. During the training stage, we set the batch size to
128 using the Adam optimizer with the default settings. There
are 200 epochs throughout the training process. The initial
learning rate is set at 1e − 3(under the fully supervised) and
1e−4(under the weakly supervised). In the CML task, we set
τ = 0.05, τ = 0.05, and the initial learning rate at 1e− 4.
Evaluation Metric. To make a fair comparison with other
models, we follow the same evaluation metric as earlier works.
Accuracy (Acc.) is often used to assess the proportion of
correct predictions a model makes on the test dataset. Its
metric is based on a confusion matrix and involves calculations
of TP (true positive), TN (true negative), FP (false positive),
and FN (false negative).

B. Ablation Experiments
In this section, we first verify the role of each component

(i.e., the Fusion-stage, Interaction-stage, and Integration-stage)
of the backbone network through ablation experiments under
both fully supervised and weakly supervised settings, and the
experimental results are shown in Table I. For the sake of
fairness and reliability of the results, we compare reproducible
models, including the recent SOTA model CMBS. We use
“w/o” and “w/” respectively to indicate that the component is
removed or used during the experiment. Firstly, the AGVA, Bi-
LSTM, and Self-Attention components of the Fusion-stage all

TABLE I
ABLATION EXPERIMENTS ON AVE DATASET IN TWO SETTINGS. “W/O”

AND “W/” INDICATES THAT THE MODULE IS REMOVED OR USED DURING
THE EXPERIMENT.

Method Fully Sup. Weakly Sup.
Acc.(%) Acc.(%)

Fusion-stage
w/o Fusion-stage 73.5 69.2
w/o AGVA 74.1 70.4
w/o Bi-LSTM 78.4 73.3
w/o Self-Att. 77.8 73.1
Interaction-stage
w/o SBI 75.0 71.6
Integration-stage
w/o FEE 76.3 71.8
CCLN(ours) 79.9 75.2

make important contributions to the model performance, which
together improve the model performance by 6.4% (fully super-
vised) and 6.0% (weakly supervised). In particular, among the
three components of the Fusion-stage, AGVA plays a relatively
greater role. Secondly, the application of the Interaction-stage
(SBI module) improves the model performance by about 4%
(4.9%/fully supervised, 3.6%/weakly supervised). Finally, the
Integration-stage (FEE module) can achieve an extra 3% gain
in model performance (3.6%/fully supervised, 3.4%/weakly
supervised). According to the results, the contribution of
Fusion-stage is relatively higher, which may be due to the
introduction of new noise in the process of cross-modal
information interaction and integration. Therefore, the weights
of the three stages need to find an optimal balance point to
minimize the impact of noise. Although the role of the three
stages of audio-visual information processing is different, we
demonstrated their positive impact on model performance by
ablation experiments.

TABLE II
ABLATION EXPERIMENTS OF BRANCH MODE ON AVE DATASET.

CORRESPONDING TO THE MODES IN FIGURE 5.

Branch Mode Fully Sup. Weakly Sup.
Acc.(%) Acc.(%)

(a) AV 78.2 73.7
(b) AV + V 79.9 75.2
(c) AV +A 78.6 74.1
(d) AV + V +A 79.3 74.6

Corresponding to the structural exploration of the model
contrastive branch in Sec. III (shown in Figure 5), we verify
the rationality of the “AV+V” mode with ablation experiments.
From the results in Table II, we can conclude: (1) Compared
with the fusion-based mode (“AV” mode), the model perfor-
mance of the “AV+V” mode are improved by 1.7% (fully
supervised) and 1.5% (weakly supervised), which indicates
that the two-branch structure framework can effectively re-
duce the noise caused by the fusion-based framework; (2)
From the results of “AV+V” and “AV+A” modes, the visual
modality has a greater positive effect on model performance
than the audio modality; (3) The results of the “AV+V+A”
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mode are not optimal, combined with the limited performance
improvement of the “AV+A” mode, which may be caused by
the audio modality is more sensitive to noise. According to
the experimental results, we finally chose the “AV+V” mode
as the branch structure of CCLN.

TABLE III
ABLATION EXPERIMENTS OF CML TASK ON AVE DATASET. “W/O” AND
“W/” INDICATES THAT THE MODULE IS REMOVED OR USED DURING THE

EXPERIMENT.

Method A2V V2A Average
Acc.(%) Acc.(%) Acc.(%)

Fusion-stage
w/o Fusion-stage 51.8 53.6 52.7
w/o AGVA 53.1 55.2 54.2
w/o Bi-LSTM 59.7 61.3 60.5
w/o Self-Att. 56.8 57.1 57.0
Interaction-stage
w/o SBI 52.5 53.4 53.0
CCLN(ours) 63.3 64.4 63.9

Similarly, we conduct ablation experiments on various
components of our model for the cross-modality localization
task, and Table III presents the experimental results. Un-
like the fully supervised and weakly supervised audio-visual
event localization task, where boundaries are determined by
matching predicted labels of the query modality with ground
truth labels of the given modality, the CML task calculates
the distance between predicted labels of the query modality
and ground truth labels of the given modality to establish
matching boundaries. Therefore, we removed the FEE module
from the CCLN model. As shown in Table III, when the
Interaction-stage design is removed from the CCLN model, the
overall model performance decreases by 10.9% (from 63.9%
to 53.0%). Similarly, when the Fusion-stage design is removed
from the CCLN model, the overall model performance de-
creases by 11.2% (from 63.9% to 52.7%). The results of the
ablation experiments once again confirm the significance of
cross-modal fine-grained fusion design in audio-visual event
localization tasks.

C. Parameter Sensitivity Experiments

In our model, the hyperparameter τ in the SBI module is
an important variable that regulates the degree of audio-visual
correlation. The experimental results of τ with 0.01 intervals
between 0.01 and 0.10 are shown in Table IV. We find that the
model accuracy fluctuates little in fully supervised and weakly
supervised settings. As the value of τ increases, it increases
first and then decreases, but the optimal value is different under
different settings. This means that the degree of audio-visual

correlation is different for segment-level and video-level AVEL
tasks. Therefore, we end up choosing τ = 0.05 in the fully
supervised setting and τ = 0.06 in the weakly supervised
setting. It is noteworthy that in the CML task, we preserve the
parameters when the model achieves optimal accuracy under
both “A2V” and “V2A” settings. Consequently, we solely
conduct the parameter sensitivity experiment for “A2V” and
selected τ = 0.05.

D. Comparison Experiments

TABLE V
COMPARISON RESULTS OF OUR MODEL WITH THE SOTA MODELS ON THE
AVE DATASET IN TWO SETTINGS. WE COMPARED THE ACCURACY OF OUR

MODEL WITH OTHER SOTA MODELS FOR AUDIO-VISUAL EVENT
LOCALIZATION IN FULLY SUPERVISED AND WEAKLY SUPERVISED

SETTINGS.

Method Fully Sup. Weakly Sup.
Acc.(%) Acc.(%)

AGVA [58] 68.6 66.7
AVSDN [24] 72.6 67.3
DAM w/o Matching [27] 70.7 -
DAM w/Self-Matching [27] 74.2 -
DAM w/Cross-Matching [27] 74.5 -
CMAN [29] 73.3 70.4
ASA [59] 74.8 68.9
AVIN [28] 75.2 69.4
CSEA [44] 72.9 66.4
CSPA [44] 74.1 68.0
CSPEA [44] 76.5 70.2
AV-Trans [26] 76.8 70.2
CMRAN w/o CMRA [23] 76.1 72.0
CMRAN w/Self-Att. [23] 76.4 72.5
CMRAN w/Co-Att. [23] 76.6 72.2
CMRAN w/CMRA-F [23] 75.6 71.7
CMRAN w/CMRA [23] 77.4 72.9
PSP [30] 77.8 73.5
CMBS [20] 79.3 74.2
CAPB [21] 79.3 -
SRMN [32] 79.5 -
CCLN(ours) 79.9 75.2

We compare our model CCLN with the baseline AGVA [19]
and the recent state-of-the-art (SOTA) models (all results are
listed in Table V). Our model exceeds the accuracy results of
existing models (79.9% in the fully supervised setting, 75.2%
in the weakly supervised setting). In both fully supervised
and weakly supervised settings, our model outperforms the
baseline AGVA by 11.3% and 8.5%. Compared to the recent
SOTA models, our CCLN exhibits a performance improvement
of 0.4% over the SRMN [32] model in the fully supervised
setting and 1.0% over the CMBS [20] model in the weakly

TABLE IV
EFFECTS OF VARIOUS VALUES OF HYPERPARAMETER τ ON OUR MODEL ACCURACY. THE RESULTS OF THE THREE TRAINING SETTINGS ARE SHOWN.

τ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Fully Supervised Acc.(%) 78.4 78.3 78.7 79.0 79.9 79.1 79.3 78.6 78.8 78.5

Weakly Supervised Acc.(%) 72.8 73.2 73.1 74.1 74.3 75.2 74.5 74.4 73.0 73.9
Cross-modality (A2V) Acc.(%) 61.8 62.2 62.6 62.5 63.3 63.0 62.4 62.7 61.9 62.3
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Fig. 8. Bar chart comparison of model accuracy on AVE dataset in the fully supervised setting. Each set of bar charts depicts the accuracy of AGVA (the
baseline), CMBS, and our model CCLN for each audio-visual event. We show the accuracy differences between the three models across 29 event categories
(including “background”). The results of the CMBS model are obtained from our reproduction of their code.

supervised setting. Note that by designing the information
processing, our model outperforms AV-Trans with more pa-
rameters (exceeds 3.1% for fully supervised and 5.0% for
weakly supervised).

Figure 8 shows the superior performance of our model in
another form. It is noteworthy that all results in the figure are
reproduced using the original code provided in the papers.
Compared with AVGA (the baseline), our model accuracy
exceeds its accuracy in 22 categories and approaches it in
4 categories. Particularly, in the “cat” category, our model
accuracy outperforms the baseline by 39.4% (from 33.3%
to 72.7%). Compared with CMBS (the latest SOTA model),
our model accuracy exceeds its accuracy in 18 categories
and approaches it in 2 categories. In the “car” category, we
achieve the maximum accuracy advantage of 14.3% (from
78.9% to 93.2%). Experimental results verify that the overall
performance of our model is better than other models. In
addition, the accuracy of the “background” category of the
three models is about 50% (49.4%/AGVA, 53.4%/CMBS,
56.4%/CCLN), which confirms the complexity of background
noise and the necessity of considering it.

Table VI presents the comparative experimental results of
our CCLN model with other SOTA models on the CML
task of the AVE dataset. In the CML task of AVEL, only
when the predicted boundaries exactly match the ground truth
are they considered a correct matching; otherwise, it will
be deemed an incorrect matching. The percentage of correct
matchings is utilized to assess the accuracy performance of
the model. In Table VI, we respectively report the results
for audio-to-vision (A2V) and vision-to-audio (V2A), while
“Average” computes the mean accuracy for both settings.
Compared to the baseline model AGVA, our CCLN model
exhibits an accuracy improvement of 18.5% (A2V) and 28.8%
(V2A), respectively. In comparison to the latest model CAPB,
our CCLN model shows an accuracy enhancement of 11.4%
(A2V) and 11.0% (V2A). This is primarily attributed to the
cross-modal representation advantage brought by the dual-
branch contrastive learning framework we designed.

E. Qualitative Analysis
Figure 9 shows two examples of qualitative analysis of our

model. For comparison purposes, the first row of each example

TABLE VI
COMPARISON RESULTS OF OUR MODEL WITH THE SOTA MODELS ON THE

AVE DATASET FOR CML ON THE AVE DATASET. “A2V”: VISUAL
LOCALIZATION FROM AUDIO SEQUENCE QUERY; “V2A”: AUDIO

LOCALIZATION FROM VISUAL SEQUENCE QUERY; “AVERAGE”: AVERAGED
ACCURACY OF A2V AND V2A.

Method A2V V2A Average
Acc.(%) Acc.(%) Acc.(%)

AGVA [58] 44.8 35.6 40.2
DAM w/RNN [27] 47.9 41.8 44.9
DAM w/Avg. Pooling [27] 46.1 46.0 46.1
DAM w/Max Pooling [27] 46.2 45.8 46.0
DAM w/LSTM [27] 48.1 43.5 45.8
DAM w/GRU [27] 47.4 45.5 46.5
DAM w/Bi-LSTM [27] 48.1 44.2 46.2
DAM w/Self-Att. [27] 48.5 47.1 47.8
CSPA [44] 39.3 33.3 36.3
CSEA [44] 48.5 50.7 49.6
CSPEA [44] 49.0 51.0 50.0
SRMN [32] 51.6 53.1 52.4
CAPB [21] 51.9 53.4 52.6
CCLN(ours) 63.3 64.4 63.9

is a waveform image (divided into 10 segments) of the audio
track with event labels, and the third row shows the ground
truth (GT) frames with labels (red boxes represent the event
labels). In addition, the attention heat maps of the baseline
(the second row) and our model (the fourth row) are given,
marking the localized event frames with blue and yellow boxes
respectively. Both examples (“Goat” and “Train horn”) contain
background noise, and the second example in particular has
the problem of dynamic visual multi-targets and multi-sound
sources, which increases the difficulty of AVEL.

After qualitative analysis of the results in Figure 9, we
can draw the following conclusions: (1) The audio-guided
visual attention (AGVA) employed alone in the baseline makes
attention more sensitive to noise (the fourth frame of the
“Goat” event, the eighth frame of the “Train horn” event). In
other words, AGVA achieves rough cross-modal audio-visual
correlation, while the noise reduction mechanism considered
in our model achieves better results. (2) The attention effect
of our model has a wider receptive field than the baseline (the
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Fig. 9. Qualitative visual analysis of our model on two event examples (“Goat” and “Train horn”). Each example is divided into 10 segments, the first row of
each example is a waveform image of the audio track with event labels, and the third row is visual images with the ground truth (GT) labels (the red boxes
represent the event labels), and the second and fourth rows are the attention heat maps of baseline and our model (the predicted event location frames are
marked with blue and yellow boxes, respectively).

heat area covers a larger portion of the visual target) and more
accurate object localization (the heat area is closer to the visual
object contour). Therefore, our model can effectively capture
hidden intra and inter-modal correlations, and the refined
selection of the SBI module not only expands the receptive
domain but also improves the model accuracy. Of course, our
model still has much room for improvement in semantic audio-
visual understanding against background noise. For example,
our model and baseline mislocate the seventh and ninth frames
respectively, in the second example in Figure 9. This is
because, in the second example, the eighth and ninth frames
are not very different in audio or visual modality, making it
difficult to determine the boundaries of the audio-visual event.
In addition, the richer background noise in the second example
poses a greater challenge to model performance.

In the qualitative analysis of the cross-modality localization
task, we perform visualizations of the audio-to-vision (A2V)
and vision-to-audio (V2A) tasks on the same test samples. In
Figure 10, green dashed boxes indicate segments where the
predicted location of the query sequence matches the ground
truth in the input sequence, while red dashed boxes indicate
mismatches. In subfigure (a), despite the varying visual con-
tent, our model accurately localizes the corresponding audio
query sequence. Similarly, our model successfully localizes
the corresponding visual query sequence within the noisy
audio input sequence. Subfigure (b) illustrates a challenging
case analysis of our model. Taking a 2-second visual segment
labeled as “Bus” as the query, our model accurately matches
the corresponding audio-visual event boundaries within the
given audio input sequence. Conversely, when taking a 2-
second audio segment labeled as “Bus” as the query, our

model encounters mismatched results: the ground truth event
boundaries for this sample are from the 3rd to the 5th second,
whereas our model’s matched event boundaries span from
the 4th to the 6th second. However, from the visualization
results, it is evident that there is a high degree of similarity
both the visual and audio modalities from the 3rd to the
6th second. Therefore, distinguishing the audio-visual event
boundaries between 3 to 5 seconds is a significant challenge.
The continuity of visual content within the sample and the
presence of background noise in the audio severely disrupt the
model’s ability to determine audio-visual event boundaries.

VI. CONCLUSION

We propose a novel dual-branch cross-modal contrastive
learning framework for AVEL. In the backbone network of the
framework, we extract and validate the crucial roles of the fu-
sion, interaction, and integration stages of audio-visual signals
to explore and elucidate the mechanism of audio-visual fusion,
providing a paradigm for model algorithm design. Specifically,
we design a pluggable SBI module to integrate visual infor-
mation, audio information, and audio-visual fusion informa-
tion, and filter associated semantics through gate thresholding
to further globally exploit strongly associated audio-visual
events; we design an FEE module to integrate audio-visual
signals at the event level, capturing event boundaries and
enhancing the separation between foreground and background
events. To obtain high-quality event representations in the
backbone network of audio-visual fusion, we introduce a
visual branch as a contrastive branch and design a weak-
label-guided supervised contrastive loss function to enhance
the model’s representational capacity. Extensive experiments
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(a) Qualitative analysis results of the sample “Az3L C6lAN0.mp4” (labeled as “Bark”).

(b) Qualitative analysis results of the sample “1zhxj3rpBcU.mp4” (labeled as “Bus”).

Fig. 10. Qualitative results of our model on the CML task. Each example comprises two tasks: audio-to-vision (A2V) and vision-to-audio (V2A), both
corresponding to the same ground truth. Green dashed boxes indicate segments where the predicted location of the query sequence matches the ground truth
in the input sequence, while red dashed boxes indicate mismatches.

on public AVE datasets demonstrate the effectiveness of the
proposed model. The results also indicate that by optimizing
different stages of cross-modal information processing, the
model’s performance can surpass that of complex models with
large-scale parameters.
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