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MVPOA: A Learning-Based Vehicle Proposal
Offloading for Cloud–Edge–Vehicle Networks
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Abstract—Vehicular edge computing (VEC) is an emerging
computing paradigm that is rapidly advancing the development
of the Internet of Vehicles (IoV). However, edge server has
limited data storage capacity and computing resource, making
it difficult to handle the massive offloading requests from IoV
applications. Moreover, the mobility of vehicles and dynamic data
traffic make it highly challenging to design optimal offloading
and resource allocation strategies. To address the challenges
mentioned above, we design a cloud–edge–vehicle hierarchical
architecture for IoV task offloading, introducing a cloud server
to assist in computation and alleviate the overload pressure on
edge server. Considering the impact of vehicle mobility on task
offloading, we propose a mobility detection method to predict
which vehicles might leave the communication range of the base
station, thereby preventing task offloading failures. Additionally,
to achieve efficient task offloading and resource allocation in
this complex IoV system, we propose a multiagent-reinforcement-
learning-based vehicle proposal offloading algorithm (MVPOA).
This algorithm enables vehicles to autonomously decide whether
to process tasks locally or propose offloading to edge server. The
edge server then decides whether to accept offloading requests
based on task priority and sends rejected tasks to cloud server
for processing, thereby maximizing the utilization of resources
at each layer of the system. Simulation results demonstrate that
MVPOA outperforms other baseline approaches in optimizing
system delay and energy consumption.

Index Terms—Cloud-assisted computing, mobility, multiagent
reinforcement learning, resource allocation, task offloading,
vehicular edge computing (VEC).

I. INTRODUCTION

W ITH the advancement of artificial intelligence tech-
nology, an increasing number of smart vehicles are

connecting to the Internet of Vehicles (IoV), leading to
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explosive growth in computation-intensive and delay-sensitive
applications, such as image-assisted navigation, dynamic video
processing, and safety-enhanced autonomous driving [1], [2].
These applications require real-time processing and analysis of
vast amounts of sensor data, often demanding substantial com-
puting resources. However, the limited computing capability
of vehicles can result in significant delay and increased energy
consumption, adversely affecting user experience. Vehicle
edge computing (VEC), as an application of mobile-edge com-
puting (MEC) in vehicular scenarios, alleviates computation
delay and reduces energy consumption by offloading vehicular
tasks to roadside edge servers with greater computational capa-
bilities, which makes it an effective solution for meeting the
high computational demands of connected vehicles [3], [4].
Nevertheless, the storage capacity and computational power
of edge server are limited, making it unrealistic to efficiently
meet the offloading demands of all vehicles in a timely
manner.

The computation and data storage capabilities of the cloud
server are several orders of magnitude greater than those of
edge servers, enabling it to provide sufficient resources for
vehicular tasks. However, previous research on task offload-
ing in MEC has rarely considered offloading tasks to the
cloud server. This is primarily because the significant data
transmission delay due to the greater distance between users
and the cloud server makes it less feasible. However, the
advent of the 6G network, with its high bandwidth and
low delay [5], presents new opportunities for incorporat-
ing cloud computing into MEC systems [6], [7]. Thus, an
increasing number of studies explore the integration of cloud
computing with MEC. Wu et al. [8] and Ding et al. [9]
employed a game theory approach to minimize delay and
energy consumption in cloud–edge collaborative computing.
Additionally, Pang et al. [10] and Chen et al. [11] focused
on the task offloading problem with dependency constraints
in cloud-edge collaboration. These studies demonstrate that
combining the strong computing and storage power of cloud
server with the proximity advantage of MEC server can better
meet the diverse demands of applications regarding delay and
energy consumption.

Though remarkable progress has been made, the dynamics
of tasks and the heterogeneity of resources in the cloud–
edge–vehicle architecture still pose three major challenges
for existing methods, limiting further improvements in the
efficiency of task offloading and resource allocation for VEC.

1) High Mobility of Vehicle Users: In previous research on
task offloading, it is generally assumed that users remain
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within the communication range of the base station.
However, in IoV scenarios, intelligent vehicles travel
at high speeds on highways, and the communication
state between the vehicle and the base station constantly
changes [12]. If the offloading or execution time of
the vehicular task is too long, vehicles may leave the
communication range of edge servers before completing
their offloading tasks, leading to offloading failures.

2) Multilayered Resource Architecture: In the IoV system,
edge server is generally located near vehicles, offer-
ing low communication delay and relatively strong
computation capability, though with limited storage
capability. Although cloud server has powerful storage
and computation capabilities, it suffer from longer data
transmission delay. Due to the heterogeneity of resources
across the cloud, edge, and vehicles, maximizing the uti-
lization of each layer’s resources is a critical issue [13].

3) Real-Time Decision-Making Requirement: Since appli-
cations, such as autonomous driving and collision
warning in the IoV, often involve the safety of vehicles
and passengers, real-time decision-making is gener-
ally required. However, traditional machine learning
decision algorithms often require a large number of iter-
ations, resulting in high time complexity, which makes
them unsuitable for real-time decision-making. Thus,
to achieve low delay task offloading, it is necessary
to adopt an online offloading and resource allocation
algorithm for VEC.

To address the above challenges, we investigate task
offloading and resource allocation for IoV, and propose an
efficient and feasible solution. First, considering the mobility
of vehicles, we propose a mobility-aware vehicle offloading
architecture with cloud assistance, which adopts a vehicle
movement detection method to predict which vehicles are
likely to leave the communication range of the base station,
thereby reducing the likelihood of task offloading failures.
Second, we propose a layered proposal offloading strategy that
allows each vehicle to autonomously decide whether to process
tasks locally or propose offloading them to the edge server. For
tasks proposed for offloading, the edge server prioritizes them
based on predefined priority levels, selecting tasks sequentially
until its storage capacity is fully utilized, the remaining tasks
proposed for offloading will then be transmitted to the cloud
server for processing. This strategy fundamentally differs from
traditional vehicular network offloading frameworks, which
typically rely on static, rule-based approaches, such as only
based on the task size threshold or the distance between the
vehicle and the server to determine whether to offload the task.
Instead, our approach emphasizes dynamic and distributed
decision-making, giving vehicles more flexibility and enabling
vehicles to adjust their offloading behavior autonomously
according to real-time conditions. By fully utilizing the com-
putational resources at the local, edge, and cloud layers,
this layered approach achieves a more balanced workload
distribution, ultimately minimizing system delay and energy
consumption. Finally, given the exceptional performance of
multiagent deep reinforcement learning (MADRL) in real-
time decision-making, we design a multiagent vehicle proposal

offloading algorithm (MVPOA). The main contributions of this
article are summarized as follows.

1) We design a cloud–edge–vehicle three-layer offloading
architecture and model vehicle mobility. Additionally,
we propose a mobility detection method to prevent task
offloading failures caused by vehicles moving out of the
communication range of the base station.

2) We propose a layered proposal offloading strategy that
enables vehicles to fully utilize resources available at
each layer of the cloud–edge–vehicle architecture.

3) We design a MVPOA that enables real-time decision-
making and efficient resource allocation in dynamic and
complex IoV systems.

4) We conduct extensive simulation experiments across
various scenarios, and the results demonstrate that our
proposed MVPOA exhibits outstanding performance in
reducing system delay and energy consumption.

II. RELATED WORK

A. Task Offloading for MEC

In recent years, task offloading in edge computing has
garnered widespread attention and research. Li et al. [14]
proposed an improved particle swarm genetic algorithm
(IPSGA) to find the optimal offloading strategy, thereby mini-
mizing the delay in task offloading. Wang et al. [15] proposed
a task offloading scheme based on the alternating direction
method of multipliers (ADMM) to obtain an approximate
optimal solution by transforming the problem of minimizing
system cost into a convex problem. Hong et al. [16] studied the
problem of multihop cooperative computation offloading and
routing, proposing a constraint-free mechanism integrated with
potential game theory to enhance service quality. Liu et al. [17]
utilized UAVs to assist ground vehicles with task offloading
and proposed a second-order convex approximation-based
continuous convex programming method to address the joint
scheduling optimization problem for communication and com-
putational resources. However, these traditional methods, such
as dynamic programming, heuristic approaches, and convex
optimization, often involve high computational complexity and
require numerous iterations to achieve a local optimum [18].
These methods are not well suited for making real-time
offloading decisions in dynamic and complex IoV systems.

B. Task Offloading Based on DRL

With the advancement of artificial intelligence, deep rein-
forcement learning methods have been employed to address
task offloading and resource allocation problems in vehicular
networks due to their powerful learning and decision-making
capabilities [19]. Zhao et al. [20] developed a mobile-aware
task offloading scheme to minimize the average response time
and energy consumption in urban VEC systems and utilized
the deep deterministic policy gradient (DDPG) algorithm
to train the offloading strategy. He et al. [21] combined
DDPG with prioritized experience replay (PER) and stochastic
weight averaging (SWA) mechanisms to propose the PS-
DDPG algorithm, aiming to improve the Quality of Experience
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Fig. 1. Cloud–edge–vehicle offloading architecture.

(QoE) for vehicle task offloading. Tang et al. [22] decom-
posed vehicle tasks into multiple consecutive subtasks and
proposed a novel dynamic offloading decision algorithm
based on DDQN to optimize the total delay of subtasks
with sequential dependencies. The above work is based on
single agent learning algorithms. However, due to the high
dynamism and decentralization in IoV, task offloading and
resource allocation require multiple agents to interact and
make informed decisions collectively, single-agent reinforce-
ment learning algorithms struggle to learn effective strategies
in such complex environments [18].

In addition, the enormous computational and storage
resources of the cloud server have not been fully utilized in
the aforementioned studies. In contrast to these works, we
introduce cloud server for assisted computation in the IoV
system and propose a novel MADRL algorithm to optimize
the overall system’s delay and energy consumption.

III. SYSTEM MODEL

This section introduces the cloud–edge–vehicle system,
mainly including its network model, communication model,
computation model, and mobility perception model.

A. Network Model

We consider a cloud–edge–vehicle three-layer offloading
system. Moreover, to enhance collaboration efficiency between
vehicles and improve network management flexibility in the
IoV system, we integrate software-defined networking (SDN)
into the system, as shown in Fig. 1.

In a bidirectional road, multiple SDN controllers are
deployed along one side. Each SDN controller is responsi-
ble for gathering service request information from vehicles,
intelligently allocating computing resources, and providing
services [23]. Each controller is equipped with an edge
server that has a maximum data storage capacity of G and
manages communication within a specific region with a
maximum coverage range of R. In each region, there are K
vehicles traveling on the road, represented by the set V =
{V1, V2, . . . , Vi, . . . , VK}. We assume that vehicle Vi can only
communicate with the SDN controller in its region via a

TABLE I
NOTATION AND DEFINITION

wireless connection. The SDN controller is connected to the
cloud server through optical fiber links. In this article, we focus
on studying one region, and the situation in other regions is
similar.

We divide the system time into T equal time slots, denoted
as T = {1, 2, . . . , t, . . . , T}. Each vehicle is assumed to
generate one compute-intensive task in each time slot, and the
task arrivals follow a periodic deterministic arrival model, with
tasks generated at regular intervals [24]. The task set is denoted
as M = {M1, M2, . . . , Mi, . . . , MK}, where each task Mi is
represented by a tuple Mi = {Di, Ci}, with Di representing
the data size and Ci representing the number of CPU cycles
required to process the task. The maximum tolerance time of a
task is denoted as Tmax. The offloading decision for each task
is represented by ai = {0, 1, 2}, where ai = 0 means the task
Mi is processed locally, ai = 1 means it is processed at the
edge server, and ai = 2 denotes offloading to the cloud server
for processing. The important symbols used in this article are
shown in Table I.

B. Communication Model

We assume that the upload link between the vehicles and the
SDN controller is modeled as a flat Rayleigh fading channel,
thereby ignoring the effects of channel interference. According
to Shannon’s formula, the communication rate ri between
vehicle Vi and the SDN controller can be expressed as follows:

ri = B log2

(
1+ gid

−α
i pi

N0B

)
(1)

where gid
−α
i represents the channel power gain between

vehicle Vi and the SDN controller, di denotes the distance
between vehicle Vi and the SDN controller, α is the path-loss
exponent, B is the channel bandwidth, pi represents the uplink
transmission power of vehicle Vi, and N0 denotes the noise
power spectral density.
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C. Computation Model

We assume each task is indivisible, meaning it can only
be executed on either the local vehicle, the edge server, or
the cloud server. In the following, we will provide a detailed
description of the delay and energy consumption calculations
for tasks under different execution methods.

1) Local Processing: If task Mi is executed locally, the
local computation delay Tl

i can be expressed as

Tl
i =

Ci

f l
i

(2)

where f l
i represents the computing resources that vehicle Vi

allocats to task Mi.
The local computation energy consumption El

i for task Mi

can be expressed as

El
i = εl

(
f l
i

)2
Ci (3)

where εl denotes the local energy consumption parameter,
which depends on the CPU architecture [25].

2) Edge Server Processing: If task Mi is offloaded to the
edge server for processing, the computation delay Te

i for this
process can be expressed as

Te
i =

Di

ri
+ Ci

f e
i

(4)

where Di/ri represents the transmission delay of data Di from
the vehicle Vi to the edge server, and Ci/f e

i is the processing
delay of task Mi on the edge server, f e

i denotes the computing
resources that edge server allocats to task Mi. Since the amount
of data for the result is usually small, the delay for receiving
the result is negligible.

The computational energy consumption Ee
i for offloading

task Mi to the edge server is expressed as

Ee
i = pi

Di

ri
+ εe

(
f e
i

)2
Ci (5)

where pi·Di/ri represents the transmission energy consumption
of data Di from vehicle Vi to the edge server, pi is the
transmission power of Vi, εe(f e

i )2Ci denotes the processing
energy consumption of task Mi on the edge server, and εe is
the energy consumption parameter of the edge server.

3) Cloud Server Processing: If task Mi is offloaded to the
cloud server for processing, the computation delay Tc

i for this
process can be expressed as

Tc
i =

Di

ri
+ Di

rc
+ Ci

f c
i

(6)

where Di/rc is transmission delay of data Di from the SDN
controller to the cloud server, with rc denoting the transmission
rate, Ci/f c

i is the processing delay of task Mi on the cloud
server, and f c

i represents the computing resources that cloud
server allocats to task Mi.

The computational energy consumption Ec
i for this process

is expressed as

Ec
i = pi

Di

ri
+ εc

(
f c
i

)2
Ci (7)

Fig. 2. Vehicles out of range of SDN controller communication.

where εc(f c
i )2Ci is the processing energy consumption of task

Mi on the cloud server, and εc denotes the energy consumption
parameter of the cloud server. Compared to edge servers and
vehicles, cloud servers possess greater computing power and a
higher level of equipment integration, thus f c

i > f e
i > f l

i and
εc < εe < εl [26].

Therefore, the computation delay Tcomp
i and the computa-

tion energy consumption Ecomp
i of task Mi can be expressed as

Tcomp
i = Tl

i · 1{ai=0} + Te
i · 1{ai=1} + Tc

i · 1{ai=2} (8)

Ecomp
i = El

i · 1{ai=0} + Ee
i · 1{ai=1} + Ec

i · 1{ai=2} (9)

where 1{�} is an indicator function that equals 1 if condition
� is satisfied, and 0 otherwise [27].

D. Mobility-Aware Model

Considering the mobility of vehicles in the system, a vehicle
may move out of the maximum communication range of the
SDN controller during the task offloading process. This would
result in the final outcome not being returned to the vehicle
via the SDN controller, as shown in Fig. 2. In this case,
tasks cannot be processed effectively, leading to significant
waste of time and energy. Therefore, for vehicles that are
about to move out of the SDN controller’s range, local
processing is preferable. Although local computing capabilities
are limited, for tasks with less stringent time requirements,
such as predownloading multimedia files or batch processing
traffic data, local processing can ensure the tasks are completed
and avoid potential risks from communication interruptions.
To prevent unreasonable offloading decisions, we propose
a mobility detection method to estimate the communication
coverage duration between the vehicle and the SDN controller.

In Fig. 2, we adopt a 3-D Euclidean coordinate system,
assuming the SDN controller is located at (0, 0, H), where
H represents the height of the SDN controller’s tower. Each
vehicle on the road travels along the y-axis at a constant
speed v. The position coordinate of vehicle Vi is Li(t) =
(xi(t), yi(t), 0), where yi(t + 1) = yi(t) + v × t. The distance
di(t) between vehicle Vi and the SDN controller is calculated
using the Euclidean formula

di(t) =
√

xi(t)2 + yi(t)2 + H2. (10)
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The communication coverage duration Tcover
i (t) between

vehicle Vi and the SDN controller is defined as

Tcover
i (t) = R− di(t)

v
(11)

where the task offloading request of vehicle Vi has the opportu-
nity to be accepted by the edge server only if Tcover

i (t) ≥ Te
i (t).

If not, the task will be processed locally on the vehicle.

E. Problem Description

Considering the limited computational resources of the
vehicles and the data storage capacity constraints of the
edge server, we jointly optimize the offloading decisions
and resource allocation in IoV. Our goal is to minimize the
computational delay of the vehicle terminal while ensuring
low energy consumption of the entire system. The problem is
formulated as follows:

P1: minimize
T∑

t=1

K∑
i=1

(
ωTcomp

i (t)+ ηEcomp
i (t)

)
s.t. C1: ai ∈ {0, 1, 2} ∀i ∈ K

C2: ω ∈ (0, 1)

C3: η ∈ (0, 1)

C4: pmin ≤ pi ≤ pmax ∀i ∈ K

C5: f min
l ≤ f l

i ≤ f max
l ∀i ∈ K

C6: f min
e ≤ f e

i ≤ f max
e ∀i ∈ K

C7: f min
c ≤ f c

i ≤ f max
c ∀i ∈ K

C8: Ti(t) ≤ Tmax ∀i ∈ K

C9:
∑
i∈K

Di · 1{ai=1} ≤ G ∀i ∈ K (12)

where C1 indicates that each task can only be executed
on one of the local, edge server, or cloud server layers.
Constraints C2 and C3 denote the ranges for the delay and
energy consumption weights, respectively. Constraints C4–
C7 represent the constraints on transmission power and CPU
frequency during task processing. Constraint C8 represents the
computation delay for each task does not exceed the maximum
tolerance time, and C9 ensures that the total data accepted by
the edge server does not exceed its maximum storage capacity.
In addition, since the cloud server has sufficiently abundant
storage resources, we do not consider the limitation of the data
storage capacity of this layer.

IV. MULTIAGENT DEEP REINFORCEMENT

LEARNING IN IOV

Problem P1 is a mixed-integer nonlinear programming
problem, traditional machine learning methods exhibit high
time complexity and low efficiency in solving such prob-
lems, making them unsuitable for application in the IoV
environment [28]. However, the MADRL method, with its
powerful learning and real-time decision-making capabili-
ties, has become an effective tool for solving this complex
optimization problem. In the multiagent environment, agents
make decisions based on the joint actions of all agents,
aiming to achieve a globally optimal decision rather than a
locally optimal one. This approach enables vehicle users to

autonomously explore dynamic environment and learn from it,
thereby formulating better decision strategies [29]. Therefore,
this article adopts MADRL to address task offloading and
resource allocation in IoV. We design an MVPOA, which
uses the actor–critic network architecture, where each vehicle
in the system is considered as an agent. Next, we will first
provide a detailed introduction to the state space, action space,
and reward function of MVPOA. The network architecture
and algorithm design of MVPOA will be detailed in the next
section.

A. State Space

In MVPOA, the state Si(t) at time slot t for vehicle Vi is
composed of the task Mi(t), the vehicle’s location Li(t), the
communication coverage duration Tcover

i (t), and the distance
between the vehicle Vi and the SDN controller di(t).

Therefore, the state Si(t) can be represented as

Si(t) =
{
Mi(t), Li(t), Tcover

i (t), di(t)
}

(13)

where Mi(t) = {Di, Ci} and Li(t) = {xi(t), yi(t), 0}.

B. Action Space

We classify actions into two categories: 1) vehicle-proposed
action and 2) environment interaction action.

Vehicle-Proposed Action: This action is directly generated
by the actor network. At time slot t, vehicle Vi inputs its state
Si(t) into its actor network to obtain the action Âi(t), which is
expressed as

Âi(t) =
{

âi(t), p̂i(t), f̂ l
i (t), f̂ e

i (t), f̂ c
i (t)

}
(14)

where âi(t) denotes the proposal offloading decision of vehi-
cle Vi at time slot t, and p̂i(t), f̂ l

i (t), f̂ e
i (t), f̂ c

i (t) represent
the transmission power, local computation resources, edge
server computation resources, and cloud server computation
resources that allocate to task Mi(t), respectively, these values
are continuous and fall within the range of [−1, 1].

Environment Interaction Action: The environment
interaction action is used by the agent to interact with the
actual environment. This action is obtained by the above-
mentioned vehicle-proposed action according to certain rules.
The environment interaction action of vehicle Vi can be
denoted as

Ai(t) =
{

ai(t), pi(t), f l
i (t), f e

i (t), f c
i (t)

}
. (15)

When Tcover
i (t) < Te

i (t), it means the communication
coverage duration of vehicle Vi is insufficient to support task
offloading, accordingly, we set ai(t) = 0, indicating that task
Mi(t) is processed locally by vehicle Vi.

When Tcover
i (t) ≥ Te

i (t), this indicates that vehicle Vi has
sufficient communication coverage duration to support task
offloading. If âi(t) ≤ 0, it means vehicle Vi chooses to execute
the task locally, accordingly, we set ai(t) = 0. If âi(t) > 0, it
indicates that the vehicle Vi proposes to offload the task to the
edge server for processing. At this point, we need to assess
the edge server’s load status. If the total data volume of all
the tasks proposed for offloading is less than the edge server’s
maximum storage capacity G, the SDN controller accepts the
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offloading proposals from all vehicles, we then set ai(t) = 1,
indicating that task Mi can be offloaded to the edge server for
processing. If the total data volume of all the tasks proposed
for offloading exceeds G, the SDN controller will decide which
offloading proposals to accept based on the priority of the tasks
(the priority of tasks will be discussed in detail in the next
section) until the edge server’s storage capacity G is reached.
The remaining tasks not selected by the edge server will be
transmitted by the controller to the cloud server for processing,
accordingly, we set ai(t) = 2, indicating that task Mi will be
offloaded to the cloud server.

Since the values of p̂i(t), f̂ l
i (t), f̂ e

i (t), f̂ c
i (t) are in the range

[−1, 1], the values of pi(t), f l
i (t), f e

i (t), f c
i (t) need to be

obtained using the following mapping formulas:

F =
(

x− b

c− b

)
× (fmax − fmin)+ fmin (16)

where b = −1, c = 1, and F represents the mapped
results, which corresponds to pi(t), f l

i (t), f e
i (t), f c

i (t), while x
corresponds to p̂i(t), f̂ l

i (t), f̂ e
i (t), and f̂ c

i (t). The values of fmax
correspond to pmax

i , f max
l , f max

e , and f max
c , and the values of

fmin correspond to pmin, f min
l , f min

e , and f min
c .

C. Reward Function

The core objective of reinforcement learning is to maximize
the cumulative reward, reward function is usually related to
the objective function [30]. We define a penalty for task Mi at
time slot t as follows:

penaltyi(t) =
{(

Tcomp
i (t)− Tmax

)× 10 if Tcomp
i (t) > Tmax

0 otherwise.
(17)

Therefore, the total reward of the system is expressed as

r(t) = −
K∑

i=1

(
ωTcomp

i (t)+ ηEcomp
i (t)+ penaltyi(t)

)
. (18)

V. NETWORK ARCHITECTURE AND ALGORITHM

DESIGN OF MVPOA

Nonstationarity is a challenge faced in MADRL, however,
existing work rarely considers this issue. Most approaches
use decentralized critic networks, where each agent has its
own independently trained critic network. This method ignores
the strategies of other agents, which exacerbates the non-
stationarity of the learning process and negatively impacts
overall performance [31]. An effective method for dealing
with nonstationarity is to use a centralized critic architecture,
where all agents share critic network parameter and critic
can collect observations and actions from all agents. This
approach promotes collaboration among agents and reduces
the nonstationarity of the learning process [32]. Therefore,
considering the impact of nonstationarity, MVPOA adopts a
centralized critic approach. The algorithm is built on the actor–
critic framework, where the critic uses a value function to
compute Q-value for each actor to evaluate the actions it
selects, and the actor updates and optimizes its actions based
on the critic’s feedback.

A. Network Structure

The network structure of MVPOA consists of K distributed
actor networks and a logically centralized critic network. Each
vehicle deploys an actor network, and a centralized critic
network is deployed on the SDN controller. The parameters
of the K actor networks can be represented as: θπ =
{θπ

1 , θπ
2 , . . . , θπ

i , . . . , θπ
K }, while the parameter of the central-

ized critic network is represented as θw.
For the ith actor network, its deterministic policy parameters

can be represented as

∇θπ
i

J
(
θπ

i

) ≈ E

[
∇θπ

i
max Q

(
S, Â, Si, Âi; θw

)]
(19)

where Q(S, Â, Si, Âi; θw) is the Q-function used to calcu-
late the Q-value, S = {S1, S2, . . . , Si, . . . , Sk} is the set
of states of K agents in the current time slot, and Â =
{Â1, Â2, . . . , Âi, . . . , Âk} is the set of vehicle-proposed actions
of K agents in the current time slot. Si and Âi denote the
state and vehicle-proposed action of agent Vi in the current
time slot, respectively. The parameter θπ

i of the ith actor
network is updated using deterministic policy gradient descent,
as described by (19).

For centralized critic network, its loss function is defined as

L
(
θw) = E

[(
y− Q

(
S, Â, Si, Âi; θw

))2
]

(20)

y = r + γ ×maxQ′
(
S ′, Â′, S′i, Â′i; θw′) (21)

where γ represents the discount factor, θw′ is the parameter
of the target critic network, S ′ = {S′1, S′2, . . . , S′i, . . . , S′k} and

Â′ = {Â′1, Â′2, . . . , Â′i, . . . , Â′k} represent the set of states and
vehicle-proposed actions for K agents in the next time slot,
respectively. S′i and Âi

′
denote the state and vehicle-proposed

action of agent Vi in the next time slot, respectively. The
parameter θw of centralized critic network is updated using
gradient descent, as described by (20).

The update of the target networks is represented as

θπ ′
i = τθπ

i + (1− τ)θπ ′
i (22)

θw′ = τθw + (1− τ)θw′ (23)

where θπ ′
i is the target network parameter of the ith actor, and

τ ∈ (0, 1) is the soft update parameter.

B. Algorithm Design

In MVPOA, the magnitude of the Q-value determines the
priority for action selection, meaning that task offloading
proposals with higher Q-values are prioritized by the edge
server. Our algorithm primarily consists of two processes:
1) the vehicle decision-making process and 2) the training
process. The MVPOA algorithm architecture is shown in
Fig. 3, where Fig. 3(a) represents actor i and centralized critic
networks, and Fig. 3(b) represents MVPOA algorithm training
process.

1) Vehicle Decision-Making Process: The details of the
vehicle decision-making process are described in Algorithm 1.
First, initialize the parameters of each actor network, the
parameters of the centralized critic network, and the vehicular
network environment (lines 3 and 4). During each time step
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(a) (b)

Fig. 3. MVPOA algorithm framework. (a) Actor i and centralized critic networks. (b) MVPOA algorithm training process.

t, vehicle Vi inputs its current state Si into its actor network
to obtain vehicle-proposed action Âi. In order to ensure that
the agent thoroughly explores potential optimal strategies,
noise � is added to each action (lines 8). If âi ≤ 0, it
indicates that vehicle Vi chooses to process the task locally,
and the corresponding ai is set to 0. If âi > 0, it means
that vehicle Vi proposes to offload the task to the edge
server. Considering vehicle mobility, some vehicles proposing
task offloading may soon move out of the SDN controller’s
maximum communication range. This would result in the
vehicles being unable to receive the processed results after
offloading. Therefore, the communication coverage duration
for vehicle Vi is predicted using (11). If vehicle Vi do not
meet the communication time requirements, ai is set to 0 (lines
11–14).

In the algorithm, we use the ε-greedy strategy to explore
actions. We sample a value u uniformly from the interval
(0, 1). When the total data volume of tasks proposed
for offloading by vehicles within the communication range
exceeds the edge server’s data capacity G, and if u < ε, the
SDN controller will randomly select tasks from these vehicles
until the total accepted data volume reaches the edge server’s
capacity G, then the decision variable a for these selected
vehicles will be set to 1. The remaining task offloading
proposals will be rejected by the edge server and forwarded to
the cloud server for processing, with the decision variable a
for these vehicles set to 2 (lines 16–25). If u ≥ ε, we calculate
the Q-values for all tasks proposed for offloading to the edge
server. The Q-values will be used to determine the priority of
task offloading to the edge server. For offloading requests from
vehicles within communication range, the SDN controller will
accept them in descending order based on their generated task
Q-values, until the edge server’s data storage capacity G is
reached, then the decision variable a for these vehicles will be
set to 1. The remaining tasks proposed for offloading will be
transmitted to the cloud server for processing, and the decision
variable a for these vehicles will be set to 2 (lines 26–29).
If the total amount of task data that the vehicle proposes to
offload is less than the capacity G of the edge server, then
the edge server accepts all these tasks and sets their decision

variable a to 1 accordingly (lines 32–34). At the end of each
time step, the agent executes environment interaction action
Ai, and stores the experience in a replay buffer for subsequent
training process (lines 35–37).

2) MVPOA Training Process: The training process is
shown in Algorithm 2. We randomly sample a mini-batch of
size M from the experience replay buffer. Each sample consists
of the state set S , the vehicle-proposed action set Â, the
environment-interacted action set A, the total reward r and the
set of state S ′ for the next time slot of the K vehicles. First, we
compute the vehicle-proposed action Â′j,i for the next time slot
for each agent in every batch. Then, for each batch, we use
Â′j,i to calculate the next time slot Q-values Q′j,i for each agent
proposing offloading and select the maximum Q′j,i to calculate
the target Q-values. If no vehicles propose offloading, a zero
placeholder is used to calculate the target Q-value, ensuring
normal feedback (lines 2–11). In lines 15–21, we calculate
the Q-values for the current time slot, in lines 22–24, we
compute the temporal-difference (TD) error for each sample
in the entire batch and then take the average of these errors
to obtain the batch’s average loss, this loss is used to update
the parameter of the centralized critic network via gradient
descent. For the actor network, we update its parameter using
the deterministic policy gradient method (lines 25–37).

VI. EXPERIMENT RESULTS

In this section, we conduct simulation experiments to
evaluate the effectiveness of MVPOA. First, we describe the
experimental setup. Next, we compare and analyze MVPOA
with three other approaches. Finally, we examine the impact
of various parameters on MVPOA’s performance.

A. Experiment Setup

We conduct a simulation experiment in the Python 3.9
environment with a cloud–edge–vehicular network system
consisting of one edge server, one cloud server, and 30
vehicles. We set the maximum number E of episodes to
1000, with each episode consisting of five time steps, and
each time step representing 5 s. In this system, each vehicle
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Algorithm 1 MVPOA: Vehicle Decision-Making Process
1: Input: ε0, εmin, actor network learning rate απ , critic

network learning rate αw, reward discount factor γ

2: Output: Vehicle-proposed action Âi and environment
interaction action Ai for each agent

3: Initialize θπ
i (∀i ∈ K), θw; θπ ′

i ← θπ
i (∀i ∈ K), θw′ ← θw

4: Initialize the environment for the IoV system
5: for episode = 1: E do
6: Reset Si(t)(∀i ∈ K), ε = εmin + (ε0 − εmin) · e− episode

E

7: for t = 1: T do
8: Get Âi = πi(Si, θ

π
i )+�i, ∀i ∈ K

9: The values of pi, f l
i , f e

i , and f c
i are obtained from Âi

using (16)
10: Initialize task choice list CL, Q-value sorting list QS

and Q-value index list QI

11: if Tcover
i ≥ Te

i and âi > 0, ∀i ∈ K then
12: Append i to CL

13: else
14: Set ai = 0
15: end if
16: Sample u ∼ U(0, 1)

17: if len(CL) > 0 and Sum(Di,∀i ∈ CL) > G then
18: if u < ε then
19: Initialize Datasize = 0
20: while Datasize ≤ G do
21: Randomly choose i from CL

22: Set ai = 1, Datasize = Datasize+ Di

23: end while
24: Set ai = 2
25: else
26: Calculate the Q-values according to Q-funtion

Q(S,A, Si, Âi; θw),∀i ∈ CL and append to QS

27: Sort the values in list QS in reverse order, and
add their corresponding indices to list QI

28: Run similar lines 19 to 25 but choose i from QI

29: end if
30: else
31: if len(CL) > 0 then
32: Set ai = 1,∀i ∈ CL

33: end if
34: end if
35: Execute environment interaction action Ai, observe

total reward r(t) and next state Si(t + 1),∀i ∈ K
36: Store (Si(t), Âi(t), Ai, r(t), Si(t + 1)),∀i ∈ K into

buffer
37: Update the state Si(t) = Si(t + 1),∀i ∈ K
38: end for
39: end for

generates a task with a size in the range of [500, 1000] kb at
each time step, the computational resources required for each
task are randomly generated within the range of [500, 1500]
Megacycles. When task Mi is processed locally, the allocated
computing resources f l

i are in the range of [0.05, 0.5] GHz,
when processed on the edge server, f e

i are in the range of

Algorithm 2 MVPOA: Training Process
1: Sample a random mini-batch of transitions

(S,A, Â, r,S ′) of size M from replay buffer
2: for j = 1: M do
3: Calculate Â′j,i = πi(S′j,i, θπ ′

i ),∀i ∈ K
4: end for
5: Initialize target Q-value list QT , current Q-value list QC

6: for j = 1: M do
7: Initialize list Q′
8: if â′j,i ≥ 0,∀i ∈ K then
9: Calculate Q′j,i = Q(S ′j , Â′j, S′j,i, Â′j,i; θw′) and append

to Q′
10: end if
11: q′ = Q(S ′j , Â′j, all zeros, all zeros; θw′) if len(Q′) = 0

else max(Q′)
12: qt = rj + γ · q′
13: if aj,i == 1,∀i ∈ K then
14: Append qt to QT

15: Calculate qc = Q(Sj, Âj, Sj,i, Âj,i; θw) and append to
QC

16: end if
17: if len(QC)==0 then
18: Append qt to QT

19: Calculate qc = Q(Sj, Âj, all zeros, all zeros; θw) and
append to QC

20: end if
21: end for
22: Compute loss: L(θw) = 1

len(QT )

∑len(QT ))
j=1 (QT

j −QC
j )2

23: Update critic parameters θw:θw = θw + αw · ∇L(θw)

24: Update target critic θw′ = τθw + (1− τ)θw′
25: for j = 1: M do
26: Calculate Âj,i = πi(Sj,i, θ

π
i ),∀i ∈ K

27: end for
28: for i = 1: K do
29: Initialize actor loss list Qloss

30: for j = 1: M do
31: Initialize list Qπ

32: ∀i ∈ K, if aj,i = 1 calculate q =
Q(Sj, Âj, Sj,i, Âj,i; θw) and append to Qπ

33: Append Q(Sj, Âj, all zeros, all zeros; θw) to Qloss if
len(Qπ ) = 0 else append max(Qπ ) to Qloss

34: end for
35: Compute gradient: ∇θπ

i
J(θπ

i ) =
− 1

len(Qloss)

∑len(Qloss)
j=1 ∇θπ

i
Qloss

j
36: Update actor parameters θπ

i = θπ
i − απ∇θπ

i
J(θπ

i )

37: Update target actor networks θπ ′
i = τθπ

i + (1− τ)θπ ′
i

38: end for

[4, 8] GHz, and when processed on the cloud server, f c
i are in

the range of [10, 20] GHz.
Each actor network consists of three fully connected lay-

ers, including two hidden layers with 64 and 32 neurons,
respectively, and uses ReLU activation functions, its output
layer consists of five neurons with a tanh activation function.
The centralized critic network also has three fully connected
layers, with two hidden layers containing 512 and 128 neurons,
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(a) (b) (c) (d)

Fig. 4. Comparison of convergence performance. (a) Total reward of the system. (b) Total energy consumption. (c) Total delay of the system. (d) Total
number of penalties.

TABLE II
SIMULATION PARAMETERS

respectively, and employs ReLU activation functions. The
learning rates for the actor and critic networks are set to
0.0001 and 0.001, respectively. We use the batch size M
is 64 and set the discount factor γ to 0.99. The Adam
optimizer is used to train both the actor and critic networks,
other important parameters for this experiment are detailed in
Table II.

To evaluate the performance of the proposed MVPOA, we
compare it with three other different offloading strategies.

1) MADDPG: MADDPG uses the actor–critic architecture.
In this scheme, task priority is determined by the time required
for tasks to be offloaded to the edge server for processing,
rather than by their Q-values.

2) Local-Computing: In this scheme, we use the
MADDPG approach to allocate local resources, but all tasks
can only be processed on the local vehicles.

3) Without-Cloud-Scheme: In this scheme, we also use the
above MADDPG to allocate local and edge resources, but
there is no cloud server for assistance computation, tasks can
only be offloaded to the edge server for processing. When the
edge server data storage capacity is full, other tasks can only
be processed locally.

B. Comparison With Other Algorithm Schemes

We set the rolling window size to 30 to perform rolling
smoothing on the experimental data.

1) Comparison of Converged Values: Fig. 4 shows the
comparison of the values of the different metrics for the
four schemes. Fig. 4(a) illustrates the total reward during

the training process for four different schemes. The results
show that MVPOA achieves the highest converged reward,
approximately 40.24% higher than MADDPG, 55.54% higher
than the Without-Cloud-Scheme, and 76.33% higher than
Local-Computing. Fig. 4(b) illustrates the total energy con-
sumption over the training process for four different schemes.
From the figure, it is evident that MVPOA has the lowest
converged energy consumption, approximately 52.50% lower
than MADDPG, 74.13% lower than Local-Computing, and
63.96% lower than Without-Cloud-Scheme. Fig. 4(c) shows
the total delay during the training process for four different
schemes. The results indicate that MVPOA achieves the
lowest convergence delay, approximately 31.75% lower than
MADDPG, 70.84% lower than Local-Computing, and 48.69%
lower than Without-Cloud-Scheme. Fig. 4(d) shows the num-
ber of times penalties are incurred during the training process
when tasks exceed the maximum tolerance time for four
different schemes. From the figure, it can be concluded that
MVPOA achieves the lowest convergence penalty value, which
is approximately 39.81% lower than MADDPG, 77.96%
lower than Local-Computing, and 60.88% lower than Without-
Cloud-Scheme. Based on the above comparison, we observe
that the Local-Computing scheme performs the worst among
the four metrics. This is because all tasks in this scheme
are executed locally, and local computational resources are
relatively limited, followed by Without-Cloud-Scheme, as it
lacks cloud server assistance for computation, when the edge
server’s storage is full, any remaining tasks must be processed
locally, resulting in similarly poor performance. Additionally,
in baseline MADDPG, its centralized critic network only
calculates a global Q value for all agents to provide feedback,
and the server determines the priority of the task according
to the required offloading time, which limits its optimization
ability. In contrast, in our MVPOA algorithm, the centralized
critic network calculates an independent Q-value for each
proposed offloading task, and the server preferentially offloads
those tasks that have a greater impact on the system benefits
based on the Q value of the task. Therefore, MVPOA is able
to better balance the load, leading to superior performance.

2) Impact of Different Storage Capacities for Edge Server:
We investigate the impact of different edge server storage
capacities on the system’s total delay, total energy con-
sumption, and task penalties. The storage capacity of the
edge server ranges from 8000 to 120 000 kb. The results
are shown in Fig. 5. From Fig. 5(a)–(c), it can be observed
that as the storage capacity of the edge server increases
from 8000 to 120 000 kb, both the MVPOA and MADDPG
schemes exhibit lower energy consumption, delay, and task
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(a) (b) (c)

Fig. 5. Impact of different storage capacities on edge server. (a) Total energy consumption. (b) Total delay. (c) Total number of penalties.

(a) (b) (c)

Fig. 6. Impact of different tasks size. (a) Total energy consumption. (b) Total delay. (c) Total number of penalties.

(a) (b) (c)

Fig. 7. Different parameter analysis. (a) Different learning rate. (b) Different batch size. (c) Different discount factor.

penalties compared to the other two schemes, and they are
largely unaffected by changes in storage capacity. This is
because both MVPOA and MADDPG utilize cloud server for
assisted computation. The Local-Computing scheme performs
the worst, with high levels of energy consumption, delay, and
task penalties, as all tasks must be processed locally with
limited computational capabilities. It is also largely unaffected
by changes in server storage capacity. On the other hand, the
Without-Cloud-Scheme is significantly influenced by changes
in server storage capacity because the edge server becomes
its sole provider of advantageous resources, when the edge
server’s storage capacity increases, the energy consumption,
delay, and task penalties decrease considerably. Overall, our
proposed MVPOA performs the best among the four schemes.

3) Impact of Different Task Data Size: We set the edge
server’s storage capacity at 10 000 kb and investigate the
impact of different task data sizes on the system’s total energy
consumption, delay, and the number of task penalties. The data
size for each task increases from [600–800] to [1400–1600] kb,
with the required CPU cycles correspondingly increasing from

[600–800] to [1400–1600] megacycles, as shown in Fig. 6.
From Fig. 6(a)–(c), it can be observed that as task data size
and required CPU cycles increase, all four schemes exhibit
higher energy consumption, delay, and task penalties. Among
them, the Local-Computing scheme performs the worst due to
the very limited local computing capacity. This leads to high
energy consumption and delay during local processing, and
most tasks cannot be completed within their maximum tolerable
time. The Without-Cloud-Scheme also performs poorly because
it lacks cloud server support for offloading. In contrast, our
proposed MVPOA scheme consistently demonstrates superior
performance in terms of energy consumption, delay, and task
penalties compared to the other three schemes, reaffirming
MVPOA’s strong adaptability and superior effectiveness across
various scenarios.

C. Parameter Analysis

To study the convergence of MVPOA, we analyze the
impact of the following parameters on algorithm convergence:
the learning rates of the actor and critic networks, the batch
size, and the reward discount factor.
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1) Impact of the Learning Rate on Performance: In
Fig. 7(a), we investigate the impact of different learning
rates for the actor and critic networks on the convergence
of the reward values. The learning rates tested are: (actor
= 0.01, critic = 0.1), (actor = 0.001, critic = 0.01), and
(actor = 0.0001, critic = 0.001). From the figure, we can
observe that setting the learning rate either too high will
cause the algorithm to get trapped in local optima, resulting in
suboptimal performance and poor results. Based on the results
shown in the figure, it is evident that the algorithm achieves
the highest reward convergence when the learning rates for
the actor and critic are set to 0.0001 and 0.001, respectively.
Therefore, we use the group of learning rates (actor = 0.0001,
critic = 0.001) for simulation experiments.

2) Impact of the Batch Size on Performance: In Fig. 7(b),
we investigate the impact of different batch sizes on the reward
convergence of the algorithm. We conduct experiments with
batch sizes of 16, 32, and 64. The figure clearly shows that
when the batch size is set to 64, the reward convergence value
is significantly higher than when the batch sizes are 16 and 32.
This is because with smaller batch sizes, such as 16 and 32,
the algorithm receives insufficient sample information during
each training iteration, which negatively impacts the model’s
training effectiveness. Therefore, we choose a batch size of 64
for the simulation experiments.

3) Impact of Reward Discount Factor on Performance:
We study the impact of different discount factors on the
convergence of reward values. As shown in Fig. 7(c), when
the discount factor is set to 0.99, the final converged reward
value is higher than those achieved with discount factors of
0.6 and 0.8. This is because with a discount factor of 0.99,
the agent tends to make decisions that favor long-term gains.
Therefore, in order to obtain higher reward value, we set the
discount factor to 0.99 in the simulation experiments.

VII. CONCLUSION

This article investigates the problem of task offloading
and resource allocation in a cloud-assisted IoV system.
Our objective is to minimize energy consumption and
delay under various resource constraints. This optimization
problem is formulated as a mixed-integer nonlinear pro-
gramming problem, which is challenging to solve using
traditional machine learning methods. Therefore, we propose
a multiagent-reinforcement-learning-based vehicle proposal
offloading algorithm (MVPOA). Each vehicle in the IoV
system, after training, can learn an optimal offloading strategy
and make real-time offloading decisions. We compare the
performance of our proposed solution with other schemes in
different scenarios. Simulation results demonstrate that our
scheme outperforms other baseline algorithms in all evaluated
metrics. This study focuses on a general offloading scenario
with a single edge server and a single cloud server within
a specific region. Future work will explore more complex
situations involving multiple edge servers and cloud servers.
We will investigate how to efficiently offload tasks to the edge
server or cloud server in the next nearby region when a vehicle

is about to drive away the communication range of the current
region.
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