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Abstract—This survey provides a comprehensive analysis of
digital twin (DT) technology as a transformative tool for advanc-
ing connected and autonomous vehicles (CAVs) and intelligent
transportation systems (ITSs), focusing on advancements in
vehicle safety, traffic management, and autonomous driving capa-
bilities. The paper begins by discussing the foundational concepts
and enabling technologies behind DT systems, setting the stage
for their application in transportation networks. We review DT
applications in vehicle safety, highlighting their role in real-time
monitoring, predictive maintenance, and risk mitigation. Next,
we explore the role of DT technology in optimizing traffic flow,
enhancing traffic management, and enabling adaptive responses
to dynamic conditions. The paper then examines the integration
of DTs in intelligent and autonomous vehicles, emphasizing
advancements in simulation, testing, and the development of
autonomous driving functionalities. Finally, we outline future
research opportunities and challenges for DT applications, pro-
viding a roadmap for their continued evolution in CAVs and ITS.
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hicles, intelligent transportation systems, vehicle safety, traffic
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I. INTRODUCTION

The rapid development of connected and autonomous ve-
hicles (CAVs) and intelligent transportation systems (ITSs) is
profoundly reshaping global transportation networks, promis-
ing substantial improvements in safety, efficiency, and sus-
tainability. Despite these advancements, significant challenges
remain in achieving real-time monitoring, predictive analytics,
and dynamic decision-making within highly interconnected
transportation ecosystems. Digital Twin (DT) technology has
emerged as a key enabler, creating dynamic, real-time virtual
replicas of physical systems that continuously synchronize
with real-world data. DTs provide valuable insights into
predictive maintenance, optimized control, and performance
enhancement, effectively addressing complex issues faced by
CAV and ITS infrastructures. By enabling highly accurate
simulations and real-time feedback loops, DTs facilitate the
development of smarter, safer, and more efficient transporta-
tion systems.

A. Background and Motivation

DT technology has progressed from a conceptual prototype
to a foundational pillar of ITS, particularly within the Internet
of vehicles (IoVs). First introduced by Dr. Michael Grieves in
2003 for product-lifecycle management, DTs attracted wider
attention after NASA’s 2012 deployment for aerospace pre-
dictive maintenance [1]. During the past decade, adoption
has accelerated across manufacturing, energy, healthcare, and,
increasingly, transportation [2, 3].

Traditional information systems passively col-
lect–store–analyze sensor data. By contrast, a DT constructs
a persistent, high-fidelity virtual replica of each physical
entity, i.e., vehicle, roadway, or infrastructure component, and
maintains continuous, bidirectional synchronization between
the physical and digital realms. This live coupling enables
real-time monitoring, predictive simulation, multi-agent
coordination, and closed-loop control, thereby transforming
data-driven ITS architectures into state-driven systems.

The fundamental differences between DTs and conventional
information systems in an IoV context are summarized in
Table I.

To underscore the economic impact, Fig. 1 shows the
2023 global DT market by end-use sector [4]. Transportation
already accounts for roughly 15% of total revenue, fueled
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TABLE I
TRADITIONAL INFORMATION SYSTEMS VS. DIGITAL TWINS IN IOV APPLICATIONS

Aspect Traditional Information Systems Digital Twins for IoV
Data Flow One-way: collection & storage Two-way: real-time synchronisation & control

Functionality Passive monitoring and reporting Predictive simulation, scenario analysis, closed-
loop optimisation

Integration Fragmented, siloed subsystems Unified cross-domain model with live updates
Decision Making Reactive, human-centric Proactive, autonomous, machine-driven

Use Cases Historical analytics, fault logs Cooperative perception, predictive maintenance,
dynamic optimisation

by connected-vehicle platforms, infrastructure monitoring, and
urban-mobility optimization.
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Fig. 1. Global DT market share (2023) by end-use sector.

In network-centric ITS deployments, DTs enable dynamic,
real-time coordination among heterogeneous agents, i.e., ve-
hicles, roadside units (RSUs), and traffic-control centers. By
exchanging digital-state snapshots over V2X, edge, and cloud
links, each agent can not only perceive and react but also
simulate, predict, and collaboratively optimize system-wide
behavior, and such capabilities are beyond traditional data-
driven architectures.

Practical exemplars include Singapore’s Land Transport Au-
thority and Highways England, where DT-enabled platforms
reduced congestion and cut predictive-maintenance costs by
up to 30%, boosting asset uptime by 20%. EU projects such
as Horizon 2020 AUTOPILOT further highlight DT-facilitated
autonomous driving through real-time digital–physical syn-
chronization. Finally, interoperability frameworks (e.g., the
IIC Industrial Internet Reference Architecture) provide the
standards backbone for scalable DT deployment across IoV
ecosystems.

B. Related Works and Contributions

Recent surveys have extensively explored theoretical foun-
dations and enabling technologies of DT systems across
multiple domains, including manufacturing, smart cities, au-
tonomous driving, and industrial applications. Table II sum-
marizes representative DT surveys relevant to ITS and CAVs.

Errandonea et al. [5] investigate DT’s role in mainte-
nance applications, focusing on real-time monitoring, predic-
tive maintenance, and operational efficiency. However, their
review lacks empirical case studies, limiting its applicability
to real-world systems. Similarly, Niaz et al. [6] propose a
DT-based framework for testing autonomous driving systems
with vehicle-to-everything (V2X) integration, but challenges
such as inconsistent response delays and incomplete traffic
databases hinder the framework’s reliability.

Mylonas et al. [7] provide a broad review of DT applications
in smart manufacturing and smart cities but omit practical
implementation details, particularly in complex transportation
systems. Bhatti et al. [8] focus on DT applications in smart
electric vehicles, highlighting environmental benefits, yet they
provide few real-world examples, limiting their conclusions.
Martinez et al. [9] discuss DTs in automatic transportation
systems within Industry 4.0, but the emerging nature of this
technology results in limited practical applications.

Hu et al. [12] explore the potential of DT for driver behavior
modeling to enhance safety. However, the field still lacks
empirical data, making it difficult to draw reliable conclusions
for vehicle safety improvements. De et al. [13] examine
the integration of DT with cyber-physical systems (CPS) in
commercial vehicles, highlighting significant challenges such
as protocol standardization and integration complexity, which
require further work for seamless ITS deployment.

Several surveys address DT integration with advanced tech-
nologies such as ML, Internet of things (IoT), and edge
computing. For example, Hu et al. [14] focus on DTs in
traffic safety but suggest a broader scope is needed to fully
understand their implications for urban mobility systems.
Ibrahim et al. [16] compare model-based and data-driven DT
approaches for electric vehicles, but the lack of detailed case
studies on real-world applications limits the practical value
of their insights. Naseri et al. [17] explore DT in electric
vehicle battery systems, but their discussion remains mostly
theoretical, with few practical examples. Deng et al. [18]
review DT applications in autonomous driving, summarizing

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2025.3581152

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:03:58 UTC from IEEE Xplore.  Restrictions apply. 



SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS 3

TABLE II
COMPARISON OF RELATED SURVEY PAPERS.

Ref. Year Focus Area Key Contributions Limitations

[5] 2020 Maintenance Literature review on DT for maintenance, identifying key
trends and research gaps. Focuses on literature, limited practical insights

[6] 2021 Autonomous Driving Proposes a DT-based framework for testing autonomous
driving, highlights V2X technology integration.

Lacks consensus on response delay in autonomous
driving, incomplete traffic database

[7] 2021 Smart Manufacturing
and Smart City

Reviews DT applications from manufacturing to smart
cities, discussing technological advancements. Broad overview, may lack detailed case studies

[8] 2021 Smart Electric Vehicles Reviews DT applications in smart electric vehicles, focus-
ing on environmental benefits.

Primarily theoretical, limited real-world applica-
tion examples

[9] 2021 Industry 4.0 Transporta-
tion

Discusses the role of DT in automatic transportation
systems within Industry 4.0.

Emerging technology with limited practical imple-
mentation examples

[10] 2022 DT Security Surveys security threats in DT systems, providing security
recommendations.

Limited focus on the real-world implementation of
security protocols

[11] 2022 DT of Wireless Systems Overview of DT applications for wireless systems, with
taxonomy and open challenges.

Lack of extensive deployment examples and prac-
tical cases

[12] 2022 Driver Digital Twin Provides an overview of driver DT applications and future
directions. Emerging field, lacks extensive empirical data

[13] 2022 Commercial Vehicles Discusses integration of DT and CPS in commercial
vehicles, addressing challenges and opportunities.

Challenges in real-world implementation, need for
standardized protocols

[14] 2022 Traffic Safety and Mo-
bility

Focuses on DT systems for traffic safety and mobility,
reviewing current research and future perspectives.

Focuses on safety and mobility, limited coverage
of other potential applications

[15] 2023 Industrial IoT Reviews applications, technologies, and tools of DT for
the Industrial Internet of Things.

Limited exploration of implementation challenges
in real-world scenarios

[16] 2023 Electric Vehicle Plat-
forms

Provides an overview of different DT platforms for EV
applications, comparing model-based and data-driven DTs.

Limited to platform comparisons, lacking detailed
case studies

[17] 2023 EV Battery Systems Review of DT applications in EV battery systems, focus-
ing on use cases and requirements.

Primarily theoretical with limited practical imple-
mentation examples

[18] 2023 Autonomous Driving Systematic review of DT applications in autonomous driv-
ing, highlighting current research and trends.

Focuses on current research, lacking future re-
search directions

[19] 2024 Personalized Healthcare Focuses on networking architecture and supporting tech-
nologies for human DT in personalized healthcare.

Faces substantial research challenges and lacks
extensive case studies

[20] 2024 Smart Grid, Transporta-
tion System, Smart City

Surveys DT applications in smart grid, transportation, and
smart cities; discusses challenges and future directions.

Broad scope may lack depth in specific areas, fu-
ture research needed for practical implementations

[21] 2024 Electric and
Autonomous Vehicles

Reviews DT technology applications in electric and au-
tonomous vehicles, discussing technological advancements
and future directions.

Limited real-world examples and empirical data

[22] 2024 Cellular Networks Surveys the use of simulators and DTs in the advancement
of emerging cellular networks.

Limited to simulation studies, lacks real-world
validation

[23] 2024 Autonomous Driving
Reviews the role of simulation in developing and testing
autonomous driving systems, highlighting various simula-
tion techniques.

Limited to simulation studies, lacking real-world
validation

This paper CAV and ITS
A comprehensive analysis of DT technology integration into CAVs and ITSs. Highlights technological
foundations, practical implementations, and future research directions, identifying research gaps and the roadmap
for future studies.

current trends but failing to provide future research directions
for DT integration in autonomous ecosystems.

Recent works also highlight specific challenges such as se-
curity and wireless communications in DT deployments. Mihai
et al. [24] provide a broad survey on DT enabling technologies
and challenges but do not discuss practical applications in
ITS or CAVs. Security threats in DT systems are thoroughly
reviewed by Alcaraz and Lopez [10], who categorize potential
security vulnerabilities and provide security recommendations
for the safe implementation of DT technology. However, their
focus on general security risks leaves unaddressed the specific
security challenges in ITS and CAVs. Khan et al. [11] explore
the application of DTs in wireless communication systems,
developing a taxonomy of DT applications in 5G and beyond
(5G&B) networks. While their work is valuable in the context
of telecommunications, the real-world deployment of DT for

ITS and CAVs remains underexplored. Similarly, Xu et al. [15]
review DT applications in the Industrial Internet of Things
(IIoT), discussing the use of AI and blockchain for system
security and intelligent decision-making. However, practical
implementation challenges for DT in transportation systems
are inadequately addressed in their survey.

More recent surveys provide valuable perspectives on the
potential applications of DTs in emerging fields. For example,
Chen et al. [19] discuss human digital twins (HDT) in person-
alized healthcare, highlighting the networking architecture and
supporting technologies required for real-time data synchro-
nization. Though these insights could inform driver behavior
modeling or autonomous driving, the lack of case studies
and real-world applications limits their practical relevance to
ITS. Jafari et al. [20] provide an overview of DT applications
in smart grids, transportation, and smart cities, offering in-
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sights into challenges and future directions, though real-world
applications remain limited. Ali et al. [21] review DTs in
electric and autonomous vehicles, focusing on technological
advancements but offering few real-world examples.

Additionally, Manalastas et al. [22] examine DT and sim-
ulators in cellular networks, but their work is largely theo-
retical and focuses on simulation models with no real-world
validation. Hu et al. [23] review simulation techniques for
autonomous driving systems, but their lack of real-world
validation reduces their practical utility.

Despite the foundational insights provided by existing sur-
veys, substantial gaps remain when translating theoretical
frameworks and general DT applications into practical de-
ployments within ITS and CAV contexts. Specifically, existing
literature demonstrates limited coverage regarding:

• Comprehensive and systematic analyses of DT-enabled
safety-critical functions, including cooperative percep-
tion, predictive maintenance, and proactive emergency
interventions in realistic transportation scenarios.

• In-depth discussions on practical cross-layer integration
challenges unique to ITS and CAV environments, in-
cluding real-time V2X synchronization, edge computing
constraints, and simulation-to-reality transitions.

• Experimental validations, field implementations, and de-
tailed case studies explicitly bridging theoretical DT
models with practical ITS and CAV applications and
operational frameworks.

To address these critical gaps, our survey presents a com-
prehensive, holistic, and practice-oriented review of DT tech-
nologies explicitly tailored to intelligent vehicles and trans-
portation systems. The primary contributions of this survey
are summarized as follows:

• A detailed and structured synthesis of DT applications
in vehicle safety, traffic management, and autonomous
driving, encompassing theoretical insights and tangible
real-world implementations.

• Key technical, operational, and security insights drawn
from empirical studies and practical deployments, includ-
ing clearly outlined solutions and best practices.

• An extensive forward-looking discussion on future re-
search opportunities and practical advancements in DT-
enabled cooperative perception, scenario-based testing,
real-time simulation frameworks, and strategies for de-
veloping scalable, resilient, and secure intelligent trans-
portation ecosystems.

C. Structure and Organization

The rest of the paper is organized as follows: Section
II provides an overview of the foundational concepts and
enabling technologies behind DT systems, setting the stage for
their application in ITS. Section III reviews DT applications
for vehicle safety, detailing how DTs enhance safety mech-
anisms, enable predictive maintenance, and support real-time
diagnostics in CAVs. Section IV focuses on DT applications in
traffic management, exploring their role in optimizing traffic
flow, incident response, and infrastructure resilience. Section
V examines the integration of DTs in autonomous vehicle

systems, emphasizing advancements in simulation, testing, and
the development of autonomous driving functionalities. Sec-
tion VI presents future research directions, outlining critical
areas for development to ensure sustainable and scalable DT
deployment. Section VII concludes the paper by summarizing
the main contributions and reinforcing the importance of DT
technology for the future of intelligent transportation systems.
Fig. 2 illustrates the organization of this survey.

II. ENABLING TECHNOLOGIES FOR DIGITAL TWINS

This section introduces and discusses key enabling tech-
nologies crucial for effectively integrating DT systems into
intelligent vehicles and transportation networks, as illustrated
in Fig. 3. It also explores strategies for accurately identifying,
monitoring, and controlling physical components within ITS
using DT-based methodologies.

A. Digital-Twin Architecture and Its Network Perspective

DT systems typically adopt a multi-layer architecture that
connects physical assets, communication infrastructures, and
digital replicas into a tightly coupled control loop. This
architecture supports seamless synchronization, low-latency
processing, and predictive optimization across ITS and CAVs.
It forms the foundational enabler for real-time decision-
making and collaborative operations in network-centric ITS
environments.

As illustrated in Fig. 4, a representative DT architecture
consists of three fundamental layers:

1) Physical Layer: This foundational layer includes vehi-
cles, RSUs, infrastructure sensors, actuators, and other cyber-
physical components. It generates real-time operational data
through sensing and executes control instructions issued by the
digital twin. These physical elements serve as the primary data
sources and actuation endpoints that maintain tight coupling
with their virtual counterparts [25, 26].

2) Communication Layer: Serving as the communication
backbone, this layer enables secure, low-latency, and bi-
directional data exchange between physical entities and their
digital counterparts. Beyond standard V2X protocols, it sup-
ports key functions including: (i) periodic dissemination of
twin-state snapshots to nearby vehicles and infrastructure for
cooperative perception; (ii) synchronization of digital twins
across RSUs, MEC nodes, and cloud servers to ensure con-
sistency and mobility support; and (iii) dynamic allocation
of communication resources via network slicing, where ultra-
reliable low-latency communication (URLLC) channels handle
safety-critical data and enhance mobile broadband (eMBB)
channels support high-volume updates. Technologies such as
IEEE 802.11p, C-V2X, MQTT, and CoAP-over-5G ensure
interoperability across diverse communication stacks [27].

3) Digital Layer: Hosted across distributed edge and
cloud infrastructure, this layer maintains high-fidelity geomet-
ric, physical, and behavioral models of physical entities. It
supports real-time monitoring, simulation, and optimization
through hybrid AI pipelines, which fuse live sensor streams
with physics-based and data-driven models to derive predictive
and prescriptive insights [28, 29].
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Structure of this Survey

I. Introduction
V. Digital Twins for Intelligent 
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IV. Digital Twins for Traffic 

Management

III. Digital Twins for Vehicle 

Safety

I-A. Background and Motivation

I-B. Related Works and 

Contributions

III-A. Overview of Vehicle Safety 

Challenges

IV-A. Overview of Traffic Management 

Challenges

IV-B. Potentials of Digital Twin 

Technology for Traffic Management

IV-C. Digital Twin Applications for Traffic 

Management: A State-of-The-Art Review

V-A. Overview of Challenges in 

Intelligent and Autonomous Vehicles

V-B. Potentials of Digital Twin 

Technology for Intelligent and 

Autonomous Vehicles

• Traffic Signal Control and Optimization

• Transportation Traffic Prediction and 

Management

• Smart City and Infrastructure Management

VI. Future Research 

Opportunities

VI-A. Emerging IoT and Sensor 

Technologies

VI-B. Simulation Model 

Innovations

• Development and Validation of 

Autonomous Driving Systems

• Connected and Cooperative Vehicle 

Systems

• Optimizing Network Resource 

Management for CAV

III-C. Digital Twin Applications for 

Vehicle Safety: A State-of-The-Art 

Review

V-C. Digital Twin Applications for 

Intelligent and Autonomous Vehicles: 

A State-of-The-Art Review

II. Enabling Technologies 

for Digital Twins

III-B. Potentials of Digital Twin 

Technology for Vehicle Safety

I-C. Structure and Organization

III-D. Lessons Learned in Vehicle 

Safety Applications of Digital Twins

IV-D. Lessons Learned in Traffic 

Management Applications of Digital Twins

• Enhancement of Vehicle Safety 

Features and Operations

• Simulation and Testing of Safety 

Scenarios

• Security and Privacy in Vehicular 

Systems

V-D. Lessons Learned in Intelligent 

and Autonomous Vehicle 

Applications of Digital Twins

VI-C. AI and ML Advancements

VI-D. Cybersecurity and Resilience 

in Distributed DT Networks

VII. Conclusion

II-A. Data-Related Techniques

II-B. Physical-Related 

Techniques

II-C. Model-Related Techniques

II-D. Connection-Related 

Techniques

II-E. Service-Related Techniques

II-F. Interaction and 

Coordination of Physical and 

Digital ITS

Fig. 2. Organization of this survey.

Enabling Technologies and Tools for Digital Twin

Data-Related Techniques

Data Collection

• Sensors, i.e., thermocouples, accelerometers, 

strain gauges

• IoT Devices, i.e., smart thermostats, 

connected industrial machines, environmental 

monitors

• RFID tags

• ……

Physical-Related Techniques Model-Related Techniques
Connection-Related 

Techniques
Service-Related Techniques

Data Transmission

• Wired Networks, i.e., Ethernet , fiber optic 

connection

• Wireless Networks, i.e., Wi-Fi, Bluetooth, 

ZigBee, cellular networks

• IoT Protocols, i.e., MQTT, CoAP, 

HTTP/HTTPS

• ……

Data Storage

• Distributed File Storage, i.e., Hadoop 

Distributed File System

• NoSQL Databases, i.e., MongoDB, Cassandra

• NewSQL Databases, i.e., Google Spanner

• Cloud Storage, i.e., Amazon S3, Google 

Cloud Storage, Microsoft Azure Storage

• ……

Data Processing

• Data Cleaning, i.e., OpenRefine , Trifacta

• Data Compression, i.e., gzip, bzip2

• Cloud Storage, i.e., Amazon S3, Google

• Data Fusion, i.e., Kalman filtering, Bayesian 

networks

• ……

Data Analytics

• Data Mining, i.e., OpenRefine , Trifacta

• Machine Learning, i.e., TensorFlow, Scikit-

Learn

• Statistical Analysis, i.e., R/Python, SAS

• ……

Sensors and Actuators

• Temperature Sensors

• Pressure Sensors

• Vibration Sensors

• Humidity Sensors

• Flow Sensors

• Force And Load Sensors

• ……

Measurement Technologies

• Laser Measurement, i.e., laser 

scanners, laser distance meters

• Image Recognition Measurement

• Precision Measurement

• ……

Actuation Technologies

• Hydraulic Actuators

• Pneumatic Actuators

• Electric Actuators

• Servo Motors

• Stepper Motors

• ……

Geometric Modeling

• CAD Tools, i.e., AutoCAD, SolidWorks, 

CATIA

• 3D Modeling Software, i.e., Blender, 

Maya, 3ds Max

• ……

Physics-Based Simulation

• Finite Element Analysis, i.e., ANSYS, 

Abaqus, COMSOL Multiphysics

• Computational Fluid Dynamics, i.e., 

Fluent, OpenFOAM, SimScale

• Multibody Dynamics, i.e., MSC Adams, 

Simpack

• ……

Behavioral Modeling

• System Dynamics Modeling, i.e., 

Vensim, Stella

• Agent-based Modeling, i.e., AnyLogic, 

NetLogo

• Discrete Event Simulation, i.e., Arena, 

Simio

• ……

Model Verification and Validation

• Static Verification Methods, i.e., model 

checkers, theorem provers

• Dynamic Static Verification Methods, 

i.e., black-box testing, white-box 

testing, simulation-based validation

• Verification, Validation, and 

Accreditation

• ……

Hybrid Modeling

• Digital Twins Platforms, i.e., Siemens 

Digital Industries Software, GE Digital's 

Predix, and Dassault Systèmes’ 

3DEXPERIENCE

• ……

Communication Networks

• 5G Technology

• Mesh Networks

• LoRaWAN

• ……

Integration Platforms

• IoT Platforms, i.e., Microsoft 

Azure IoT Hub, AWS IoT Core, 

Google Cloud IoT

• Middleware Solutions, i.e., Apache 

Kafka, RabbitMQ, IBM MQ

• API Management, i.e., Kong, 

Apigee, AWS API Gateway

• ……

Interfaces and Protocols

• WebSockets

• MQTT

• CoAP

• HTTP/HTTPS

• ……

Interoperability Standards

• OPC UA

• ISO/IEC standards

• ISA-95

• ……

Security Technologies

• Encryption

• Authentication

• Authorization

• ……

Simulation Services

• Simulation Software, i.e., ANSYS, 

MATLAB, Simulink

• Physics-Based Simulation, i.e., 

COMSOL Multiphysics, Abaqus

• Agent-Based Simulation, i.e., 

AnyLogic, NetLogo

• ……

Optimization Services

• Optimization Algorithms 

• Predictive Analytics 

• Digital Twin Platforms 

• ……

Monitoring Services

• SCADA Systems, i.e., Wonderware, 

Ignition

• Condition Monitoring, i.e., SKF 

Enlight, GE Bently Nevada

• Real-Time Dashboards, i.e., 

Tableau, Power BI, Grafana

• ……

Diagnostic and Prognostic Services

• Fault Detection and Diagnosis

• Prognostics and Health Management

• Machine Learning for Prognostics

• ……

Knowledge Services

• Knowledge Management Systems

• Expert Systems

• Association Rule Mining

• ……

Fig. 3. Categories of enabling technologies and tools for Digital Twins.
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In traditional ITS architectures, the communication network
primarily serves as a passive channel for transmitting sensor
data and control commands. A DT-aware network, however,
treats the “twin state” as a core network-visible object. Each
node actively publishes its own digital state and subscribes to
relevant remote twins. This supports system-wide situational
awareness, maintained collaboratively by vehicles, infrastruc-
ture, and control centers. At the network edge, local digital
twins are cached to enable rapid responses, often within 10
milliseconds. In the cloud, aggregated twin data supports
global coordination and city-scale traffic optimization. This
twin-centric approach enables several advanced capabilities.
First, co-operative perception extends each vehicle’s awareness
by integrating nearby twin states with its own sensor data,
enhancing visibility beyond line-of-sight. Second, predictive
closed-loop control leverages real-time simulations within the
digital layer to adjust trajectories in advance; these control
updates are transmitted over low-latency URLLC links. Third,
cross-layer resource optimization is achieved by allocating
bandwidth, computing, and storage based on forecasted DT
workloads, rather than relying on static configurations. By
transforming communication from a reactive transport medium
into an active, context-aware control plane, digital twins
introduce a fundamental shift in how ITS networks operate.
This evolution, from data-driven to twin-driven intelligence,
lays the groundwork for the predictive, collaborative, and
autonomous features discussed in later sections.

B. Data-Related Technologies

Effective integration and operation of DT technology within
intelligent vehicles and ITS demand advanced data man-
agement systems that ensure precise modeling, continuous
synchronization, and real-time responsiveness. Crucial stages
of data lifecycle management, including data collection, trans-
mission, storage, processing, and analysis, are closely inter-
connected and play indispensable roles in sustaining robust
and reliable DT ecosystems.

1) Data Collection and Sensing Technologies: Data collec-
tion relies on sensors, IoT devices, and RFID tags that monitor
parameters such as temperature, vibration, location, and speed.
In intelligent vehicles, sensors like LIDAR, cameras, radar,
and GPS provide essential real-time data for DT creation [30].

These sensors, integrated with IoT devices, enable continuous
monitoring, ensuring real-time updates of DTs and maintaining
accurate system representations.

2) Data Transmission Technologies: Efficient data trans-
mission to DT platforms is achieved through both wired and
wireless technologies. Wired solutions like Ethernet and fiber
optics ensure high-speed, reliable backhaul communication,
while wireless options like Wi-Fi, Bluetooth, ZigBee, and ad-
vanced cellular networks (e.g., 5G/B5G) support mobility and
flexibility in connected vehicle networks [31]. Protocols such
as MQTT, CoAP, and HTTP/HTTPS facilitate low-latency,
secure real-time exchanges, which are vital for vehicular
environments [32].

3) Data Storage Solutions: The vast amounts of data
generated by sensors and IoT devices require scalable and
resilient storage solutions. Distributed file systems (DFS) and
databases like NoSQL and NewSQL offer high scalability,
fault tolerance, and quick data access, critical for real-time
data handling in DT ecosystems [31]. Cloud platforms such
as AWS and Microsoft Azure provide scalable resources for
integrating large datasets across distributed systems in real-
time environments.

4) Data Processing and Transformation: Data processing
techniques, including cleaning, compression, transformation,
and fusion, ensure the accuracy and quality of collected
data. Raw sensor data often contains noise and redundancies,
which data cleaning addresses, while compression optimizes
storage and transmission. Data fusion, such as sensor fusion,
combines information from multiple sources, providing a more
comprehensive and reliable representation of physical systems
[33].

5) Advanced Analytics and Real-Time Decision-Making:
AI and ML-driven analytics enable deep insights into sys-
tem behaviors, using tools like TensorFlow, PyTorch, and
Scikit-learn for predictive models, anomaly detection, and
optimization [34, 35]. Real-time decision-making is supported
by visualization tools like Tableau and Power BI, which
help stakeholders make data-driven decisions by presenting
complex data in an accessible format [36, 37].

C. Physical-Related Technologies

Physical-related technologies include high-precision sen-
sors, actuators, and advanced measurement systems, enabling
real-time data acquisition and operational control for accurate
system modeling in ITS.

1) Sensors and Data Acquisition: High-precision sensors
monitor parameters like temperature, pressure, and displace-
ment, forming the core of DT data acquisition. Sensors such as
thermocouples, piezoelectric accelerometers, and GPS provide
essential real-time data for dynamic updates in DT models.
Integrated IoT devices allow continuous data streams that
reflect changes in vehicle behavior, road conditions, and envi-
ronmental factors, ensuring synchronization with the physical
world [38, 39].

2) Integration with Control Systems: To maintain synchro-
nization, sensors integrate with control systems like SCADA,
PLCs, and DCS. These systems ensure continuous data flow
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and feedback loops, enabling real-time updates in DT models.
This integration supports dynamic responses to environmental
changes, optimizing performance in autonomous vehicles and
ITS by synchronizing physical and virtual actions.

3) Advanced Measurement Technologies: Techniques like
laser scanning and coordinate measuring machines (CMMs)
capture precise geometric data for infrastructure, vehicles, and
environments. Laser scanners use triangulation or time-of-
flight methods to generate high-density point clouds, while
CMMs offer micron-level precision, essential for creating
reliable 3D models. This precision ensures DTs accurately
reflect physical characteristics, vital for simulations and system
optimizations [40–42].

4) Actuation Technologies and Control: Actuators, such
as hydraulic, pneumatic, and electric motors, translate digital
commands into physical actions, enabling real-time interaction
between virtual and physical systems. These technologies
integrate with closed-loop control systems for dynamic adjust-
ments based on sensor and digital twin feedback, supporting
precision control in autonomous systems, such as lane changes
and speed adjustments [40–43].

D. Model-Related Technologies

Model-related technologies enable the creation, simulation,
and optimization of virtual models that replicate the behaviors
and conditions of physical systems, ensuring effective moni-
toring, control, and decision-making in transportation systems.

1) Geometric Modeling: Geometric modeling is fundamen-
tal to digital twin creation, providing spatial representations of
physical systems. CAD tools (AutoCAD, SolidWorks, CATIA)
and advanced 3D modeling applications (Blender, Maya, 3ds
Max) are used to design accurate 2D and 3D models for
vehicles, infrastructure, and components. These models are
critical for simulating geometries and understanding spatial
relationships in transportation systems [44, 45].

2) Physics-Based Simulation: Physics-based simulations
model real-world system behaviors under physical conditions.
Tools like ANSYS Fluent, Abaqus, and OpenFOAM use
numerical methods (FEA, CFD) to simulate material prop-
erties, stress, and fluid dynamics [46, 47]. Multibody Dynam-
ics (MBD) software like MSC Adams simulates interactions
between moving bodies, ensuring accurate digital twins of
mechanical behaviors [48, 49].

3) Behavioral Modeling: Behavioral modeling techniques
simulate interactions between system entities over time, crucial
for modeling complex systems like traffic flow and vehicle
interactions. Platforms like Vensim, Stella, AnyLogic, and
NetLogo model time-dependent behaviors, enabling prediction
of system evolution and testing scenarios without real-world
experimentation [50, 51]. Discrete Event Simulation (DES)
tools such as Arena and Simio optimize processes and improve
system performance [52, 53].

4) Model Verification and Validation: Verification and val-
idation (V&V) ensure the accuracy and reliability of digital
twin models. Verification confirms that models meet specifi-
cations, while validation ensures that they represent the real-
world system accurately. Leading DT platforms like Siemens

Digital Industries Software, GE Digital’s Predix, and Das-
sault Systèmes’ 3DEXPERIENCE integrate rigorous V&V
processes to maintain model fidelity [54, 55].

E. Connection-Related Technologies

Connection technologies ensure the digital twin accurately
mirrors the physical system and supports dynamic control and
optimization.

1) Communication Networks: Modern communication net-
works, particularly 5G, are essential for transferring real-
time data between physical entities and their digital twins in
transportation systems. The low-latency and high-bandwidth
capabilities of 5G, including URLLC and mMTC, enable
critical applications like autonomous driving, where rapid
data transfer is crucial for decision-making and safety [56].
Mesh networks also enhance resilience and reliability, enabling
decentralized communication in environments such as vehicle
fleets and smart cities. Additionally, LPWAN technologies like
LoRaWAN provide long-range, low-power communication,
which is ideal for infrastructure monitoring in remote areas,
thereby extending the coverage of V2X systems [57].

2) Integration Platforms: Platforms like Microsoft Azure
IoT Hub, AWS IoT Core, and Google Cloud IoT are crucial
for managing the massive data generated in digital twin
ecosystems. They support the seamless collection, processing,
and analysis of real-time data, enabling the synchronization of
digital twins with physical systems. These platforms provide
services like device provisioning, secure communication, and
real-time analytics, ensuring effective integration of sensor
data and continuous updates of the digital twin’s state [57].

3) Middleware Technologies: Middleware solutions such as
Apache Kafka, RabbitMQ, and IBM MQ are key for facilitat-
ing efficient and secure data exchange across distributed sys-
tems. These technologies ensure reliable messaging and enable
real-time communication between components in a digital twin
ecosystem. API management tools like Kong, Apigee, and
AWS API Gateway further ensure secure, scalable interactions,
simplifying integration and maintaining operational integrity
within ITS [58].

4) Interfaces and Protocols: Standardized communication
protocols are essential for ensuring effective communication
between devices and systems in digital twin ecosystems.
Protocols like MQTT and CoAP are ideal for constrained
environments, enabling low-latency, secure data transmission,
especially in IoT applications [59]. Industrial protocols like
OPC UA ensure seamless data exchange across diverse plat-
forms, facilitating the integration of sensors, actuators, and
control systems in complex transportation networks [60].

5) Security Technologies: Security technologies are vital
for protecting the integrity of data and communication in
digital twin systems. Encryption protocols like SSL/TLS and
AES ensure the confidentiality of transmitted data [61]. Au-
thentication mechanisms such as OAuth, JWT, and multi-
factor authentication (MFA) protect digital twin systems by
restricting access to authorized entities, crucial in V2X sys-
tems and autonomous vehicles where data integrity is critical
[62, 63].
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6) Interoperability Standards: Interoperability standards
like OPC UA, MQTT, and ISA-95 ensure seamless commu-
nication across platforms, vendors, and devices within digital
twin ecosystems. These standards provide a unified framework
for data exchange, reducing compatibility issues and enhanc-
ing integration between systems. Standardized data formats
like XML and JSON, combined with RESTful APIs, further
support efficient communication and system integration.

F. Service-Related Technologies

Service-related technologies enable digital twins to adapt
dynamically to changes in their physical counterparts, opti-
mizing system performance and predictive capabilities.

1) Simulation Services: Simulation services are key to
modeling and predicting the behavior of physical systems.
Tools like Ansys, MATLAB, and Simulink are used for
finite element analysis (FEA) and multi-domain modeling,
simulating interactions such as mechanical stresses and fluid
dynamics [64]. These simulations provide insights for optimiz-
ing and validating systems in real-world conditions. Platforms
like AnyLogic and NetLogo also enable agent-based model-
ing, allowing dynamic simulations of systems with multiple
interacting agents, such as vehicles in traffic management
scenarios, improving decision-making [65].

2) Monitoring Services: Monitoring services are essential
for ensuring system health and continuous operation. SCADA
systems like Wonderware and Ignition enable real-time data
acquisition and control in industrial settings, while tools such
as SKF Enlight and GE Bently Nevada utilize advanced
analytics for anomaly detection and predictive maintenance.
Visualization platforms like Tableau and Power BI provide
dashboards displaying key performance indicators (KPIs),
empowering decision-makers with real-time insights [66].

3) Optimization Services: Optimization services leverage
algorithms like genetic algorithms, particle swarm optimiza-
tion, and simulated annealing to enhance system performance.
These methods refine operations, optimizing parameters such
as resource allocation, energy consumption, and scheduling.
Predictive analytics tools like IBM SPSS and RapidMiner fore-
cast trends, assisting in maintenance and resource management
decisions .

4) Diagnostic and Prognostic Services: Diagnostic and
prognostic services are essential for fault detection and pre-
dictive maintenance. Tools like MATLAB’s Fault Diagnosis
Toolbox use machine learning to detect faults and predict the
remaining useful life (RUL) of components. These services
analyze sensor data to identify deviations from expected
behavior, providing early warnings and minimizing downtime
and maintenance costs [67].

5) Knowledge Services: Knowledge services support the
storage, retrieval, and sharing of expertise within digital twin
ecosystems. Platforms like Confluence and SharePoint facil-
itate knowledge management, while data mining tools such
as Weka and Orange uncover patterns from large datasets,
supporting decision-making and continuous improvement.
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Fig. 5. Illustration of the interaction and coordination of physical/digital ITS.

G. Interaction and Coordination of Physical and Digital ITS

Fig. 5 illustrates a representation of physical and digital
ITS, including vehicles, humans and traffic. DT-enabled virtual
models of ITS are powered by real-time data from various sen-
sors, enabling continuous interaction and coordination between
the physical and digital components of the transportation
infrastructure [68]. These virtual models rely on precise, real-
time data gathered from a range of sensors such as laser
scanners, cameras, and environmental monitors, which capture
key parameters like size, shape, and road conditions. This data
is constantly fed into the digital models, allowing them to
evolve and adapt dynamically in response to changes in the
physical world.

The seamless operation of these digital twins is enabled by
the interaction between vehicle and infrastructure sensors, in-
cluding torque, speed, LIDAR, radar, and GPS. These sensors
transmit data through advanced communication networks such
as 5G, Wi-Fi, and LoRaWAN, ensuring constant synchroniza-
tion between the physical world and its digital counterpart.
Synchronization is critical to maintaining the consistency of
data between physical and digital systems, enabling real-
time responsiveness and control. Sensor fusion techniques are
employed to combine data from multiple sources, improving
the accuracy and reliability of the models.

An example synchronization process is depicted in Fig. 6,
which illustrates the time synchronization and data exchange
between the physical vehicle and its virtual twin. This process
ensures that the digital models always reflect the most up-
to-date data from the physical system, supporting continuous
and dynamic interaction between the physical and virtual
components. Through these mechanisms, synchronization is
maintained across both local (edge) and global (cloud) lay-
ers of the system, ensuring smooth data flow and real-time
decision-making.

Advanced analytics, powered by AI and ML, process this
data to predict system behavior, detect inefficiencies, and
trigger proactive actions. For example, in traffic management,
DTs can dynamically adjust traffic signal timing based on
real-time traffic flow data, reducing congestion and improving
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traffic efficiency. This predictive capability allows the system
to optimize traffic management strategies on a global scale,
adapting to both immediate conditions and long-term patterns.

Additionally, the DT framework interacts with physical
control systems, including hydraulic, electrical, and pneumatic
actuators, to make real-time adjustments to physical compo-
nents like traffic signals, barriers, and vehicle routing. This
feedback loop ensures that transportation systems are dynam-
ically optimized, responding to changing traffic conditions,
accidents, and environmental factors.

The success of DT technology in ITS relies on the interdis-
ciplinary collaboration between fields such as mechanical en-
gineering, data science, and communication technologies. Sen-
sors collect essential data, communication networks transmit
it across the system, AI/ML models analyze the information,
and control systems execute the necessary adjustments. This
continuous interaction enables real-time system optimization,
while also laying the foundation for long-term improvements
in the overall efficiency and resilience of ITS infrastructures.

III. DIGITAL TWINS FOR VEHICLE SAFETY

This section provides a comprehensive overview of the
role of DT technology in enhancing vehicle safety. It begins
by identifying the key challenges in vehicle safety, followed
by the potential applications of DTs in vehicle safety and a
state-of-the-art review of existing implementations. Then, the
section discusses the critical aspects of security and privacy
in vehicular systems. Lessons learned from vehicle safety
applications of DTs are presented, highlighting both successes
and challenges to guide future developments in this field.

A. Overview of Vehicle Safety Challenges

Vehicle safety in CAVs and ITS depends on reliable, secure,
and timely data communication across vehicles, infrastructure,
and users. It must address challenges in data transmission,
network reliability, real-time processing, and sensor integration
to ensure effective safety mechanisms.

1) Technological Challenges in Data Communications:
CAV safety relies heavily on sensor systems, secure V2X
communications, and real-time data processing algorithms.
Sensors such as LiDAR, radar, and cameras transmit data with
high fidelity, but their performance can degrade in adverse
conditions. For example, LiDAR’s accuracy drops by up to
60% in dense fog, impacting the data shared across net-
works [69]. Additionally, V2X communications are vulnerable
to cyber-attacks (e.g., denial-of-service or malware), which
threaten vehicle operations and inter-vehicle communication
[70]. Given the reliance on continuous data for safe operation,
such threats are critical. Furthermore, real-time processing
demands stable networks with minimal latency to handle tasks
like adaptive control algorithms [71].

2) Network-Dependent Interaction with Infrastructure: Ef-
fective CAV safety requires a reliable V2X infrastructure,
especially in diverse geographical areas. Variations between
urban and rural infrastructures impact V2I communication,
limiting coordination efforts [72]. Accurate, real-time mapping
and network-supported localization are crucial for navigation
and incident prevention. Failures in mapping systems, as
shown by the 2018 Uber incident, underline the importance
of precise geolocation data [73]. Additionally, interoperability
issues with protocols such as DSRC and C-V2X hinder
seamless connectivity, which is critical for real-time safety
interventions [74].

3) Human Factors and Network-Based Situational Aware-
ness: In semi-autonomous CAVs, human factors like driver
engagement and situational awareness are vital for safety. Net-
work feedback and data-driven alerts can mitigate risks from
driver disengagement, but over-reliance on automation can
delay human response times, as seen in the ”mode confusion”
of the 2018 Uber crash [75]. Reliable data communication
ensures smooth transitions between manual and automated
control [76]. Trust in CAV systems is shaped by the perceived
reliability of communication-based safety features [77].

DT technology enables real-time, network-centric data com-
munications for predictive maintenance, diagnostics, and re-
silient operations. By integrating V2X data streams with
diagnostic models, DTs facilitate early detection of system
failures. While intelligent processing may introduce some
delay, DTs ultimately reduce response times by enabling
proactive actions and enhancing vehicle reliability through
continuous monitoring.

B. Potentials of Digital Twin Technology for Vehicle Safety

DT technology transforms vehicle-safety management from
a data-driven paradigm, where the network merely transports
sensor streams, into a state-driven, twin-centric paradigm in
which each physical entity is mirrored by a continuously-
synchronized virtual replica. This architectural shift enables
network-visible “twin states” to flow bidirectionally across
V2X links, edge nodes, and the cloud, supporting predictive
maintenance, real-time diagnostics, and resilient, cooperative
vehicle operations that conventional information systems can-
not achieve.
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1) Enhancing Safety Features through Digital-Twin Integra-
tion: From reactive fusion to predictive fusion. Traditional
sensor-fusion pipelines depend solely on instantaneous on-
board measurements, limiting foresight to the sensor horizon.
As shown in Fig. 7, a DT-enabled pipeline combines live
sensor data with historical patterns and predictive analytics
maintained in cloud/edge twin servers. This twin-assisted
context enriches object classification, trajectory forecasting,
and hazard anticipation. The outcome is earlier activation of
safety-critical functions, e.g., automatic emergency braking
(AEB) and evasive steering, than is possible with sensor-only
or cloud-AI systems.

Emergency braking: network-aware, twin-driven. Tradi-
tional AEB systems react only when local sensors detect an
imminent threat, often constrained by sensor range and envi-
ronmental factors. In contrast, a DT-aware AEB continuously
maintains a synchronized virtual replica of the vehicle and
its surroundings, updated in real time through V2X telemetry
and infrastructure-integrated digital twins. This enables the
system to compute time-to-collision (TTC) estimates across
multiple hypothetical scenarios and dynamically adjust brak-
ing profiles in advance. By exchanging twin-state information
with neighboring vehicles and roadside units, coordinated
braking strategies can be applied to handle cut-ins, sudden
stops, or multi-vehicle hazard patterns. Although this approach
introduces additional computation, edge-hosted DT instances
and prioritized communication channels ensure that decision
latency remains within acceptable safety bounds.

2) Optimizing Traffic Flow and Network-Aware Safety In-
terventions: DTs raise traffic management from reactive to
proactive. Continuous twin updates allow the system to fore-
cast queue build-up, then broadcast lane-changing, speed-
harmonization, or rerouting instructions before congestion
materialists. Unlike post-hoc measures in conventional ITS,
twin-centric prediction lowers secondary-collision rates and
dampens stop-and-go waves in dense traffic [78].

3) Digital-Twin-Enabled Virtual Prototyping and System
Resilience: The framework in Fig. 8 shows how DTs support
design-time virtual prototyping. Simulated V2X stresses and
fault injections reveal weaknesses early, allowing refinement
of safety algorithms and network protocols before on-road
deployment [79]. Although additional simulation time is re-
quired, downstream risk and recall costs are markedly reduced.

4) High-Fidelity Scenario-Based Testing for Autonomous
Vehicles: As depicted in Fig. 9, DTs synthesize rare,
safety-critical scenarios (e.g., road-work occlusions, extreme
weather) that would be risky or costly to reproduce physically.
Real-time V2V/V2I emulation allows AV algorithms to adjust
policies on the fly, yielding more robust deployment readiness.

5) Predictive Maintenance and Fault Detection in Real
Time: DTs blend physics-based models and streaming an-
alytics (Fig. 10) to catch anomalies, e.g., incipient bearing
wear—before failure. Continuous twin-state evaluation re-
duces unplanned downtime and accident risk [79]. Edge-level
execution ensures detection latency stays within operational
constraints.

6) Adaptive Network Management in Vehicular Edge Com-
puting: The dual-loop DT framework in Fig. 11 feeds inner-
loop performance metrics (e.g., channel quality, queue length)
to an outer-loop optimizer, which reallocates spectrum, com-
pute, and storage resources based on predicted twin workloads.
This network-aware orchestration guarantees low-latency de-
livery of safety-critical messages even under heavy load, a
capability unattainable by static slice configurations.

C. Digital Twin Applications for Vehicle Safety: A State-of-
The-Art Review

This subsection reviews the applications of DT technology
in enhancing vehicle safety, focusing on its role in real-
time monitoring, predictive maintenance, and risk mitigation
for CAVs. It covers advancements in sensor fusion, collision
avoidance, and virtual safety testing, demonstrating how DTs,
in conjunction with professional technologies, are transform-
ing vehicle safety practices.

1) Enhancement of Vehicle Safety Features and Operations:
Advances in sensor technology, advanced driver assistance
systems (ADAS), and predictive algorithms have enabled the
integration of DT technology into ITS, significantly enhancing
vehicle safety. DTs provide real-time simulation, continuous
monitoring, and proactive safety mechanisms, contributing
to operational efficiency and improved decision-making pro-
cesses in CAVs. By merging physical vehicle systems with
digital counterparts, DTs offer dynamic feedback to ensure
the timely and accurate response to potential risks, ultimately
improving safety outcomes.

Several studies have demonstrated how DTs can enhance
vehicle safety in CAVs by leveraging various approaches. Liu
et al. [80] emphasize the role of sensor fusion in improving
decision-making, combining real-time sensor data with cloud-
based DTs for enhanced situational awareness and object
detection. Similarly, Wang et al. [81] highlight the use of
DTs in conjunction with 5G technology to predict traffic
flow, effectively reducing network inefficiencies and improving
overall traffic management. Kumar et al. [82] further de-
centralize traffic management by integrating DTs with edge
analytics, facilitating real-time modeling of driver behavior
and minimizing latency.

For addressing distracted driving, Ma et al. [83] develop
a DT framework that integrates cognitive indicators for de-
tecting distracted driving behaviors, as shown in Fig. 12.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2025.3581152

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:03:58 UTC from IEEE Xplore.  Restrictions apply. 



SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS 11

Director
Vehicle 

Designer

Component 

Engineer

Technical 

Staff

Upgrade 

Marketer

Prototype 

Operator

Virtual Prototype 

Simulation 

Component 

Upgrade Mockup

Upgrade Logic 

Development

Prototype VR/AR 

Guide

Virtual-Physical 

Integration

Upgrade Solution 

Display

V
is

u
a

l 
F

ie
ld

H
u

m
an

Digital Twin 

Visualization

RESTful Service 

Upgrade 

Lifecycle 

File System

Account Data

G
H

O
S

T
 S

e
r
v
ic

e

Prototype 

Lifecycle 

DatabaseCyber Engine

Manufacturer / Integrator

Component 

Library
Field Scheme

Mechanical Model Logic Model

Automation ML CAD Software
Automation 

Software
CNC / PAC / PLC

Enterprise Server

Data Fusion

Physical Components

Geometric Data Metrics & Constraints

Automation ML

Prototype Planning Upgrade Design Upgrade Simulation

Prototype & Concepts

Prototype 

Testing & 

Service

Component 

Recycle & 

Upgrading

C
y
b

er L
ay

er 

(D
igital T

w
in

s)

P
h

y
sical 

L
ay

er

User / Integrator

Fig. 8. DT framework for virtual prototyping and component upgrades.

Realistic 

Scenario (Meta 

Scenario)

Realistic Scene 1 

(Meta Scene)

Realistic Scene 2 

(Meta Scene)

Realistic Scene 3 

(Meta Scene)

Static Feature 1

Static Feature 2

Static Feature 3

Virtual Scene 1 

(Twin Scene)

Virtual Scene 2 

(Twin Scene)

Virtual Scene 3 

(Twin Scene)

Sequential Features
(i.e., time dependencies, 

event ordering, causality, 

state transitions)

Constraint Conditions
(i.e., speed limits, right-of-

way rules, geographical 

constraints, safety margins)

Verified Virtual Scenario

(Twin Scenario)

Unverified 

Virtual Scenario

Combine
Verify

Extract

Extract

Extract

Extract

Extract

Assign

Assign

Assign

Sequential Relation

Generation Process

Verification Process

Fig. 9. Twin-scenario generation for autonomous-vehicle testing.

Historical 

Data

Data 

Preprocessing

Feature 

Extraction

Model 

Training

Fault Diagnosis 

and Remaining 

Useful Life 

Prediction

Build Physical 

based Model

Inconsistenc

y Assessment

Well Established 

Model

Model 

Modification

Conditional 

Monitoring

System Fault 

Identification

Synthetic 

Data

Conditiona

l Data

Construction of Data Driven Model

Construction of Physical based Model

Generate

Diagnosis and 

Prognosis

Data Source

Flow Block

Feeding Data

Next Step

Y

N

Fig. 10. Predictive-maintenance workflow in a DT environment.

Their approach uses a transformer-based model, incorporating
temporal dynamics and the driver’s cognitive state, with a
pseudo-labeled multi-task learning technique for improved
detection accuracy. This method allows real-time identification
of driver distractions, a key factor in preventing accidents
caused by inattentiveness.

In enhancing lane-change safety, Liao et al. [84] personalize
DTs to predict lane-change behavior and improve situational
awareness in CAVs. They used an inverse reinforcement learn-
ing (IRL) framework to personalize predictions for individual
drivers, which enables more accurate trajectory planning and
decision-making. Additionally, the authors in [85] introduce

a DT-as-a-Service (DTaaS) architecture with blockchain inte-
gration, ensuring secure and efficient transactions across ITS,
an essential component for ensuring privacy and data security
in autonomous vehicle systems.

Shadrin et al. [86] further demonstrate the utility of DTs
for real-time monitoring and diagnostics, where they apply
continuous data analysis to ensure the reliability and safety
of highly automated vehicles. By integrating predictive main-
tenance features, they enable early fault detection and system
recalibration before failures occur. Lv et al. [87] utilize DTs in
a VR-based simulation platform for traffic accident prediction,
enabling comprehensive risk assessments and improved safety
protocols.

Duan et al. [88] showcase the effectiveness of DTs in
scenario-based testing by simulating critical conditions such as
emergency braking, where vehicle performance is evaluated in
various hazardous contexts. Their use of DTs with LTE-V2X
allows for the simulation of real-time data synchronization
between vehicles, improving safety in high-risk scenarios. Fig.
13 illustrates the personalized lane-change behavior modeling
process, which includes an offline learning phase for devel-
oping a neural network model and an online prediction phase
for real-time application.

To prevent collisions and enhance safety, Tang et al. [89]
combine DTs with federated learning techniques to optimize
collision warning systems, reducing false alarms and im-
proving the system’s decision-making capability. Similarly,
Du et al. [90] focus on platooning, utilizing DTs to predict
vehicle trajectories and improve group driving dynamics,
enhancing safety and fuel efficiency in platoon-based vehicle
systems. Wang et al. [91] implement internet of vehicles (IoV)-
integrated DTs to analyze driver behavior patterns and predict
dangerous zones for collision risk. Their approach helps
identify high-risk areas and provides preemptive warnings
to nearby vehicles and pedestrians, reducing the chances of
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accidents in busy environments.
Table III consolidates the reviewed studies that showcase the

diverse applications of DT technology in enhancing vehicle
safety. Each solution in the table employs DTs in differ-
ent ways, focusing on functions such as data fusion, driver
behavior monitoring, and trajectory prediction. These DT-
driven functions contribute to critical safety features, including
collision prevention, traffic flow optimization, and enhanced
situational awareness. To help identify the most suitable solu-
tions based on specific needs, the table examines the optimiza-
tion techniques employed in these studies, including machine
learning, deep learning, and federated learning. Additionally,
the validation methods used, including simulations and real-
world testing, provide valuable insights into the robustness of
each solution in practical environments.

2) Simulation and Testing of Safety Scenarios: Simulating
and testing safety scenarios in virtual environments is a cor-
nerstone for ensuring the safety and reliability of autonomous
and connected vehicles. The integration of DT technology
significantly enhances the precision and comprehensiveness
of safety testing by creating high-fidelity virtual models that
mirror real-world conditions. These virtual models allow for
the simulation of complex, dynamic environments and enable
testing of safety-critical scenarios that would be challenging,

costly, or hazardous to replicate in the physical world.

In their work, Hou et al. [92] leverage DT-generated meta-
scenarios to improve the safety of the intended functionality
(SOTIF) assessments for autonomous trucks. This method uses
high-fidelity twin scenarios that simulate real-world condi-
tions, enhancing hazard detection capabilities. Similarly, Hong
et al. [93] integrate fuzz testing with DTs to dynamically test
the safety of electronic components in real-time, uncovering
potential failures under varied operational scenarios. Formal
methods also play a critical role in safety validation, as
demonstrated by Fremont et al. [94], who combine scenario
specifications with simulation-based verification to rigorously
test AV behaviors.

For dynamic testing of AV behaviors, Li et al. [95] in-
troduce a genetic algorithm-based framework that explores
and exposes safety violations, while Chen et al. [96] enhance
collision prevention systems by sharing behavioral models
among connected vehicles. In highway safety, Liu et al.
[97] integrate DTs with unmanned aerial vehicle (UAV) data
to monitor traffic flow and assess risks at critical highway
sections. Qu et al. [98] further advance crash detection by
merging macro and micro traffic data in real-time to improve
safety management on expressways.

Table IV presents an overview of the reviewed studies
that utilize DT-enabled simulation and testing in autonomous
vehicles. The table details key DT functions such as sce-
nario generation, real-time monitoring, formal verification, and
model sharing, each playing a crucial role in enhancing safety
assessments, hazard detection, and collision prediction. By
leveraging DTs, these studies enable comprehensive testing
across a wide range of simulated environments, identifying
potential safety risks and vulnerabilities that may not be
evident in real-world conditions. For example, scenario gener-
ation allows testing under extreme or rare conditions, while
real-time monitoring ensures continuous system evaluation.
Formal verification techniques ensure compliance with safety
standards, and model sharing fosters collaboration and coordi-
nation between connected vehicles. These studies also utilize
simulators like UPPAAL, Apollo, and SUMO to validate DT-
driven safety functions. These simulators enable dynamic test-
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TABLE III
REVIEW OF VEHICLE SAFETY FEATURES AND OPERATIONS ENHANCED BY DIGITAL TWINS.

Ref. DT Functions and Effects Safety Feature Enhanced Optimization Techniques Validation Methods Simulators

[80]
Fusion of camera and cloud data for object
detection and situational awareness in real-
time

Object detection and situa-
tional awareness

YOLOv3 for localization and
classification

Human-in-the-loop simula-
tion, real-world testing Unity

[81] DTs simulate near-collision scenarios for
low-speed collision prevention

Collision detection and
prevention

CNN with spatial attention for
fine-grained detection

Real-world testing, deep
learning training N/A

[82] DTs simulate traffic flow and driver inten-
tions for congestion reduction

Traffic management and
congestion avoidance

Coalition game algorithm,
ML/DL for traffic prediction

Real-world and simulation-
based testing SUMO

[83] DTs model driver mental state to detect
distractions and enable timely intervention

Driver behavior monitoring
for distraction prevention

Multitask learning, CNN, ViT
for context detection

Data aggregation and local-
ization tasks on SynDD2
dataset

N/A

[84] DTs predict lane-change behavior to im-
prove safety

Lane-change safety and
prediction

Inverse reinforcement learn-
ing, Seq2seq LSTM

Field experiments, edge-
cloud validation Unity, SUMO

[85] Blockchain-based DTs for secure commu-
nication and data integrity in ITS

Security and data privacy
in ITS

Double-auction model, DT-
DPoS consensus Simulation-based validation N/A

[86] DTs monitor automated vehicles for diag-
nostics and safety evaluation

Vehicle reliability and op-
erational safety

ML for diagnostics, statistical
analysis Field tests, virtual testing

Siemens Prescan,
MAT-

LAB/Simulink

[87] DTs use VR simulations for accident pre-
diction and safety evaluation

Accident prevention and
safety assessment

LSTM, BI-LSTM for traffic
prediction

VR-based simulations for
safety prediction

CityEngine,
Civil3D, GIS

[88] DTs simulate hazardous scenarios for ve-
hicle dynamics and collision avoidance

Vehicle performance and
collision avoidance

Kalman filtering, fault tree
analysis

Field tests, virtual safety
validation

PanoSim,
NVIDIA DRIVE

PX

[89] DTs optimize collision warnings and re-
sponse in dynamic environments

Collision warning accuracy
and response time

A3C-based federated learn-
ing, GRU-SVM for warning
models

Real-time data synchroniza-
tion using NGSIM dataset Pytorch

[90] DTs predict vehicle trajectories for platoon-
ing and collision avoidance

Safe platooning and colli-
sion avoidance

deep Q-networks (DQN),
LSTM for trajectory
prediction

Simulations with KITTI
datasets Python

[91] DTs predict driver behavior and hazards for
IoV applications

Collision and hazard warn-
ings for IoV

K-means for classification,
Random Forest for prediction

Simulation, real-world test-
ing

MATLAB,
SUMO
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TABLE IV
REVIEW OF DIGITAL TWIN-EMPOWERED AUTONOMOUS VEHICLE SIMULATION AND TESTING.

Ref. DT Functions and Effects Safety Feature Enhanced Optimization Techniques Field/ Simulation Setup Simulators

[92]
Model real-world traffic and environmental
scenarios for hazard detection and SOTIF
assessment

Enhanced hazard detection
and safety assessment

Formal verification using UP-
PAAL

Autonomous trucks in di-
verse traffic scenarios UPPAAL

[93]
Simulate failure conditions via fuzz testing,
detecting vulnerabilities in unpredictable
environments

Improved resilience to edge
cases

Fuzzing for failure scenario
generation

AVs under network failure
conditions Webots

[94] Specify realistic scenarios with formal
methods for AV safety verification

Improved verification and
real-world transition

SCENIC for rigorous
simulation-based verification

GoMentum Station for AV
testing in traffic

Apollo,
SCENIC,
VERIFAI

[95] Simulate critical driving scenarios to un-
cover safety issues before deployment

Better identification of crit-
ical safety risks

Genetic algorithm for failure
mode optimization

Testing on Baidu Apollo
platform in real-world con-
ditions

Apollo,
LGSVL

[96] Enable model sharing among vehicles for
collaborative safety testing

Improved collision risk pre-
diction and coordination MDP for prediction Highway driving with con-

nected AVs
MATLAB,

MQTT, Unity

[97] Use UAV data to model highway sections
for real-time risk monitoring

Traffic risk assessment and
proactive safety manage-
ment

Data fusion and machine vi-
sion for risk detection

Highway scenarios with
drone data

Prescan,
Vissim

[98] Fuse macro and micro data for crash de-
tection and traffic updates

Improved crash detection
and road response

ThunderGBM for crash pre-
diction, SHAP for explain-
ability

Real-time simulation of
Nanjing Ring Expressway

SUMO,
PC-Crash

ing of AV behavior, traffic flow, and communication systems
under varied traffic conditions, ensuring AVs can handle real-
world complexities and risks.

3) Security and Privacy in Vehicular Systems: As vehicular
networks grow in connectivity and intelligence, security and
privacy challenges become increasingly significant. The inte-
gration of DT technology into vehicular systems enhances se-
curity by enabling real-time monitoring and decision-making.
However, it also introduces new challenges related to data
protection, operational integrity, and privacy preservation.

He et al. [99] explore the vulnerabilities of vehicular DTs
(VDTs), focusing on secure authentication and blockchain
to prevent data manipulation and unauthorized access. In
dynamic vehicular environments, Li et al. [100] propose a
proxy ring signature technique within 6G V2X networks,
ensuring secure handovers and communication during vehicle
mobility. Yigit et al. [101] combine DTs and AI for real-
time threat detection in vehicular ad-hoc networks (VANETs),
addressing distributed DOS (DDoS) attacks and optimizing
network resource allocation.

Federated learning has also emerged as a solution to address
privacy concerns in DT-based vehicular networks. Khan et al.
[102] leverage FL to ensure secure data processing in vehicular
applications, while Liu et al. [103] integrate blockchain within
DTs to enhance secure, collaborative resource sharing across
connected vehicles. Gautam et al. [104] further highlight
blockchain’s role in securing V2X communications from com-
mon cyber threats, promoting data integrity and preventing
unauthorized access.

Emerging vehicular metaverse environments introduce
unique privacy concerns, particularly regarding user identity
and location tracking. Luo et al. [105] propose pseudonym
schemes that significantly improve privacy by anonymizing
user identity and location within DT-powered vehicular meta-
verses, increasing privacy protection by 33.8%. For secure data
dissemination in the IoV, Kumar et al. [106] combine DTs
with blockchain, integrating trust management and intrusion

detection systems to further ensure data integrity and privacy.
Table V presents the reviewed studies in the area of enhanc-

ing security and privacy in vehicular systems. These studies
include secure resource sharing, real-time attack detection,
and privacy-preserving techniques, critical for maintaining
the integrity and confidentiality of vehicular data. Advanced
tools such as blockchain for secure communication, federated
learning for privacy-preserving data processing, and RL for
dynamic attack mitigation are leveraged to strengthen the re-
silience of vehicular networks against cyber threats. Validation
through simulations and real-world test cases ensures these
DT-powered solutions are robust, scalable, and effective in
addressing evolving security challenges in connected vehicles.
This table helps identify the most suitable DT-based approach
depending on specific security needs, such as enhancing data
privacy, preventing cyberattacks, or ensuring secure commu-
nication in V2X environments.

D. Lessons Learned in Vehicle Safety Applications of Digital
Twins

• Twin-state visibility enhances network-wide safety orches-
tration. Practical deployments suggest that the full safety
potential of DTs is better realized when each vehicle’s
twin state (its continuously updated virtual representa-
tion) is made accessible to the V2X network. Systems
where twin data remains confined within the vehicle
often miss opportunities for cooperative perception and
coordinated control. Broadcasting lightweight twin-state
summaries over low-latency channels and caching them
at nearby RSUs or MEC nodes has shown potential for
improving multi-vehicle safety responsiveness.

• Reliable prediction benefits from edge-assisted sensor
fusion and calibration. Field studies highlight that minor
misalignment among onboard sensors, such as cameras
and LiDAR, can adversely impact prediction accuracy.
Integrating self-calibration mechanisms—preferably sup-
ported by machine learning techniques—at the network

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2025.3581152

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:03:58 UTC from IEEE Xplore.  Restrictions apply. 



SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS 15

TABLE V
REVIEW OF VEHICULAR SECURITY AND PRIVACY EMPOWERED BY DIGITAL TWINS

Ref. DT Functions and Effects Safety Feature Enhanced Mathematical Tools Validation Methods Simulators

[103]
Enhance secure resource sharing and
decision-making across decentralized net-
works

Secure resource sharing in
vehicular networks

Blockchain consensus for
integrity

Simulation of network be-
haviors and trust models Pytorch

[104]
Apply blockchain for secure vehicle-
infrastructure communication, ensuring
data integrity

Data integrity and access
control between vehicles
and infrastructure

Oracle model for data val-
idation

Security assessment under
various threat models N/A

[105]
Use pseudonym schemes to mask real user
data, enhancing privacy in vehicular net-
works

Identity and location pri-
vacy for users

Dual pseudonym scheme
with privacy-preserving al-
gorithms

Testing pseudonym schemes
in different environments N/A

[107]
Optimize secure communication channels
in satellite-terrestrial networks to prevent
unauthorized access

Secure communication
in satellite-terrestrial
networks

SDR and SDP for secure
channel establishment

Validation of secure
transmission across
satellite-terrestrial links

N/A

[108]
Apply federated learning for privacy-
preserving training, maintaining data con-
fidentiality

Privacy preservation in col-
laborative training

Federated learning with
differential privacy

Experimentation with Minst
and Fmnist datasets under
privacy constraints

Python,
PyTorch

[109] Enhance V2G cybersecurity by detecting
and mitigating threats via AI-based analysis

Attack detection and miti-
gation in V2G systems

LSTM-based deep rein-
forcement learning (RL)
for threat detection

Case studies and simula-
tions for attack validation

MATLAB,
Python

[110]
Improve optical wireless communication
security using adaptive decision feedback
to prevent eavesdropping

Communication security in
vehicular systems

CNN with adaptive feed-
back for signal integrity

Real-time hardware testing
for communication evalua-
tion

VPI
transmission

Maker

[111] Simulate safety scenarios to analyze at-
tack/failure modes and assess system risks

Safety assessment in criti-
cal vehicular systems

Safety scenario simulation
for vulnerability assess-
ment

Use case testing with failure
scenarios for resilience

ViSE
platform

[106]
Ensure secure data transmission by inte-
grating blockchain with intrusion detection
systems (IDS)

Data security and integrity
in vehicular networks

Blockchain and deep
learning-based IDS

Simulation to validate trust
management under attack
scenarios

TensorFlow,
Ethereum
Rinkeby

[112]
Evaluate and enhance trustworthiness in
communication between vehicles and in-
frastructure

Trust and security in vehic-
ular communication

Reputation Trust Frame-
work (RTF) for evaluation

Simulation of vehicular
communication using real-
world data

SUMO, NS2

[113]
Apply blockchain and smart contracts for
secure smart parking, preserving vehicle
data privacy

Privacy and data security in
smart parking systems

Blockchain and smart con-
tracts for secure interac-
tions

Proof of concept for secure
parking management

Hyperledger
Fabric

[114] Enable shared steering control and dynamic
risk assessment to improve vehicle safety

Risk assessment for driver
and vehicle safety

Multi-objective MPC for
safety optimization

Simulation of driving sce-
narios to validate control
adjustments

SILAB, Mat-
lab/Simulink

edge, where raw sensor data is still available and latency
is minimal, has proven effective. Additionally, combining
local sensor inputs with distributed twin-state data can
improve detection robustness in environments with poor
visibility or sparse infrastructure.

• Twin synchronization latency affects control reliability.
Case studies involving emergency braking and eva-
sive maneuvers indicate that delays in updating digital
twins can lead to suboptimal or even unsafe actuation.
Maintaining tight synchronization between the physical
and digital layers—through techniques such as hardware
time-stamping, predictive updates, and communication-
efficient encoding—helps reduce this mismatch and sup-
ports more reliable real-time control.

• Coordinated safety performance requires system-level op-
timization. Treating functions like collision avoidance,
lane-keeping, and adaptive cruise control as separate
modules can result in conflicting behaviors, especially
in dense or dynamic traffic. Embedding these features
within a unified DT framework and applying model-based
predictive control techniques has been observed to yield
more balanced, coordinated safety responses, avoiding
unnecessary mode switching or instability.

• Edge–cloud task distribution should reflect real-time con-

straints. Experiences from prototype fleets suggest that
offloading all DT tasks to the cloud can strain commu-
nication infrastructure and introduce critical delays. A
more effective approach involves allocating time-sensitive
tasks—such as collision risk estimation or sensor fu-
sion—to edge nodes, while offloading longer-term analyt-
ics and what-if simulations to cloud services. This layered
distribution balances responsiveness and computational
scalability.

IV. DIGITAL TWINS FOR TRAFFIC MANAGEMENT

This section examines the application of DT technology
in the context of traffic management. It begins by outlining
the major challenges faced in current traffic management
systems, followed by an exploration of the potential of DT
technology to address these issues. A comprehensive review of
the state-of-the-art applications of DTs in traffic management
is provided, showcasing the advancements and use cases that
have been implemented to date. The section concludes with
a discussion on the lessons learned from traffic management
applications of DTs, emphasizing the successes and limitations
in this field.
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A. Overview Traffic Management Challenges
Urban traffic control has evolved from static, manual oper-

ations to AI-driven real-time optimization, shifting the focus
from fixed-time control to dynamic flow management. Inte-
grating traffic signals with vehicle communication systems has
improved interactions between conventional and autonomous
vehicles, as shown in Fig. 14. Effective traffic management
in CAV and ITS environments requires highly reliable data
communications for safe, coordinated vehicle interactions.
However, latency, network congestion, and data integrity re-
main significant obstacles in high-density urban environments.
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Fig. 14. Evolution of urban traffic control techniques.

1) Latency Constraints in Real-Time Data Exchange: A
major challenge in traffic management for CAVs and ITS is
ensuring ultra-low latency for real-time data exchange. These
systems depend on continuous data streams for immediate
decisions, particularly in high-density urban environments.
Even minimal delays caused by network congestion or signal
propagation issues can disrupt synchronization and delay crit-
ical interventions like emergency braking or adaptive routing.

2) Network Congestion in High-Density Traffic Scenarios:
As CAVs become more prevalent, especially in urban areas,
the data exchanged through V2X networks increases rapidly.
This surge can overwhelm network bandwidth, leading to con-
gestion, packet loss, higher latency, and reduced data fidelity.
Such congestion undermines the accuracy and timeliness of
traffic management, impeding effective real-time coordination
and optimization.

3) Reliability and Resilience in Networked Traffic Systems:
The effectiveness of CAV and ITS traffic management relies
on the resilience of network communications, particularly
during disruptions or network failures. Traffic management
systems must handle data surges, environmental interference,
and network failures common in urban settings. Current V2X
networks often lack sufficient resilience, resulting in lapses
in data availability and quality, thereby hindering real-time
response to shifting traffic conditions.

4) Data Integrity and Quality Control in Real-Time Net-
works: Maintaining high data integrity is crucial for accurate
decision-making in traffic management systems. However,
network-induced errors such as packet loss, jitter, and interfer-
ence degrade data quality, affecting the reliability of exchanged
information. These errors can lead to inaccurate predictions
and unsafe responses, particularly in critical applications like
collision avoidance and congestion forecasting. Ensuring data

consistency across fluctuating network conditions remains a
key challenge.

5) Coordination Complexity with High Data Volume and
Velocity: Traffic management in CAV and ITS environments
involves processing large volumes of data at high speeds to
monitor patterns, predict congestion, and control signals dy-
namically. Coordinating and synchronizing these data streams
in real-time introduces significant complexity, particularly
when integrating multiple data sources across decentralized
networks. This can strain network bandwidth and processing
power, delaying responses and affecting the accuracy of time-
sensitive applications.

B. Potentials of Digital Twin Technology for Traffic Manage-
ment

DTs bring three fundamental strengths to traffic manage-
ment that conventional sensor–cloud architectures struggle to
deliver: (i) holistic, real-time perception of the entire road
network; (ii) predictive control that anticipates, rather than
reacts to, congestion and incidents; and (iii) closed-loop
orchestration that continuously aligns physical infrastructure
and communication resources with evolving demand. The
following subsections clarify how these strengths translate into
tangible operational gains.

1) Unified, High-Fidelity Network Perception: DTs aggre-
gate live V2X telemetry, i.e., vehicles, RSUs, signal cabinets,
CCTV, and enrich it with static topology and historical pat-
terns. The resulting “city twin” maintains a time-synchronized
view of speed, density, and queue length on every road
segment. Edge-hosted sub-twins enable intersection controllers
to detect detector failure or sudden demand spikes almost
instantly, while the cloud instance blends local snapshots
into a coherent metropolitan picture. Compared with siloed
loop-detector feeds, this unified perception exposes hidden
bottlenecks (e.g., spill-back from downstream intersections)
and supports more informed control decisions.

2) Predictive, Simulation-Driven Traffic Control: Continu-
ous what-if simulation on the digital model allows operators to
forecast queue formation, crash risk, or bus bunching several
minutes in advance. The controller can then enact preven-
tative measures (phase re-splits, offset shifts, dynamic lane
reassignment) before queues materialise. Field pilots report
lower average delay and fewer secondary crashes than fixed-
time or actuated plans that respond only after congestion is
observed.

3) Network-Aware Resource Orchestration: Because DT
workloads are network-visible, an SDN/NFV orchestrator can
tailor slices to task urgency: URLLC channels carry safety-
critical signal updates; eMBB links transport low-priority
CCTV archives. Such cross-layer alignment of compute, stor-
age, and bandwidth reduces packet loss, maintains determin-
istic latency for control loops, and avoids over-provisioning.

4) Virtual Testbed for Policy Experimentation: Cloud-
hosted DT instances form a non-intrusive sandbox for event
traffic, road-closure plans, or evacuation strategies. Engineers
can iterate on control scripts, validate outcomes, and only then
deploy the proven schedules to edge controllers, minimising
disruption and political risk.
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Fig. 15. Integrated Digital-Twin framework for network-centric traffic management and operations

5) Continuous Anomaly Detection And Rapid Incident
Recovery: Embedded ML models compare live conditions
against the twin’s predicted baseline. Significant devia-
tions—sudden speed drops, atypical queue growth—trigger
automatic incident responses: rerouting advisories, dynamic
speed limits, emergency-vehicle pre-emption, and recalibrated
signal timings. This swift loop shortens incident duration and
mitigates network-wide shockwaves.

C. Digital Twin Applications for Traffic Management: A State-
of-The-Art Review

This subsection provides a state-of-the-art review of the
applications of DT technology in traffic management, focusing
on its role in optimizing traffic flow, improving signal control,
and enhancing the management of transportation infrastruc-
ture. The review highlights recent advancements and real-
world applications of DTs across different traffic management
strategies, illustrating their potential to revolutionize urban
transportation systems.

1) Traffic Signal Control and Optimization: DT technology
provides a sophisticated framework for real-time traffic signal
control and optimization by synchronizing sensor and camera
data with a virtual traffic model. Unlike traditional static signal
systems, DT-based frameworks enable dynamic adjustments to
signal timings based on real-time traffic conditions, thereby
improving traffic flow and reducing delays, especially during
peak traffic hours. This adaptability offers a substantial im-
provement over fixed-time control strategies, which are less
responsive to fluctuations in traffic demand.

Recent studies have highlighted the effectiveness of DT-
based traffic signal control. For instance, Dasgupta et al. [115]
propose an adaptive signal control framework utilizing real-
time vehicle trajectory data to enhance the performance of
urban intersections. Similarly, Shams et al. [116] introduce
a DT-powered signal controller that optimizes signal phase
lengths by analyzing real-time vehicle trajectories, improving

intersection performance. Furthermore, Wang et al. [117]
employ genetic algorithms within a DT framework to optimize
signal timing in urban road networks, achieving improved
traffic flow and reduced vehicle emissions.

DT frameworks also enable the deployment of decentralized
and multi-agent systems for traffic management. Kumarasamy
et al. [118] advocate for a decentralized, multi-agent rein-
forcement learning (MARL) model that learns dynamic traffic
patterns and adapts in real-time. This approach leads to signif-
icant reductions in fuel consumption and congestion. Kamal
et al. [119] integrate DTs with deep reinforcement learning
(DRL) to optimize traffic signal control, demonstrating poten-
tial environmental benefits, such as reduced fuel consumption
and emissions. These contributions underscore the dual benefit
of DTs in improving both traffic flow and environmental
sustainability.

The integration of DTs in traffic signal control not only im-
proves operational efficiency but also supports environmentally
conscious traffic management. By optimizing traffic flow, DT
systems reduce fuel consumption and emissions, contributing
to greener transportation systems. Fig. 16 illustrates the DT-
based adaptive traffic signal control framework [115], which
integrates real-time vehicle data, algorithmic assessments, and
simulation environments to predict and control traffic flow.
This model allows for dynamic adjustments in response to
varying traffic conditions, enhancing the overall performance
of urban intersections.

Table VI summarizes the reviewed studies on DT-based
traffic signal control, highlighting deployment scenarios such
as urban intersections, corridors, and multi-intersection net-
works. The table provides insights into how DT technology is
applied across diverse traffic management settings, assessing
key performance metrics such as delay reduction, traffic flow,
travel time, and emission reductions. These studies employ
various validation methods, including simulations conducted
with tools like SUMO, VISSIM, and CTwin, providing quanti-
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TABLE VI
REVIEW OF DIGITAL TWIN-AIDED TRAFFIC SIGNAL CONTROL AND OPTIMIZATION

Ref. Deployment Scenarios DT Applications DT Data Sources Performance Metrics Validation
Methods Simulators

[115] Urban intersections Adaptive control, real-time signal adjust-
ments Vehicle trajectory, V2X data Delay reduction, throughput Simulation SUMO

[116] Intersections Trajectory-based signal control, phase op-
timization

RADAR, LiDAR, vehicle trajecto-
ries, sensors Phase optimization, reduced delay Field trial VISSIM, GBSC

[117] Urban road networks Signal timing optimization based on envi-
ronmental data

Environmental data, weather, traf-
fic history

Improved signal timing, lower emis-
sions Simulation SUMO

[120] Urban traffic system Real-time control, dynamic signal adjust-
ments

IoT sensors, vehicle positioning,
V2I data

Reduced congestion, improved fuel ef-
ficiency Field trial CTwin platform

[119] Multi-intersection road
networks DRL-based signal control powered by DTs Traffic data, V2X communication Reduced travel time, fuel consumption Simulation SUMO

[118] Smart corridor MARL-based signal optimization with DTs Archived data, traffic sensors, GPS Enhanced Eco PI, reduced stop delays Simulation PTV-Vissim
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Fig. 16. Illustration of traffic Digital Twin based adaptive traffic signal control.

tative evidence of the impact of DTs on traffic optimization. By
comparing these studies, we can identify the most effective DT
configurations for specific use cases, whether optimizing signal
timings, improving fuel efficiency, or reducing congestion
in high-density environments. The table also highlights the
integration of real-time data and machine learning models,
demonstrating how DTs adapt to changing traffic conditions
and enhance system performance.

2) Transportation Traffic Prediction and Management:
DT technology has significantly transformed the field of
transportation traffic prediction and management by creating
dynamic virtual models of traffic networks that are continu-
ously updated with real-time data from sensors, cameras, and
GPS systems. This integration enables DTs to enhance traffic
predictions and facilitate proactive management strategies in
real time.

In traffic prediction, DTs leverage advanced ML algorithms
to analyze both historical and real-time data, allowing for the
identification of recurring traffic patterns and more accurate
flow forecasts. Saroj et al. [121] demonstrate the potential of
combining DTs with reinforcement learning to optimize traffic
signal timings, leading to substantial improvements in fuel
efficiency and reductions in travel time within the Chattanooga
MLK Smart Corridor. In another example, Kuvsic et al. [122]
utilize DTs for real-time mirroring of the Geneva motorway,
enabling immediate responses to disruptions such as accidents
or road blockages.

Furthermore, DTs offer a platform for testing and evaluating
traffic management strategies within virtual environments.
For instance, Ji et al. [123] employ Conv-LSTM networks
within a DT framework to predict urban congestion following
accidents, demonstrating the ability to test different mitigation
strategies without physically implementing them on the road.
Collaborative DT platforms also facilitate multi-stakeholder
coordination in traffic management. Argota et al. [124] exem-
plify this by using agent-based simulation and mobile data to
manage traffic flow in Barcelona, enabling multiple entities to
coordinate efforts for optimal traffic flow and safety.

The iterative nature of DTs allows for continuous refinement
of traffic management algorithms. Thonhofer et al. [125] show-
case the adaptability of DTs in cooperative automated mobility
systems, where real-time feedback optimizes system safety and
performance. Additionally, specialized traffic scenarios, such
as tunnel management, are effectively addressed with DTs, as
Zhao et al. [126] illustrate through the integration of dynamic
lighting systems to enhance safety in tunnels.

3) Smart City and Infrastructure Management: DTs are
essential in the development of smart cities, as they enable
the integration of data across various urban infrastructure
domains, including transportation, energy grids, and public
safety systems, into a unified virtual representation. This
integration facilitates predictive maintenance, extends asset
lifespans, and reduces maintenance costs while enhancing pub-
lic safety through real-time situational awareness, particularly
in emergency and disaster scenarios.

Liu et al. [127] highlight the use of a lightweight DT
framework for optimizing urban mobility and traffic safety,
integrating sensors and algorithms for real-time decision-
making. Consilvio et al. [128] propose a DT-based system
for road maintenance that utilizes AI clustering techniques
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to efficiently manage resources and monitor road conditions,
as illustrated in Fig. 17. In a similar vein, Hidayat et al.
[129] present a DT framework integrated with IoT and big
data analytics for infrastructure management in Indonesia,
improving maintenance planning and resource allocation.

DTs are also applied to specific infrastructure components,
such as bridge monitoring and road safety. Sofia et al. [130]
utilize mobile mapping and LiDAR data for infrastructure
monitoring, while Dan et al. [131] enhance bridge monitoring
systems in Shanghai through the integration of sensor data
for traffic load assessment. Xu et al. [132] leverage DTs to
simulate real-world road conditions, enhancing the accuracy
of road safety models, while Wang et al. [133] incorporate
radar and camera technologies for adaptive traffic control and
emission reduction.

In the realm of sustainable urban planning, Jiang et al. [134]
integrate DTs with multi-criteria decision making (MCDM)
and geographic information systems (GIS) to balance eco-
nomic, environmental, and social factors in urban road de-
velopment. Similarly, Demiyanushko et al. [135] explore DT
applications in road safety and infrastructure testing, while Yu
et al. [136] investigate the use of DTs for object detection,
demonstrating their utility in both safety evaluation and au-
tonomous vehicle systems.
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Figure 18 illustrates a situation awareness framework for
real-time obstacle detection using DTs [137]. The framework
integrates various stages, including environment simulation,
data augmentation, model training, and real-world validation,
to facilitate efficient and accurate detection of obstacles in
dynamic environments. This methodology utilizes simulated
data for training, with additional augmentation techniques such
as MixUp, ensuring the model generalizes effectively across
diverse scenarios. The system is further validated with real-
world images captured via camera sensors, confirming its
practical applicability. The deep learning model, built upon a
pretrained network structure, employs double bounding layers
(DBL) and multiple detection scales, addressing the challenges
of recognizing objects at varying sizes and complexities.

Table VII provides an overview of the reviewed DT ap-
plications in smart cities, categorizing their use in asset
monitoring, urban planning, and safety management. The table
emphasizes how DTs integrate diverse data sources, such as
IoT sensors, traffic data, and environmental information, to
enhance the functionality and efficiency of urban infrastruc-
tures. By examining various studies, the table helps identify the
most suitable DT applications based on specific urban needs,
whether optimizing traffic flow, improving public safety, or
managing infrastructure assets. The table also highlights the
mathematical tools used in each study, such as AI algorithms
or machine learning models, and specifies the evaluation
setups for measuring the effectiveness of DT implementations,
thereby guiding the selection of appropriate solutions for urban
challenges.

D. Lessons Learned in Traffic-Management Applications of
Digital Twins

• Distributed, twin-aware edge processing is indispensable
for city-scale deployments. Early pilots that concentrated
all traffic-twin analytics in a central cloud suffered from
back-haul saturation and multi-second control latency
at peak demand. Subsequent roll-outs demonstrated that
hosting sub-twins at RSUs or intersection controllers,
while synchronizing only lightweight state deltas to the
cloud—keeps end-to-end response below 100 ms and
sustains system throughput during rush-hour bursts.

• Layered fusion and quality assurance of heterogeneous
data streams are mandatory for reliable prediction. Ex-
perience shows that raw feeds from CCTV, loop detec-
tors, GNSS probes, and V2X packets differ in sampling
rate, latency, and error profile. A two-stage pipeline: (i)
local pre-processing for time-alignment, noise filtering,
and format normalization, followed by (ii) edge/cloud
fusion assisted by ML-based outlier and missing-data
imputation—substantially improves congestion-forecast
accuracy and incident-detection recall.

• Interoperability and open protocols unlock network-wide
coordination. Field trials revealed that proprietary signal-
controller APIs and non-standard V2X stacks impede the
exchange of twin state across administrative boundaries.
Adopting open standards (e.g., IEEE 1609.x, ISO 21217)
and deploying middleware that translates legacy messages
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TABLE VII
OVERVIEW OF DIGITAL TWIN-AIDED SMART CITY AND INFRASTRUCTURE MANAGEMENT

Ref. DT Data Sources Mathematical Tools Evaluation Setup DT Applications

[128] IoT sensors, traffic, UAV, GPS AI, ML A24 highway, road pavement
evaluation Resource optimization, proactive maintenance

[129] Structural, site, environmental
sensors AI, ML, computer vision Road/bridge construction moni-

toring Structural health monitoring, predictive maintenance

[130] Mapping, structural, IoT data ML, 3D GIS, BIM Mohammed VI Bridge Infrastructure monitoring, failure prediction

[131] Weigh-in-motion, data fusion Traffic load monitoring Shanghai bridge network Real-time traffic load evaluation, bridge usage optimiza-
tion

[132] Sensor, DT data Not specified Road simulation examples Road simulation, predictive analysis for management

[133] Traffic, sensor data ML, multi-camera tracking Tonglu County roads Adaptive traffic management, safety, emissions reduction

[134] Land use, traffic, air quality,
noise data MCDM, GIS, AHP Urban planning, southwest Lon-

don Sustainable road planning, balancing factors

[135] FEA, dynamic simulations Virtual testing, vehicle-road in-
teraction Sensor data, simulations Vehicle-road interaction, road safety improvement

[136] LiDAR, point cloud, camera,
traffic data ML, 3D modeling, AI City Engine, Unreal Engine 4 Object detection, traffic safety for AVs

[138] Security logs, network data Cryptographic algorithms, risk
assessment

Critical infrastructure, cyber-
attacks simulation Dynamic security assessments, threat mitigation

[139] V2X, sensor, vehicle dynamics
data

Game theory, multi-agent sys-
tems

CAVs in mixed traffic simula-
tion CAV optimization for safer traffic

[140] IoT sensor, photometry data Photometry, VR modeling VR-based street lighting scenar-
ios Real-time street lighting control and optimization

[141] Traffic sensor, TTC calculations Transformer models, TTC
method

Pedestrian safety at intersec-
tions simulation

Pedestrian safety optimization through real-time traffic
analysis

[142] Urban data, DT models Data integration, 3D modeling Smart city applications Enhanced decision-making and sustainability in planning

[143] Citizen feedback, IoT data Data analytics, ML Smart city feedback systems Urban governance through real-time citizen feedback

[144] IoT, network, waste manage-
ment data NETCONF, CoAP, ML NS-3 simulation for wireless

protocols Optimized waste management in smart cities

[145] Sensor, historical, real-time data RMT, DL, high-dimensional stats Energy IoT systems simulation Optimized energy distribution, waste reduction

[146] Warehouse, sensor, RFID data Reinforcement learning, Monte
Carlo sampling 3D warehouse model Efficiency and cost reduction in logistics management

[147] Sensor, metro, simulation data Simulation models Smart metro simulations Improved metro safety, efficiency, failure management

into twin-state JSON objects have proven effective in
enabling cross-vendor, cross-jurisdiction cooperation.

• Twin-driven Quality-of-Service (QoS) orchestration is re-
quired for predictable latency. Studies showed that treat-
ing all traffic data equally leads to packet contention and
delayed actuation during incidents. Prioritizing twin-state
updates over URLLC slices, while relegating non-critical
CCTV video to eMBB channels, preserves deterministic
delay for safety-critical control loops.

• Scenario-based digital experimentation accelerates pol-
icy roll-out. Municipal agencies that validated signal
plans, lane-reversal schemes, and event-traffic strategies
in the digital twin before field deployment reported up
to 30% reduction in on-street trial time and a marked
decline in citizen complaints. Continuous A/B testing
in the virtual environment therefore emerges as a best
practice for risk-free optimization.

V. DIGITAL TWINS FOR INTELLIGENT AND AUTONOMOUS
VEHICLES

This section explores the application of DT technology in
intelligent and autonomous vehicles. It begins by discussing
the key challenges faced in the development and operation of
these vehicles. The potential of DT technology to address these
challenges is then examined, highlighting its role in enhancing
vehicle performance, safety, and decision-making. A state-of-
the-art review of existing DT applications in intelligent and

autonomous vehicles is provided, showcasing the most recent
advancements and implementations. The section concludes
with a discussion on the lessons learned from DTs applications
in intelligent and autonomous vehicles, emphasizing both
the achievements and challenges that inform future research
directions.

A. Overview of Challenges in Intelligent and Autonomous
Vehicles

1) High Data Volume and Transfer Rates: Intelligent ve-
hicles generate substantial data from various sensors. Trans-
mitting these high data volumes over networks presents chal-
lenges, requiring both high throughput and stable connections.
Current networks are often insufficient to handle this load,
leading to transmission bottlenecks, particularly in peak traffic
conditions.

2) Latency Sensitivity: Autonomous driving systems re-
quire real-time data exchange with minimal latency. Even mil-
lisecond delays can impact decision-making processes. Main-
taining ultra-low latency is particularly challenging in high-
density urban areas, where network congestion is frequent,
and high latency can impair vehicle safety and performance.

3) Network Reliability and Stability: Continuous, reliable
connectivity is crucial for V2X communications. However, en-
suring consistent network reliability across varied geographic
regions and under different environmental conditions remains
a significant challenge. Network interruptions or unstable
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connections can disrupt critical data flows, leading to delays
in communication between vehicles and infrastructure.

4) Spectrum Scarcity and Interference: With the increas-
ing number of connected vehicles, spectrum congestion has
become a pressing issue. The limited availability of communi-
cation frequencies, coupled with interference from surround-
ing vehicles and infrastructure, exacerbates the challenge of
maintaining high-quality communication links, particularly in
urban environments where spectrum resources are shared.

5) Human-Machine Interaction (HMI) Complexity: Effec-
tive HMI in intelligent vehicles requires seamless and imme-
diate data exchange between the vehicle’s systems and human
occupants. This includes real-time feedback on critical vehicle
states, navigation guidance, and safety alerts. Ensuring respon-
sive, reliable communication for HMI systems is challenging
due to the need for ultra-low latency. Interruptions or delays
in the network can lead to incomplete or delayed information,
which can confuse or endanger users relying on immediate
feedback from the vehicle’s systems.

B. Potentials of Digital Twin Technology for Intelligent and
Autonomous Vehicles

DT technology transforms intelligent and autonomous vehi-
cles (IAVs) from locally optimized agents into network-aware,
system-integrated entities. By maintaining a continuously up-
dated virtual replica of each vehicle and broadcasting this
state across the vehicular network, DTs enable predictive QoS
control, adaptive V2X communication, and large-scale coordi-
nation mechanisms that surpass the capabilities of traditional
sensor-based or isolated edge/cloud systems.

1) Predictive QoS Control and Dynamic Resource Alloca-
tion: DTs provide foresight into network resource demands
by simulating future mobility patterns, environmental inter-
actions, and data traffic loads. These insights inform the
proactive allocation of communication resources, allowing the
system to dynamically assign low-latency and high-reliability
channels to critical data streams (e.g., cooperative perception
or motion coordination), while deferring non-urgent content
to best-effort services. This anticipatory strategy supports
smoother data delivery even under high-density vehicular
conditions.

2) Twin-Guided Channel Adaptation and Interference
Awareness: Conventional communication strategies often rely
on static assumptions about link conditions. In contrast,
DTs maintain contextualized channel models that account for
real-time environmental factors, including mobility-induced
Doppler effects, signal occlusions, and multipath interference
from surrounding vehicles and infrastructure. By feeding these
dynamic models into the communication stack, IAVs can
make fine-grained adjustments to modulation, coding, and
transmission strategies, enhancing communication reliability
and spectral efficiency under diverse conditions.

3) Edge–Cloud Partitioning for Hierarchical Autonomy:
To balance responsiveness with computational demand, DT-
enabled systems distribute tasks across edge and cloud do-
mains. Edge-hosted sub-twins at RSUs or MEC servers handle
latency-sensitive functions such as sensor fusion, short-term

planning, and collision avoidance, ensuring swift reaction to
environmental changes. Meanwhile, the cloud twin conducts
more computationally intensive tasks, including long-horizon
path planning and policy evaluation across uncertain traffic
scenarios. This layered partitioning framework supports both
real-time actuation and strategic decision-making at scale.

4) Fleet-Level Coordination and Efficient Spectrum Usage:
By aggregating digital twins from multiple vehicles, fleet-
level controllers gain a holistic view of network demand
and mobility patterns. This enables dynamic load balancing
across communication cells, coordinated clustering for sidelink
operations, and adaptive spectrum sharing strategies. Such co-
ordination prevents network congestion in localized hotspots,
particularly in scenarios where autonomous fleets converge in
high-demand areas such as transit hubs or event venues.

5) Scenario-Based Policy Validation and Safe Over-the-
Air (OTA) Deployment: Before new perception or control
algorithms are deployed to vehicles, they are first evaluated
in the cloud twin using a wide range of synthetic yet realistic
traffic scenarios. This pre-deployment testing ensures that only
policies meeting predefined safety thresholds are pushed to the
field. Furthermore, the DT architecture supports continuous
monitoring of post-deployment performance, with mechanisms
for automatic rollback in case of behavioral discrepancies. This
closed validation loop enhances the robustness of OTA updates
and supports adaptive learning without compromising safety.

C. Digital Twin Applications for Intelligent and Autonomous
Vehicles: A State-of-The-Art Review

This subsection reviews the cutting-edge applications of DT
technology in the development and optimization of intelligent
and autonomous vehicles. The review highlights the latest re-
search on DT applications, showcasing their impact on safety,
performance, and efficiency in intelligent and autonomous
vehicle systems.

1) Development and Validation of Autonomous Driving Sys-
tems: DT technology plays a pivotal role in the development
and validation of autonomous driving systems by providing
high-fidelity virtual environments for testing and simulation
across diverse and dynamic conditions. By utilizing the prin-
ciples of structural, physical, and logical twins, DTs enable
the rapid iteration of autonomous systems and minimize the
reliance on costly physical prototypes. The integration of these
virtual models allows for the simulation of complex real-world
driving scenarios, ensuring a thorough and efficient validation
process.

Yu et al. [148] present a DT system that integrates high-
definition mapping and sensor simulation, significantly im-
proving the testing process and reducing the need for extensive
physical trials. Similarly, Xiong et al. [149] investigate car-
following scenarios, demonstrating that DT-assisted simula-
tions provide greater accuracy in collision avoidance testing,
which is critical for refining autonomous vehicle behavior in
traffic. Ge et al. [150] introduce a three-layered architecture
that combines virtual and physical tests, enabling synchronized
validation and ensuring that autonomous systems perform
reliably across both simulated and real-world conditions.
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In the realm of RL, Wu et al. [151] propose a DT-enabled
RL framework that enhances the efficiency of training au-
tonomous systems by predicting state transitions in simulated
environments. This approach results in faster policy training in
platforms like the CARLA simulator, outperforming traditional
RL methods that rely solely on real-world data collection.

Further expanding on this, Liu et al. [80] utilize DTs to
enhance ADAS, specifically improving lane change prediction
through cloud-based data fusion and vehicle-to-cloud (V2C)
communication. This method, verified through human-in-the-
loop simulations, allows for more precise real-time decision-
making in dynamic driving environments. In high-speed au-
tonomous racing applications, Culley et al. [152] leverage
DTs for real-time simulation, refining control algorithms that
govern vehicle behavior under extreme conditions, thereby
demonstrating the utility of DTs in high-performance au-
tonomous systems.

Simulation and testing remain critical to ensuring the safety,
reliability, and overall performance of autonomous driving sys-
tems. The use of DTs facilitates the synchronization of virtual
models with physical systems, enabling continuous feedback
and iterative improvements. Wang et al. [153] propose an
end-to-end DT framework that ensures real-time data syn-
chronization and optimal route planning, thus improving both
the safety and efficiency of autonomous driving. Similarly,
Wang et al. [154] employ LiDAR data to replicate specific
traffic scenarios in simulations, bridging the gap between
virtual models and real-world conditions, which is essential
for training and validating autonomous vehicles in a variety
of environments.

In industrial settings, Alexandru et al. [155] apply DTs for
optimizing task allocation and path planning in automated
guided vehicles (AGVs), enhancing operational efficiency in
manufacturing environments. Campolo et al. [156] use DTs
integrated with multi-access edge computing (MEC) to track
mobility in mobility-as-a-service (MaaS) applications, improv-
ing public transportation service planning and management.

For navigation accuracy, Hu et al. [157] demonstrate how
integrating DTs with control algorithms improves trajectory
tracking and stability in autonomous systems. Shoukat et al.
[139] integrate DTs with V2X communication for Hardware-
in-the-Loop (HiL) simulations, enhancing collision avoidance
and optimizing traffic flow in mixed-traffic environments,
where autonomous vehicles must interact with human-driven
vehicles.

The exploration of human-vehicle interaction through DTs
has also gained attention, with studies such as Serrano et al.
[158] indicating that external HMIs in autonomous vehicles
can significantly enhance pedestrian safety and boost public
confidence in AV technology. Furthermore, in high-speed
environments like motorsports, Ju et al. [159] apply DT-driven
reinforcement learning to simulate and optimize race car driver
behavior, demonstrating the utility of DTs in achieving human-
like performance in competitive settings.

ADAS enhancement remains a major area of focus, partic-
ularly in improving traffic safety and reducing environmental
impact. As shown in Fig. 19, Liao et al. [160] propose
a DT framework that uses V2C communication for real-
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Fig. 19. Cloud-based cooperative merging scenario at on-ramp.

time advisory speed recommendations during ramp merging,
showing how DTs can reduce speed variance and improve fuel
efficiency. Wang et al. [161] employ fuzzy logic models for
safe, comfortable autonomous lane changes, with validation
through vehicle-in-the-loop tests. Similarly, Ye et al. [162]
combine DT-assisted lane-changing with variable speed con-
trol, leveraging cloud-based vision data to improve decision-
making in complex driving scenarios.

Machine learning innovations such as the generative adver-
sarial network (GAN)-enhanced decision framework by Shuvo
et al. [163] enable predictive responses in dynamic driving
conditions, while Bariah et al. [164] demonstrate how cyber
twins, driven by GANs, generate synthetic data that can be
used to enhance the training of autonomous systems in diverse
network conditions. Wang et al. [165] expand the use of DTs
in non-signalized intersections, where they optimize traffic
flow and reduce energy consumption, and Liu et al. [97]
integrate drone-based DT risk management to improve safety
at highway entries and exits, using aerial video data to identify
and mitigate risks in real time.

2) Connected and Cooperative Vehicle Systems: The role
of DT technology in connected vehicle systems is advancing
rapidly, particularly in enhancing real-time simulation, situ-
ational awareness, and operational efficiency. In urban envi-
ronments, where traffic density poses significant challenges,
DTs provide a platform for optimized navigation and traffic
management. Wang et al. [166] demonstrate a DT-enabled
system that utilizes cloud-edge integration to improve the real-
time navigation of CAVs, significantly increasing both traffic
efficiency and safety. Liu et al. [167] further illustrate how DTs
facilitate optimized lane changing and variable speed control,
addressing the critical issue of collision avoidance in complex
traffic scenarios.

In the context of cooperative driving, Olayemi et al. [168]
integrate DT perception with DRL, enhancing the adaptability
of ground vehicles in dynamically changing environments. Li
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et al. [169] focus on sustainability by demonstrating a DT-
based cooperative driving system at roundabouts, which not
only improves traffic flow but also reduces emissions and
speed variance through consensus motion control. Fig. 20
illustrates the cooperative driving process at a roundabout,
outlining the stages from initial cruising to the final merging
phase, where vehicles adjust to create necessary gaps and
merge smoothly into the traffic flow.

Lu et al. [170] and Fan et al. [171] explore DT-based traffic
control strategies that employ variable speed limits and lane
management to optimize traffic flow and minimize collision
risks. These strategies highlight the importance of DTs in
handling the complexities of urban traffic environments and
ensuring safe, efficient movement of vehicles.

DTs also support personalized systems within CAVs. Wang
et al. [68] use DTs in adaptive cruise control (ACC) sys-
tems, employing cloud-based services (AWS) to make real-
time adjustments that enhance driving comfort and safety.
Additionally, Kremer et al. [172] advance teleoperated driving
by reducing the need for high-bandwidth data transmission
while maintaining situational awareness, thus improving tele-
operation safety, especially in urban contexts.

Vehicular edge computing (VEC) networks support the
demanding operational requirements of connected vehicles,
particularly in terms of low latency, dynamic adaptability, and
handling large data volumes. DTs strengthen VEC by creating
virtual models that optimize resource allocation and decision-
making processes. Zhao et al. [173] introduce the IGNITE
framework, which combines DTs with reinforcement learning
(RL) to optimize task offloading, effectively minimizing delays
and reducing computational costs in distributed vehicular
networks. Zhang et al. [174] employ DTs with multi-agent RL
to improve coordination and resource utilization in dynamic
environments, enhancing the overall efficiency of vehicular
systems.

Further, Zhang et al. [175] apply DTs in social-aware
caching, where real-time cache management between RSUs
and vehicles boosts content delivery speed. Qu et al. [176]
propose a hierarchical DT framework to adapt VEC networks
to the evolving conditions of 6G, moving from isolated opti-
mization to a more comprehensive and automated system.

DT frameworks are also indispensable for resource manage-
ment in VEC. Li et al. [177] implement a two-tier DT frame-
work for real-time resource allocation across edge servers,
ensuring seamless service continuity. Similarly, Xie et al. [178]
leverage multi-agent approaches to collaborative scheduling,
enabling simultaneous resource allocation and maintenance,
which is critical for maintaining high-performance standards
in connected vehicle networks.

The adaptability of task offloading is further enhanced by
integrating DTs with RL, as shown by Zheng et al. [179],
who use DTs to improve task scheduling and resource man-
agement in distributed edge networks. Additionally, Paul et
al. [180] explore the incorporation of quantum computing to
elevate decision-making in vehicular networks, particularly for
URLLC, which are essential for real-time vehicle coordina-
tion.

Collaboration between VEC nodes for optimal network
performance is demonstrated by Jeremiah et al. [181], who
use DTs and RL to optimize node collaboration. Extending be-
yond terrestrial networks, Hazarika et al. [182, 183] integrate
UAVs with hybrid machine learning models to enhance task
offloading in the IoV, ensuring connectivity even in remote
areas. Yang et al. [184] emphasize the utility of DTs in load
balancing across MEC servers, which improves traffic safety
and network management.

Table VIII provides a detailed overview of the reviewed
researches on DT-empowered VEC networks, presenting key
data sources, optimization techniques, and performance met-
rics across various studies. The table highlights a variety of
methodologies employed, ranging from DRL and multi-agent
systems to meta-learning and quantum-enhanced decision-
making. Each study emphasizes a unique aspect of DT in-
tegration, such as offloading optimization, resource allocation,
caching efficiency, and task scheduling within dynamic ve-
hicular environments. By examining these contributions, one
can identify specific DT applications that align with particular
needs, such as optimizing task offloading, reducing latency,
or enhancing system scalability. The diverse approaches and
performance outcomes offer reference solutions based on
system requirements, including real-time data synchronization,
energy efficiency, or resource utilization.

3) Optimizing Network Resource Management for CAV:
The evolution of intelligent vehicular networks is largely
driven by the necessity for low-latency, high-reliability com-
munications and the efficient management of network re-
sources, especially in complex environments where CAVs
operate. DT technology, when combined with cloud-native
and edge computing, facilitates real-time interactions between
physical and cyberspaces, thereby enhancing both decision-
making and resource allocation processes in these networks.

Tan et al. [185] introduce a DT-cloud vehicular network
(DT-CVN) that leverages microservices to improve communi-
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TABLE VIII
REVIEW OF DIGITAL TWIN-EMPOWERED VEHICULAR EDGE COMPUTING NETWORKS.

Ref. DT Data Source Optimization Technique Performance Metrics Methodology Effect of DTs

[173] Real-time VEC data DRL, clustering Computational cost,
delay, offloading rate

DDPG for task offloading, DT-
based prediction

DTs optimize offloading by predicting resource
availability, reducing costs and delays

[174] Traffic datasets MADRL Offloading cost, coop-
eration gains

MADDPG for service match-
ing

DTs enhance offloading by modeling network con-
ditions, improving coordination and reducing costs

[175] Social and network data DRL Caching efficiency,
service utility DDPG for cache management DTs improve caching by dynamically allocating

resources based on real-time interactions

[176] Vehicular network data Meta learning Adaptation speed, effi-
ciency

Two-tier DT-based meta-
learning

DTs accelerate learning adaptation, improving effi-
ciency in dynamic networks

[177] VEC servers, DT mod-
els DRL Offloading latency, re-

source utilization
Two-tier DT with AI for allo-
cation

DTs optimize real-time resource allocation, reducing
latency and improving efficiency

[178] VEC, DT maintenance
data MADRL Resource utility, task

delay MADRL-CSTC for scheduling DTs enhance maintenance planning, reducing delays
and optimizing resource use

[179] IoV network conditions RL Scheduling efficiency,
resource use A3C-based task offloading DTs synchronize network conditions, improving

scheduling and resource allocation

[180] Vehicular DT models Quantum-DRL Latency, reward maxi-
mization Quantum computing + DRL DTs integrate quantum computing, improving

decision-making and reducing latency

[181] Edge collaboration data A2C Computation rate, task
delay A2C for resource allocation DTs synchronize real-time data, boosting computa-

tion rates and reducing delays

[182] UAV, vehicular data Multi-network DRL Energy efficiency, de-
lay reduction

Multi-network DRL for alloca-
tion

DTs optimize UAV-VEC connectivity, improving
energy efficiency and reducing delays

[183] UAV, IoV data AFL, MADRL Task rate, energy effi-
ciency AFL and multi-agent DRL DTs enhance hybrid network allocation, reducing

energy use and improving task completion

[184] Vehicular network data Genetic Algorithm, PSO System cost, load bal-
ance

Adaptive PSO with GA
scheduling

DTs balance load in MEC networks, optimizing
traffic flow and reducing costs
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Fig. 21. The three paradigms of lane-changing decisions in the MEC domain:
(a) distributed, (b) Semi-distributed.

cation efficiency, ultimately reducing both time and energy
consumption. This integration streamlines task scheduling
and resource management, ensuring that the system adapts
efficiently to dynamic conditions. Similarly, Fan et al. [186]
propose a DT and MEC-based framework for lane-changing
in CAVs, optimizing decision-making across distributed, semi-
distributed, and centralized paradigms. These optimization
strategies lead to significant improvements in traffic speed and
flow. Fig. 21 illustrates the three paradigms, distributed, semi-
distributed, and centralized, each enhancing traffic manage-
ment in different ways depending on the system’s computa-
tional architecture.

Safety remains a critical concern in CAV systems, and
DT technology plays an essential role in addressing this.
Parrish et al. [187] implement a DT-based V2V system that
adjusts transmission ranges based on human reaction time,
successfully reducing accident risks by 36%. This approach
highlights the capacity of DTs to simulate and respond to
human behavior in real-time, improving safety across the
network. Hu et al. [188] introduce a time-aware locality-
sensitive hashing (LSH) method to enhance traffic predictions

by addressing data sparsity, significantly improving prediction
accuracy in real-world traffic environments.

In the realm of collaborative driving, Hui et al. [189] use
a DT-based model that incorporates a Nash-stable auction
mechanism to optimize group driving strategies, ultimately
reducing the costs of autonomous driving. Similarly, Wagner et
al. [190] enhance traffic flow by using DTs for real-time traffic
light-vehicle interaction data, improving both flow efficiency
and reducing emissions.

DTs also play a crucial role in URLLC, which are essential
for real-time decision-making in CAVs. Hao et al. [191]
propose a DT-based task offloading scheme that ensures low
latency in dynamic mobile edge networks, a key component
for the upcoming 6G applications. In heterogeneous vehicular
networks (HetVNets), Hui et al. [192] utilize DTs to optimize
content caching through a double auction model, addressing
resource constraints while improving collaborative recommen-
dations and data delivery efficiency.

For V2X communication, Cazzella et al. [193] use multi-
modal sensor data and DTs, applying ray-tracing models to
overcome line-of-sight blockages in high-frequency commu-
nication, thus enhancing the reliability and efficiency of V2X
networks. Sun et al. [194] propose a DT-based C-V2X archi-
tecture that integrates reinforcement learning and mean-field
game theory (MFG) to improve task offloading, optimizing the
allocation of computational resources in real-time.

Table IX provides an in-depth summary of how DTs op-
timize resource management and enable real-time decision-
making in intelligent vehicular networks. It categorizes each
study based on its use of DTs to address key challenges,
such as scalability, heterogeneity, and real-time operational
demands in CAV systems. The table outlines the roles of DTs,
such as enabling virtual replicas for dynamic task schedul-
ing, traffic flow prediction, and resource allocation. It also
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TABLE IX
OVERVIEW OF DIGITAL TWIN-AIDED INTELLIGENT VEHICULAR NETWORKS

Ref. DT Functions Optimization Techniques Performance Metrics Methodology Challenges Addressed

[185] Manage resources and
task scheduling

DQN-based task schedul-
ing

Task efficiency, energy
consumption, resource
utilization

Virtual replicas of vehicles and infras-
tructure for real-time decision-making

DTs improve task scheduling and resource man-
agement, reducing delays in large-scale networks

[186] Real-time lane-changing
decisions

Virtualization, offline
learning with MEC

Safety, efficiency, real-
time decisions

Simulate vehicle and environment in-
teractions to optimize lane changes in
real-time

DTs enable rapid response to dynamic traffic, but
computational complexity remains a challenge

[187] Adapt transmission range
using reaction time data

DT-based transmission
range modulation

Transmission delay, safety,
accident reduction

Model human reaction times to adjust
transmission ranges in V2V systems

DTs improve V2V communication by adjusting
range based on predicted driver behavior

[188] Predict real-time traffic
flow and speed Time-aware LSH Prediction accuracy, com-

putational efficiency
Model traffic flow and speed under 5G
conditions for real-time predictions

DTs enhance traffic prediction accuracy while
reducing data processing time

[189] Support collaborative au-
tonomous driving

Auction and coalition
game theory

Cost, collaboration stabil-
ity

Use game theory to enable cooperative
decision-making among AVs

DTs enhance collaboration among AVs, improv-
ing stability and reducing system costs

[191] Optimize task offloading
in URLLC

Robust combinatorial opti-
mization

Latency, energy, task effi-
ciency

Use DTs to optimize task offloading in
URLLC systems

DTs ensure low-latency offloading, critical for
real-time mobile edge networks

[192] Manage dynamic content
delivery Double auction game Utility, hit ratio, delay Simulate network conditions and user

demands for adaptive content delivery
DTs optimize content distribution by adjusting for
dynamic network conditions and user behavior

[193] Model urban dynamics
for V2X

High-frequency band mod-
eling

Channel estimation, link
restoration

Simulate urban traffic dynamics for
V2X communication optimization

DTs improve channel estimation and link restora-
tion, reducing errors in urban V2X networks

[195] Control heterogeneous ve-
hicle interactions DRL for CAV control Traffic efficiency, safety,

control effectiveness
Optimize fleet control and interaction
strategies using DTs and edge AI

DTs enable smooth interactions across diverse
vehicle types, ensuring system efficiency

[196] Develop and tests vehicle
platoons Co-simulation techniques System resilience, perfor-

mance under cyber-attacks
Combine DTs with edge computing to
optimize platoon control

DTs enhance platoon stability by simulating en-
vironmental and attack scenarios

[194] Support collaborative
context offloading DT with DRL and MFG Offloading latency, QoS,

efficiency

Use DTs and DRL for context offload-
ing and optimal resource allocation in
distributed networks

DTs enable efficient offloading decisions, improv-
ing QoS in dynamic environments

discusses optimization techniques like reinforcement learning,
game theory, and combinatorial optimization, showcasing their
application in improving performance metrics such as latency,
energy efficiency, and safety. By linking these approaches to
measurable outcomes, the table provides insights into how
DTs enhance the adaptability and robustness of CAV networks,
while highlighting practical challenges such as computational
complexity and system coordination.

In the realm of network resource optimization and man-
agement, a variety of approaches leverage DT technology to
address challenges inherent to dynamic, high-mobility envi-
ronments. These challenges arise from the need to maintain
high levels of connectivity and optimize resource allocation in
scenarios characterized by frequent changes in network topol-
ogy and varying vehicle behaviors. Zhao et al. [197] propose
the ELITE routing scheme within a DT-based framework to
improve packet delivery and reduce overhead under fluctuating
network conditions. This scheme employs a four-phase process
that includes policy training, generation, deployment, and relay
selection, effectively optimizing inter-vehicle communication
in highly dynamic settings. For high-mobility environments,
Alam et al. [198] utilize DT-enabled coordination graphs and
multi-agent deep reinforcement learning (DCG-MADDPG) to
optimize routing, improving reliability and reducing latency in
vehicular networks.

In urban vehicular networks, Ding et al. [199] integrate
DTs with deep learning to enhance channel estimation. They
employ city models for improved accuracy, leveraging a
combined CMA DNN and BEM (boundary element method)
approach to optimize communication in urban environments.
Gong et al. [200] introduce a DT-driven virtualization frame-
work with network slicing to enable more efficient offload-
ing, incorporating sensing and communication integration to
minimize response times in IoV systems. Zheng et al. [201]
implement a DT-based learning method for better data syn-
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Fig. 22. The architecture of DQN-based adaptive task scheduling algorithm.

chronization, ensuring efficient communication and reducing
synchronization costs in highly dynamic networks. In parallel,
Tan et al. [202] propose a cloud-native DT microservice-based
framework for scalable task scheduling. They design a DQN-
based adaptive task scheduling algorithm to improve system
scalability and task scheduling efficiency, particularly for real-
time vehicular applications, as depicted in Fig. 22.

Further advancements come from Yuan et al. [203], who
integrate DTs with intelligent reflecting surfaces (IRS) in 6G
vehicular networks. They employ DRL to optimize task of-
floading and minimize delays. Cao et al. [204] present a multi-
objective DT model that applies evolutionary optimization
strategies to enhance task offloading, improving both system
efficiency and user satisfaction. Additionally, Cai et al. [205]
propose a DT-empowered V2X architecture to optimize traffic
safety and communication via behavior analysis. Zheng et al.
[206] apply game theory to achieve efficient VUE-DT data
synchronization, further enhancing network performance in
HetVNets. Zhao et al. [207] combine GANs with genetic-
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TABLE X
OVERVIEW OF DIGITAL TWIN-AIDED RESOURCE OPTIMIZATION AND MANAGEMENT FOR VEHICULAR NETWORKS

Ref. DT Functions Optimization Techniques Performance Metrics Objectives Simulators Effects of DTs

[197] Virtual network space
for routing

Four-phase process: policy
training, relay selection

Packet delivery, delay, over-
head

Improve communication
stability SUMO DTs simulate real-time conditions, improving

routing and reducing delays

[198] Virtual representation
of mobility

DCG-MADDPG for multi-
agent learning

Latency, reliability, queue
stability

Optimize routing in
high-mobility networks TensorFlow DTs improve routing under high-mobility, enhanc-

ing reliability and queue stability

[199] 3D city model for
channel estimation CMA DNN with BEM Bit error rate, complexity Enhance channel estima-

tion in urban networks TensorFlow DTs provide accurate 3D models, reducing errors
and improving communication

[200] Environment-aware
offloading

DDPG with Shapley Q-
values Response time, latency Optimize resource allo-

cation in IoV Python DTs enable offloading decisions based on environ-
ment, reducing latency and improving allocation

[201] Knowledge transfer
for network selection Actor-critic with MDP Convergence speed, cost ef-

ficiency
Optimize network selec-
tion

TensorFlow,
Keras

DTs enhance synchronization efficiency, reducing
costs

[202] DT-enabled cloud-
native architecture

DQN-based adaptive task
scheduling Execution time, energy use Improve task scheduling N/A DTs adapt scheduling, reducing task time and

energy consumption

[203] MEC and IRS for
task offloading

DDQN and DDPG opti-
mization System delays, energy use Optimize resource use

Python,
SUMO,
Pytorch

DTs optimize offloading, improving resource use
and reducing delays

[204] DT for VEC opti-
mization

Multi-objective optimiza-
tion Delay, energy, satisfaction Balance VEC perfor-

mance PanoSim DTs balance delay, energy, and satisfaction for
better VEC performance

[205] DT for V2X commu-
nications

Deep reinforcement learn-
ing Task efficiency, resource use Improve task efficiency

in V2X N/A DTs optimize task efficiency, reducing resource
consumption in V2X

[206] DT for data synchro-
nization

Game theory-based selec-
tion Sync latency, service quality Optimize data synchro-

nization Python DTs improve synchronization and service quality
in vehicular UEs

[207] DT for trajectory pre-
diction

ML, PSO, genetic algo-
rithm Delay, energy use Improve offloading and

reduce system costs
SUMO,
Python

DTs predict trajectories, optimizing energy use
and reducing delays in VEC

based particle swarm optimization to adaptively manage of-
floading in highly dynamic environments, thereby maximizing
overall network efficiency.

Table X offers a comprehensive summary of various DT-
aided resource optimization techniques, highlighting the dis-
tinct functions of DT technology, the optimization methods
employed, and the corresponding performance metrics used
to evaluate their effectiveness. By comparing the studies pre-
sented, the table illustrates how DTs contribute to improving
network resource management in vehicular systems. It clarifies
how different DT applications address specific challenges,
such as reducing latency, enhancing energy efficiency, and
optimizing task scheduling. Each entry demonstrates how DTs
facilitate real-time decision-making, improve system scala-
bility, and enable more efficient resource utilization. This
comparison serves as a valuable resource for selecting the most
appropriate DT-driven optimization techniques, depending on
the performance objectives of a given vehicular network,
whether focused on minimizing delays, improving commu-
nication quality, or balancing multi-objective requirements.

D. Lessons Learned in Intelligent- and Autonomous-Vehicle
Applications of Digital Twins

• Probabilistic twin models are essential for robust
decision-making under uncertainty. Field trials reveal
that a deterministic twin—even if high-fidelity—cannot
capture the stochastic behavior of pedestrians, human-
driven vehicles, or abrupt weather changes. Embedding
Bayesian filtering, Monte-Carlo tree search, or Gaussian-
process priors inside the vehicle twin allows the planner
to reason over a distribution of future states and to select
actions that remain safe across a spectrum of likely
outcomes.

• Edge–cloud partitioning is mandatory to meet the dual
challenge of high data volume and sub-100 ms latency.
Early prototypes that streamed raw LiDAR/vision data to

a cloud twin experienced multi-second round-trip delays.
A hybrid architecture—in which the edge twin performs
time-critical perception fusion and collision-risk predic-
tion while the cloud twin undertakes long-horizon route
optimization and model retraining—proved capable of
sustaining 10 Gbit/s sensor throughput with control-loop
latency below 30 ms.

• Twin-state exchange over URLLC sidelinks enables co-
operative manoeuvres at scale. Simulations show that
broadcasting compact twin snapshots 1kB every 20 ms
allows vehicles to merge, platoon, and negotiate inter-
sections with 25% shorter headway than V2X message
sets that carry only raw kinematics. Prioritizing these
snapshots in the 5G/NR resource scheduler is therefore a
best practice for safety-critical cooperation.

• Transparent and explainable twin reasoning builds hu-
man–machine trust. Driver-in-the-loop studies indicate
that occupants are more willing to cede control when
the augmented-reality (AR) HUD visualizes the twin’s
predicted trajectories—and when a natural-language in-
terface can justify sudden braking or detours. Exposing
the twin’s intent, rather than merely its raw sensor view,
reduces takeover-reaction time by up to 40%.

• Continuous twin validation guards against model drift
and sensor degradation. Long-duration fleet deployments
uncovered slow drifts in camera calibration and LiDAR
reflectivity that silently eroded perception accuracy. A
background process that compares live telemetry against
twin predictions and triggers re-calibration or online re-
training has proven critical to maintaining safety margins
over months of operation.

VI. FUTURE RESEARCH OPPORTUNITIES

This section outlines key research opportunities for advanc-
ing DT technology in intelligent vehicles and transportation
systems. As the integration of DTs evolves, several promising
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areas of research will enable more accurate, scalable, and
resilient solutions in both vehicle safety and broader trans-
portation management. This section focuses on advancements
in IoT and sensor technologies, simulation modeling, AI, ML,
and cybersecurity to enhance DT applications.

A. Emerging IoT and Sensor Technologies

1) 5G and Beyond for Low-Latency, High-Bandwidth Con-
nectivity: A significant area of research in IoT and sensor tech-
nologies lies in the advancement of 5G and beyond networks.
5G technologies offer ultra-low latency and high bandwidth,
which are crucial for ensuring the seamless operation of DT
systems in intelligent transportation. Real-time data transmis-
sion, such as V2X communication, is essential for applications
like autonomous driving, traffic management, and emergency
vehicle prioritization. The URLLC capabilities of 5G, with
latency as low as 1 millisecond, are particularly valuable for
safety-critical applications where immediate decision-making
is required.

Moreover, millimeter-wave (mmWave) technologies in 5G
offer high data transfer rates that are necessary for transmit-
ting large volumes of sensor data, including high-resolution
camera feeds, LiDAR data, and real-time traffic information.
Looking ahead, 6G technologies are expected to push the
boundaries even further, providing terahertz frequencies that
will enable advanced communication capabilities such as holo-
graphic communication and real-time immersive experiences.
Research into AI-driven network optimization for 5G and 6G
could ensure dynamic, self-healing communication systems
capable of adapting to the needs of various transportation
scenarios.

2) Multi-Sensor Fusion and Advanced Sensors: The inte-
gration of various sensor modalities is fundamental to creating
accurate and reliable DT models. As vehicles and trans-
portation systems rely on increasingly sophisticated sensing
technologies, multi-sensor fusion becomes critical. Advanced
algorithms are necessary to integrate data from different sen-
sor types, which each have their strengths and weaknesses
depending on environmental conditions. For example, LiDAR
offers high-resolution 3D point clouds, while radar is better
suited for long-range detection in poor weather conditions.

The future of DT systems will rely on fusion algorithms
such as Kalman filters and Particle filters, which help com-
bine information from different sensors to produce a more
comprehensive understanding of the environment. Research
into deep learning-based fusion models will improve system
performance, allowing for real-time data processing and more
accurate environmental modeling, particularly in dynamic,
urban settings.

In addition to traditional sensors, advanced sensing tech-
nologies such as terahertz (THz) imaging will enable better
visibility under extreme conditions like fog or heavy rain,
which current technologies struggle to handle. As these sensors
become more widely integrated into transportation systems,
they will provide more comprehensive environmental data,
helping autonomous vehicles to better perceive their surround-
ings and make safer, more accurate decisions.

3) Distributed Sensing with Edge Intelligence: As the need
for real-time decision-making grows, distributed sensing and
edge intelligence are becoming increasingly vital for trans-
portation systems. Traditional centralized computing systems
often face challenges due to latency and bandwidth constraints.
To overcome this, edge computing enables data processing
closer to the source of the data, such as within vehicles or at
intersections, rather than relying solely on centralized cloud
servers. By distributing the processing tasks across various
nodes, the system can respond much more quickly to real-
time events, which is essential for safety-critical applications
like autonomous driving.

This approach reduces the amount of data transmitted
over networks, optimizing bandwidth usage and decreasing
response times. Additionally, collaborative sensing is a key
research area, where vehicles, infrastructure, and other devices
in the transportation ecosystem share sensor data to improve
situational awareness. Distributed sensor networks, combined
with edge intelligence, will enable more scalable, resilient,
and efficient digital twin systems for traffic management and
autonomous vehicles.

Furthermore, research into decentralized control systems
will ensure that distributed sensing can be performed in a
collaborative and synchronized manner across various devices
and vehicles. By adopting these technologies, DT systems can
better integrate dynamic, real-time data into their operational
models, enhancing performance and scalability in complex
transportation environments.

4) Energy-Efficient IoT: As the number of IoT devices used
in transportation systems continues to grow, energy efficiency
becomes a critical factor for their long-term viability and sus-
tainability. Many IoT devices, particularly those used in urban
infrastructure and autonomous vehicles, require continuous
operation and must be able to function for extended periods
without frequent maintenance or battery replacement.

One area of focus for future research is Low Power Wide
Area Networks (LPWANs), such as LoRaWAN and NB-IoT,
which provide long-range communication capabilities while
consuming very little power. These networks are particularly
well-suited for applications like environmental monitoring,
smart parking, and asset tracking, where devices need to
operate in the background without frequent data transmission.

Additionally, energy harvesting technologies are becoming
more relevant for IoT devices in transportation systems. De-
vices that can collect energy from their environment, such
as solar-powered sensors or those utilizing piezoelectric and
thermoelectric generators, can drastically reduce dependency
on batteries. Research into improving the efficiency and cost-
effectiveness of these energy harvesting techniques will en-
sure that sensors in transportation networks can operate au-
tonomously for longer periods, making them more sustainable.

Moreover, developing dynamic power management algo-
rithms that adjust the power consumption of devices based
on real-time needs is critical. By using techniques such as
adaptive sleep modes and on-demand activation, IoT devices
can conserve energy during low-activity periods, ensuring that
they are only fully operational when needed. These advance-
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ments will enable long-term deployments of IoT systems in
large-scale, smart transportation environments.

B. Simulation Model Innovations
1) High-Fidelity Modeling for Complex Scenarios: The

increasing complexity of transportation systems necessitates
the use of high-fidelity models that can accurately simulate
real-world scenarios involving multiple agents (e.g., vehicles,
pedestrians, cyclists) and environmental variables (e.g., road
conditions, weather, traffic). Future research should focus
on advancing the precision and realism of vehicle dynamics
models, environmental simulations, and traffic flow modeling
within DT systems.

For example, the integration of non-linear vehicle dynam-
ics, such as those that account for tire-road interaction and
suspension behavior, is crucial for ensuring that simulated
vehicles react realistically in different road conditions. High-
fidelity models also need to simulate more than just vehicle
behavior; they must account for pedestrian movement, cyclist
actions, and how these agents interact within the traffic ecosys-
tem. Models that incorporate dynamic weather conditions
and nighttime driving are also necessary to simulate various
driving environments and improve the accuracy of safety-
critical systems.

Research into multi-agent simulation techniques can en-
hance the realism of such models. These techniques allow for
simultaneous simulations of multiple interacting agents, mak-
ing it possible to evaluate complex scenarios like congestion,
accidents, or cooperative driving behavior. Combining these
high-fidelity simulations with real-time traffic data can lead to
the creation of adaptive models that evolve based on actual
traffic conditions.

2) Cloud-based and Distributed Simulation Systems: As
transportation systems grow in complexity, the demand for
scalable, high-performance simulation tools increases. Cloud-
based and distributed simulation systems are key to enabling
large-scale simulations that model entire cities or regions in
real-time. These systems allow for parallel processing of simu-
lation tasks, which is particularly beneficial when dealing with
the computationally intensive nature of autonomous driving
simulations or large-scale transportation network modeling.

Future research should focus on developing cloud-based
platforms capable of supporting real-time multi-user simu-
lations where multiple stakeholders (e.g., transportation au-
thorities, vehicle manufacturers, urban planners) can access
and interact with simulations simultaneously. Additionally, dis-
tributed computing frameworks that leverage edge computing
will be vital for handling large volumes of data generated by
DT systems, reducing the dependency on centralized cloud
resources and ensuring low-latency processing for mission-
critical applications.

For example, edge computing nodes can process data locally
from sensors on vehicles or infrastructure, feeding real-time in-
formation into a central simulation engine for further analysis.
This approach will significantly enhance the responsiveness of
DT systems in real-world applications, such as dynamic traffic
signal control, incident detection, and autonomous vehicle
behavior modeling.

3) Sim-to-Real Transfer and Virtual Prototyping: A major
challenge in developing autonomous vehicle systems is ensur-
ing that simulated models translate effectively to real-world
performance. Table XI provides a summary of various simu-
lators employed in autonomous driving research, highlighting
their capabilities in sensor modeling, path planning, and traffic
scene support. The ability to transfer insights from simulations
to real-world applications, known as Sim-to-Real Transfer,
is essential for testing and validating autonomous driving
systems in complex, real-world environments. As illustrated
in Fig. 23 [23], enhancing autonomous driving performance
through simulation techniques: Sim2Real, DTs, and parallel
intelligence.

Key innovations in this area include the use of domain
adaptation and domain randomization methods to improve the
generalization of simulations. Domain randomization involves
intentionally varying the simulated environment (e.g., different
lighting conditions, weather patterns, or sensor noise) to make
the model more robust to changes in the real world. Transfer
learning can also be applied, where knowledge gained from
one environment or simulation is adapted to another, ensuring
that digital twins accurately reflect the complexities of real-
world conditions.

Research into virtual prototyping will further advance the
ability to create digital replicas of vehicles, sensors, and entire
transportation systems. These prototypes can be tested in a
variety of scenarios before deployment, significantly reducing
the time and cost required for physical testing. Platforms such
as CARLA, SUMO, and Webots, which support high-fidelity
simulations of driving environments and vehicle dynamics,
can be used to develop these prototypes and verify the safety
and performance of autonomous vehicles in various traffic
conditions.

4) Real-Time Simulation and Optimization: The ability to
simulate and optimize transportation systems in real-time is
essential for the efficient management of smart cities and au-
tonomous vehicle fleets. Real-time simulation involves dynam-
ically updating models as new data is received, enabling instant
feedback and adjustments to traffic flow, vehicle behavior, or
network management.

Research into real-time traffic simulation platforms can
help improve traffic signal control, incident detection, and
route optimization for autonomous vehicles. By continuously
updating traffic conditions and modeling the flow of vehicles
in real-time, DT systems can optimize traffic management
strategies, reducing congestion and improving safety. Tech-
niques such as MPC can be used to predict future traffic
conditions and optimize vehicle routes, minimizing delays and
fuel consumption.

Moreover, integrating AI-based optimization algorithms,
such as RL and genetic algorithms, can enable DT systems
to continuously learn from real-time data and adjust their
operations accordingly. This would allow for the continuous
improvement of traffic management strategies, resource allo-
cation, and autonomous vehicle decision-making in an ever-
changing environment.
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TABLE XI
SIMULATORS FOR AUTONOMOUS DRIVING

Simulators AirSim Gazebo CARLA LGSVL Torcs Metadrive SUMO SUMMIT Autoware Apollo UPPAAL Webots SCENIC MATLAB Prescan
[208]

PanoSim
[209]

Hyperledger
Fabric
[210]

Python Unity
[211]

Brief
description

Robotics
simulator
with pho-
torealistic
graphics

Robotics
simulator
for indoor

and
outdoor

scenarios

Unreal
engine
open

source
autopilot
simulator

Simulator
designed

for ADAS
develop-
ment and

testing

Vehicle
driving
games

and racing
simulator

Simulator
with an

emphasis
on urban
driving

Simulator
for traffic
flow and

trans-
portation
studies

Traffic
flow

simulator
based on
CARLA
extension

Autonomous
driving

platform
for

research
and proto-

typing

Autonomous
driving

software
platform
for both

urban and
highway
scenarios

Formal
verifica-
tion tool

for
real-time
systems

Robot
simulator

for
real-time
monitor-
ing and
testing

Scenario
specifica-
tion and

simulation
language

Simulation
environ-
ment for
a variety
of engi-
neering
applica-

tions

Advanced
driving

simulation
environ-
ment for
ADAS
and AV
testing

Simulation
platform

for
vehicle

dynamics
and

collision
scenarios

Blockchain
platform

for decen-
tralized
applica-

tions

General-
purpose

program-
ming

language,
used for
simula-

tions

Real-time
3D devel-

opment
platform

Sensor
model

RGB
camera,
Depth

camera,
LiDAR

Custom
sensor

plugins,
LiDAR

Camera,
LiDAR,

mmWave
radar

LiDAR,
Camera,

Ultrasonic
radar

N/A Camera,
LiDAR N/A LiDAR,

Camera

LiDAR,
Camera,
mmWave

radar

LiDAR,
Camera N/A Cameras,

LiDAR N/A N/A Cameras,
LiDAR N/A N/A N/A

Cameras,
LiDAR,

GPS, Ul-
trasonic,

IMU

Path
Planning ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weather
Conditions × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Traffic
Facilities ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2D/3D
Ground

View
3D 3D 3D 3D 2D 3D 2D 3D 2D/3D 3D N/A 3D N/A 2D/3D 3D N/A N/A 3D 3D

Traffic Scene
Support ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3D Virtual
Environment ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Camera
Calibration ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ N/A ✓ N/A ✓ ✓ N/A N/A ✓ ✓

Vehicle
Control ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Open Source ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Advantages

High
realism,
multi-

platform
support

High
versatility,

multi-
robot

simulation

Multi-
vehicle,
multi-
sensor
support

ADAS
simulation

focus

Customizable
for

vehicle
control

and
dynamics

Urban
driving
scene

support

Open
source
traffic
flow

simulator

Combination
of traffic
flow and
advanced
driving

functions

Integrated
platform
for AD

functions

Scene
reproduc-
tion and
playback

Formal
verifica-

tion,
real-time
systems

Real-time
monitor-

ing,
robotics
integra-

tion

Scenario
specifica-

tion,
safety

verifica-
tion

Versatile
simulation
environ-

ment

High
fidelity
ADAS
and AV
testing

High-
fidelity
vehicle

dynamics
and

collision
testing

Blockchain
integra-

tion,
decentral-

ized
systems

General-
purpose

simulation
scripting

High-
fidelity

3D simu-
lations

Sim2Real

Digital Twins

Parallel Intelligence

Mixed Big Data
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Fig. 23. Enhancing autonomous driving performance through simulation
techniques: Sim2Real, DTs, and parallel intelligence.

C. AI and ML Advancements

As shown in Fig. 24, AI-driven methodologies, including
GNNs, GANs, RL, and FL, enhance the precision, adaptability,
and scalability of DT applications. Future research in AI and
ML will focus on optimizing decision-making, improving sys-
tem interoperability, and ensuring transparency in autonomous
systems.

1) RL for Autonomous Vehicle Decision-Making: RL is
emerging as a pivotal technique in enabling autonomous
vehicle decision-making within DT environments. RL allows
autonomous systems to learn optimal actions through interac-
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Fig. 24. The interplay of AI and Digital Twin: Bridging the gap between
data-driven and model-driven approaches.

tions with their environment, using rewards and penalties to
adjust behavior. This is particularly relevant for dynamic, real-
time environments where an autonomous vehicle must make
split-second decisions based on changing traffic conditions,
pedestrian movements, and environmental factors.

One of the primary advantages of RL in autonomous
vehicles is its ability to optimize long-term decision-making.
For instance, RL can enhance a vehicle’s ability to balance
short-term safety with long-term objectives like fuel efficiency
or traffic flow optimization. Advanced DQN and proximal
policy optimization (PPO) algorithms can be integrated into
DT systems to allow vehicles to simulate diverse driving
scenarios, learn from simulated environments, and improve
their decision-making processes before real-world deployment.

Moreover, multi-agent reinforcement learning can facilitate
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cooperative decision-making in scenarios involving multiple
autonomous vehicles or agents, such as platooning or coor-
dinated vehicle behavior in traffic flow. Research into safe
RL methods that minimize the risk of failures during learning
processes will be crucial for ensuring the safety and reliability
of RL-based autonomous vehicle systems.

2) FL for for Distributed DT Systems: FL is a decentralized
machine learning paradigm that allows multiple devices, such
as vehicles or roadside units, to collaboratively train a model
without sharing raw data. This is particularly relevant in
the context of Distributed DT systems, where numerous IoT
devices and sensors generate vast amounts of data that need to
be processed and analyzed to maintain accurate digital replicas
of vehicles, infrastructure, and environments.

FL enables privacy-preserving learning, as only model up-
dates (not raw data) are shared among the devices in the
network. This makes FL ideal for applications in autonomous
vehicles, where data privacy is critical, and in smart cities,
where personal information could be sensitive. In DT systems,
FL can be used to train models for traffic prediction, vehicle
behavior simulation, or road condition monitoring, while en-
suring that private data remains local to the source device.

The research focus on FL for DT systems will involve
improving model accuracy and training efficiency, as well
as developing methods to ensure consistency and reliability
across multiple, geographically distributed devices. Edge com-
puting and local data processing will be essential components
of FL systems in transportation networks, as they reduce the
need for centralized data storage and minimize latency.

Moreover, heterogeneous learning techniques will be needed
to account for differences in the devices’ computing power,
network capabilities, and sensor data types, allowing FL to be
applied across a wide range of devices within transportation
systems. This will allow for better scalability and adaptability
in DT-based traffic management systems and autonomous
vehicle networks.

3) Explainable AI (XAI) for Autonomous Systems: As AI
and ML methods become more integral to the operation of
autonomous vehicles and smart transportation systems, the
transparency of these systems becomes increasingly important,
particularly for safety-critical applications. XAI focuses on
providing human-understandable explanations for decisions
made by AI models, which is critical for autonomous systems
such as self-driving cars, where decision-making transparency
is crucial for trust and accountability.

XAI techniques can help autonomous systems justify their
actions in understandable terms. For example, a self-driving
car’s decision to brake suddenly or avoid an obstacle can be
accompanied by explanations that detail the reasoning behind
the decision, such as “avoiding collision with a pedestrian”
or “slowing down due to slippery road conditions.” In the
context of DT systems, incorporating XAI into vehicle and
traffic simulations would allow operators and regulators to
audit decisions and ensure compliance with safety protocols
and ethical standards.

Research into interpretable models, such as decision trees,
rule-based systems, and attention-based neural networks, will
be crucial in making AI-based decision-making systems in

autonomous vehicles and traffic management systems more
understandable and predictable. These models will allow
human operators to assess the system’s behavior, intervene
when necessary, and ultimately increase the public’s trust in
autonomous systems.

4) Vehicular AI models Improved by Digital Twin: The
integration of DT technology into vehicular AI models opens
several avenues for research, particularly in the areas of
autonomous driving, traffic management, and ITS. One key
research opportunity lies in enhancing real-time learning and
adaptation for vehicular AI models. As autonomous vehicles
interact with their environments, they continuously gener-
ate valuable data, which can be fed back into their digital
twins. This real-time feedback loop, combined with advanced
machine learning techniques can enable AI models to con-
tinuously improve their decision-making capabilities. Future
research should focus on improving the scalability of these
systems by allowing AI models to process vast amounts of
data generated by DTs, optimizing performance across fleets
of vehicles and transportation networks.

Another promising research direction involves synthetic
data generation and scenario modeling for rare and edge-case
driving conditions. Currently, AI models often face challenges
in generalizing to unusual scenarios, such as extreme weather
conditions, complex urban environments, or accident-prone
situations. By leveraging the power of GANs within DT
frameworks, researchers can generate high-quality synthetic
data to augment AI training. This data can simulate extreme
or rare driving scenarios, allowing AI models to become more
robust in real-world applications. Additionally, multi-agent
systems within DTs could be explored to improve V2V and
V2I communication, enabling AI models to collaborate across
connected systems to optimize traffic flow, enhance safety, and
reduce congestion.

Transfer learning also holds significant potential for improv-
ing AI models within the context of digital twins. By trans-
ferring knowledge from one environment (e.g., urban driving)
to another (e.g., rural or highway conditions), AI models can
quickly adapt to new driving conditions without the need for
extensive retraining. This would allow for faster deployment
and adaptability of autonomous vehicles across different re-
gions with varying driving conditions. Future research should
focus on optimizing transfer learning techniques, particularly
in distributed systems, to ensure that digital twins representing
different vehicles, infrastructure, and environmental conditions
can share and adapt knowledge efficiently.

D. Cybersecurity and Resilience in Distributed DT Networks

The increasing complexity and scale of DT systems in intel-
ligent vehicles and transportation networks make cybersecurity
and system resilience critical aspects of their development.
Future research should focus on securing these systems from
potential cyber-attacks while maintaining their resilience in
dynamic and distributed environments.

1) Secure Communication Protocols for V2X Systems: One
of the most pressing challenges in the deployment of V2X
systems is ensuring the security of communication channels
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between vehicles, infrastructure, and external devices. As
digital twins increasingly enable real-time data exchange for
traffic management and autonomous vehicle operations, the
need for secure communication protocols becomes paramount.
Future research should focus on developing robust crypto-
graphic protocols for V2X communication that ensure data
integrity, confidentiality, and authenticity across the network.
Specifically, blockchain-based solutions could be explored
to provide a secure and decentralized method of verifying
transactions and messages between connected vehicles and
infrastructure. Moreover, quantum-safe cryptography will be
essential as the potential for quantum computing poses a future
threat to traditional encryption methods. Research could also
focus on optimizing protocols for low-latency communication
in real-time vehicular applications while maintaining security
across multiple communication channels, such as 5G and Wi-
Fi 6.

2) Anomaly Detection and Intrusion Prevention: As the
volume of data and the complexity of distributed DT networks
grow, anomaly detection and intrusion prevention mechanisms
become critical to identifying and mitigating potential security
threats. ML and AI are becoming increasingly useful in detect-
ing deviations from normal operational patterns, identifying
potential attacks, and responding in real time. Future research
could explore advanced techniques in AI-driven anomaly
detection, where algorithms are trained on large datasets of
normal system behaviors and then used to identify potential
intrusions or performance anomalies. Techniques such as un-
supervised learning, deep learning, and neural networks can
help enhance detection accuracy in large-scale DT systems.
Additionally, distributed intrusion prevention systems (DIPS)
could be developed, where threat detection and mitigation
capabilities are spread across multiple nodes in the network,
reducing the risk of a single point of failure. This would
improve the resilience of DT systems against cyber-attacks by
allowing rapid local responses to detected threats, ensuring the
continuous operation of critical transportation infrastructure.

3) Resilient System Architectures: The resilience of dis-
tributed DT networks is critical for maintaining continuous
operations in the face of cyber-attacks, hardware failures, or
network disruptions. A resilient system architecture should be
capable of maintaining system performance even when parts
of the network are compromised. Research into self-healing
architectures could enable DT systems to automatically detect
failures, isolate damaged components, and recover lost func-
tionalities without requiring manual intervention. Redundancy
and failover mechanisms will be vital to ensuring the availabil-
ity and reliability of the system, particularly in safety-critical
applications like autonomous vehicles and traffic management.
Additionally, edge computing can be leveraged to distribute
processing power across the network, reducing the reliance on
a centralized cloud and ensuring that vehicle and infrastructure
systems can continue to function even if some parts of the
network are temporarily unavailable. Future research could
also focus on autonomous recovery systems that use real-time
data from DTs to identify optimal recovery strategies, enabling
the system to quickly resume normal operations after an attack
or failure.

4) Privacy-Preserving Techniques: As DT systems for in-
telligent vehicles and transportation networks generate vast
amounts of data, ensuring data privacy is a key concern,
especially in environments that involve personal or sensitive
information, such as location tracking and driver behavior.
Privacy-preserving techniques are essential for ensuring that
data collected by connected vehicles and infrastructure is
protected against unauthorized access while still enabling the
system to function effectively. One key area of research is the
development of differential privacy mechanisms, which ensure
that data sharing and analysis do not compromise individual
privacy. In DTs, this could involve adding noise to sensitive
data in such a way that it still provides useful insights without
revealing specific details about individuals. Homomorphic
encryption is another promising technique, allowing data to
be encrypted and processed without needing to be decrypted,
ensuring that sensitive information remains secure through-
out its lifecycle. Additionally, secure multi-party computation
(SMPC) could be explored as a way for multiple parties
(e.g., vehicles, traffic management systems) to collaboratively
process data without sharing sensitive information, further
enhancing privacy while enabling useful data analysis.

VII. CONCLUSION

This survey has provided a comprehensive overview of DT
technology and its transformative impact on CAVs and ITS. By
enabling real-time monitoring, predictive maintenance, and dy-
namic optimization, DTs significantly enhance vehicle safety,
traffic management, and the efficiency of autonomous driving
systems. However, challenges such as data synchronization,
scalability, and security remain critical barriers to widespread
adoption. As DT technology evolves, future research will
focus on improving integration across heterogeneous systems,
addressing security concerns, and advancing sensor fusion
to enable more reliable and resilient transportation networks.
Continued innovation in AI, 5G, and edge computing will be
pivotal in unlocking the full potential of DTs, contributing to
the creation of smarter, safer, and more sustainable transporta-
tion systems.

APPENDIX

LIST OF KEY ACRONYMS

AI Artificial Intelligence
AR Augmented Reality
AES Advanced Encryption Standard
BIM Building Information Modeling
CAV Connected and Autonomous Vehicle
CAD Computer-Aided Design
CNN Convolutional Neural Network
CPS Cyber-Physical System
C-V2X Cellular Vehicle-to-Everything
CoAP Constrained Application Protocol
CFD Computational Fluid Dynamics
DDoS Distributed Denial of Service
DQN Deep-Q Networks
DRL Deep Reinforcement Learning
DT Digital Twin
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DTaaS Digital Twin as a Service
FL Federated Learning
GAN Generative Adversarial Networks
GNN Graph Neural Networks
HMI Human-Machine Interface
HetVNet Heterogeneous Vehicular Networks
IRS Intelligent Reflective Surface
IoT Internet of Things
ISO International Organization for Standardization
ITS Intelligent Transportation Systems
LSTM Long Short-Term Memory
LoRaWAN Long Range Wide-Area Network
LPWAN Low-Power Wide-Area Network
MADDPG Multi-Agent Deep Deterministic Policy Gradient
ML Machine Learning
MaaS Mobility as a Service
MDP Markov Decision Process
MEMS Micro-Electro-Mechanical Systems
MEC Multi-access/mobile Edge Computing
MQTT Message Queuing Telemetry Transport
mMTC Massive Machine-Type Communications
NB-IoT Narrowband Internet of Things
ACC Personalized Adaptive Cruise Control
RFID Radio Frequency Identification
RL Reinforcement Learning
RSU Roadside Unit
SCADA Supervisory Control and Data Acquisition
SSL Secure Sockets Layer
URLLC Ultra-Reliable Low-Latency Communications
VANET Vehicular Ad-hoc Networks
V2V Vehicle-to-Vehicle
V2I Vehicle-to-Infrastructure
V2X Vehicle-to-Everything
VEC Vehicular Edge Computing
VDT Vehicular Digital Twin
VLC Visible Light Communication
VR Virtual Reality
XAI Explainable AI
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cyber risks: The impact of DoS attacks on vehicle safety in
V2X networks,” IEEE Trans. Intell. Transport. Syst., pp. 1–10,
2024, early Access.

[75] O. Carsten and M. H. Martens, “How can humans understand
their automated cars? HMI principles, problems, and solu-
tions,” Cognit. Technol. Work, vol. 21, no. 1, pp. 3–20, May
2019.

[76] A. Eriksson and N. A. Stanton, “Takeover time in highly
automated vehicles: Noncritical transitions to and from manual
control,” Hum. Factors, vol. 59, no. 4, pp. 689–705, 2017.

[77] “Highway accident report: Collision between vehicle con-
trolled by developmental automated driving system and
pedestrain,” National Transportation Safety Board (NTSB),
Tempe, Arizona, Marc. 2018, Available: https://www.ntsb.gov/
investigations/AccidentReports/Reports/HAR1702.pdf.

[78] T. Zhang, J. Xu, S. Cong, C. Qu, and W. Zhao, “A hybrid
method of traffic congestion prediction and control,” IEEE
Access, vol. 11, pp. 36 471–36 491, 2023.

[79] Y. You, C. Chen, F. Hu, Y. Liu, and Z. Ji, “Advances of digital
twins for predictive maintenance,” Procedia Comput. Sci., vol.
200, pp. 1471–1480, 2022.

[80] Y. Liu, Z. Wang, K. Han, Z. Shou, P. Tiwari, and J. H.
L. Hansen, “Sensor fusion of camera and cloud digital twin
information for intelligent vehicles,” in Proc. IEEE Intell. Veh.
Symp. (IV), Las Vegas, NV, USA, Oct. 2020, pp. 182–187.

[81] H. Wang, W. Niu, Y. Liu, Y. Tan, and C. Xiu, “Low-speed
collision prevention warning for intelligent vehicles based on
digital twin and deep learning,” in Proc. Int. Conf. Data Sci.
Inf. Syst. (ICDSIS), Hassan, India, May 2024, pp. 1–7.

[82] S. A. P. Kumar, R. Madhumathi, P. R. Chelliah, L. Tao,
and S. Wang, “A novel digital twin-centric approach for
driver intention prediction and traffic congestion avoidance,” J.
Reliab. Intell. Environ., vol. 4, no. 4, pp. 199–209, Oct. 2018.

[83] Y. Ma, R. Du, A. Abdelraouf, K. Han, R. Gupta, and Z. Wang,
“Driver digital twin for online recognition of distracted driving
behaviors,” IEEE Trans. Intell. Veh., vol. 9, no. 2, pp. 3168–
3180, Feb. 2024.

[84] X. Liao, X. Zhao, Z. Wang, Z. Zhao, K. Han, R. Gupta, M.
J. Barth, and G. Wu, “Driver digital twin for online prediction
of personalized lane-change behavior,” IEEE Internet Things
J., vol. 10, no. 15, pp. 13 235–13 246, Aug. 2023.

[85] S. Liao, J. Wu, A. K. Bashir, W. Yang, J. Li, and U. Tariq,
“Digital twin consensus for blockchain-enabled intelligent
transportation systems in smart cities,” IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 11, pp. 22 619–22 629, Nov. 2021.

[86] S. S. Shadrin, D. A. Makarova, A. M. Ivanov, and N. A.
Maklakov, “Safety assessment of highly automated vehicles
using digital twin technology,” in Proc. Intell. Technol. Elec-
tron. Devices Veh. Road Transp. Complex (TIRVED), Prague,
Czech Republic, Sept. 2021, pp. 1–5.

[87] Z. Lv, J. Guo, A. K. Singh, and H. Lv, “Digital twins based
VR simulation for accident prevention of intelligent vehicle,”
IEEE Trans. Veh. Technol., vol. 71, no. 4, pp. 3414–3428, Apr.
2022.

[88] J. Duan, Z. Wang, and X. Jing, “Digital twin test method with
LTE-V2X for autonomous vehicle safety test,” IEEE Internet
Things J., 2024, early Access.

[89] L. Tang, M. Wen, Z. Shan, L. Li, Q. Liu, and Q. Chen,
“Digital twin-enabled efficient federated learning for collision

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2025.3581152

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:03:58 UTC from IEEE Xplore.  Restrictions apply. 

https://www.routledge.com/The-European-Union-as-an-Area-of-Freedom-Security-and-Justice-1st-Edition/Fletcher-Herlin-Karnell-Matera/p/book/9781138828575
https://www.routledge.com/The-European-Union-as-an-Area-of-Freedom-Security-and-Justice-1st-Edition/Fletcher-Herlin-Karnell-Matera/p/book/9781138828575
https://www.routledge.com/The-European-Union-as-an-Area-of-Freedom-Security-and-Justice-1st-Edition/Fletcher-Herlin-Karnell-Matera/p/book/9781138828575
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1702.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1702.pdf


SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS 35

warning in intelligent driving,” IEEE Trans. Intell. Transp.
Syst., vol. 25, no. 3, pp. 2573–2585, Mar. 2024.

[90] H. Du, S. Leng, J. He, and L. Zhou, “Digital twin based trajec-
tory prediction for platoons of connected intelligent vehicles,”
in Proc. IEEE 29th Int. Conf. Netw. Protoc. (ICNP), Dallas,
TX, USA, Nov. 2021, pp. 1–6.

[91] Y. Wang, “Digital twin-based collision and conflict warning
system for internet of vehicles,” in Proc. 4th Int. Conf. Neural
Netw. Inf. Commun. (NNICE), Guangzhou, China, Jan. 2024,
pp. 99–104.

[92] Z. Hou, S. Wang, H. Liu, Y. Yang, and Y. Zhang, “Twin
scenarios establishment for autonomous vehicle digital twin
empowered SOTIF assessment,” IEEE Trans. Intell. Veh.,
vol. 9, no. 1, pp. 1965–1976, Jan. 2024.

[93] Y. Hong and J. Wu, “Fuzzing digital twin with graphical
visualization of electronic AVs provable test for consumer
safety,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp.
4633–4644, Feb. 2024.

[94] D. J. Fremont, E. Kim, Y. V. Pant, S. A. Seshia, A. Acharya,
X. Bruso, P. Wells, S. Lemke, Q. Lu, and S. Mehta, “Formal
scenario-based testing of autonomous vehicles: From simula-
tion to the real world,” in Proc. IEEE Int. Conf. Intell. Transp.
Syst. (ITSC), Rhodes, Greece, Sept. 2020, pp. 1–8.

[95] G. Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari,
Z. Kalbarczyk, and R. Iyer, “AV-FUZZER: Finding safety
violations in autonomous driving systems,” in Proc. IEEE Int.
Symp. Softw. Rel. Eng. (ISSRE), Coimbra, Portugal, Oct. 2020,
pp. 25–36.

[96] X. Chen, E. Kang, S. Shiraishi, V. M. Preciado, and Z. Jiang,
“Digital behavioral twins for safe connected cars,” in Proc.
21th ACM/IEEE Int. Conf. Model Driven Eng. Lang. Syst.,
Copenhagen, Denmark, Oct. 2018, pp. 144–153.

[97] C. Liu, C. Zhang, B. Wang, Z. Tang, and Z. Xie, “Digital twin
of highway entrances and exits: A traffic risk identification
method,” IEEE J. Radio Freq. Identif., vol. 6, pp. 934–937,
2022.

[98] Q. Qu, Y. Shen, M. Yang, and R. Zhang, “Towards efficient
traffic crash detection based on macro and micro data fusion
on expressways: A digital twin framework,” IET Intell. Transp.
Syst., pp. 1–19, Feb. 2024.

[99] C. He, T. H. Luan, R. Lu, Z. Su, and M. Dong, “Security
and privacy in vehicular digital twin networks: Challenges and
solutions,” IEEE Wireless Commun., vol. 30, no. 4, pp. 154–
160, Aug. 2023.

[100] G. Li, C. Lai, R. Lu, and D. Zheng, “SecCDV: A security
reference architecture for cybertwin-driven 6G V2X,” IEEE
Trans. Veh. Technol., vol. 71, no. 5, pp. 4535–4550, May. 2022.

[101] Y. Yigit, I. Panitsas, L. Maglaras, L. Tassiulas, and B. Canberk,
“Cyber-twin: Digital twin-boosted autonomous attack detec-
tion for vehicular ad-hoc networks,” in Proc. IEEE Int. Conf.
Commun. (ICC), Denver, CO, USA, Jun. 2024, pp. 2167–2172.

[102] L. U. Khan, E. Mustafa, J. Shuja, F. Rehman, K. Bilal, Z.
Han, and C. S. Hong, “Federated learning for digital twin-
based vehicular networks: Architecture and challenges,” IEEE
Wireless Commun., vol. 31, no. 2, pp. 156–162, Apr. 2024.

[103] L. Liu, J. Fu, J. Feng, G. Wang, Q. Pei, and S. Dustdar,
“Blockchain-based distributed collaborative computing for ve-
hicular digital twin network,” IEEE Netw., vol. 38, no. 2, pp.
164–170, Mar. 2024.

[104] D. Gautam, G. Thakur, P. Kumar, A. K. Das, and Y. Park,
“Blockchain assisted intra-twin and inter-twin authentication
scheme for vehicular digital twin system,” IEEE Trans. Intell.
Transp. Syst., 2024, early Access.

[105] X. Luo, J. Wen, J. Kang, J. Nie, Z. Xiong, Y. Zhang, Z.
Yang, and S. Xie, “Privacy attacks and defenses for digital
twin migrations in vehicular metaverses,” IEEE Netw., vol. 37,
no. 6, pp. 82–91, Nov. 2023.

[106] R. Kumar, P. Kumar, A. Aljuhani, A. Jolfaei, A. K. M. N.
Islam, and N. Mohammad, “Secure data dissemination scheme

for digital twin empowered vehicular networks in open RAN,”
IEEE Trans. Veh. Technol., vol. 73, no. 7, pp. 9234–9246, Jul.
2024.

[107] Z. Yin, N. Cheng, T. H. Luan, and P. Wang, “Physical layer
security in cybertwin-enabled integrated satellite-terrestrial ve-
hicle networks,” IEEE Trans. Veh. Technol., vol. 71, no. 5, pp.
4561–4572, May 2022.

[108] K. Sun, J. Wu, A. K. Bashir, J. Li, H. Xu, Q. Pan, and Y. D. Al-
Otaibi, “Personalized privacy-preserving distributed artificial
intelligence for digital-twin-driven vehicle road cooperation,”
IEEE Internet Things J., 2024, early Access.

[109] M. Ali, G. Kaddoum, W.-T. Li, C. Yuen, M. Tariq, and H.
V. Poor, “A smart digital twin enabled security framework
for vehicle-to-grid cyber-physical systems,” IEEE Trans. Inf.
Forensics Secur., vol. 18, pp. 5258–5271, 2023.

[110] Z. Lv, S. Dang, L. Qiao, and H. Lv, “Deep-learning-based
security of optical wireless communications for intelligent
transportation digital twins systems,” IEEE Internet Things
Mag., vol. 5, no. 2, pp. 154–159, Jun. 2022.

[111] M. R. Kabir and S. Ray, “ViSE: Digital twin exploration
for automotive functional safety and cybersecurity,” J. Hardw.
Syst. Secur., pp. 1–12, May 2024.

[112] B. Li, X. Song, T. Dai, W. Wu, D. Zhu, X. Zhai, H. Wen,
Q. Lin, H. Chen, and K. Cai, “Trust management strategy for
digital twins in vehicular ad hoc networks,” IEEE J. Sel. Areas
Commun., vol. 41, no. 10, pp. 3279–3292, Oct. 2023.

[113] C. Zhang, L. Zhu, and C. Xu, “BSDP: Blockchain-based smart
parking for digital-twin empowered vehicular sensing networks
with privacy protection,” IEEE Trans. Ind. Inf., vol. 19, no. 5,
pp. 7237–7246, May 2023.

[114] Y. Liang, Z. Yin, L. Nie, and Y. Ba, “Shared steering control
with predictive risk field enabled by digital twin,” IEEE Trans.
Intell. Veh., vol. 8, no. 5, pp. 3256–3269, May 2023.

[115] S. Dasgupta, M. Rahman, and S. Jones, “Harnessing digital
twin technology for adaptive traffic signal control: Improv-
ing signalized intersection performance and user satisfaction,”
IEEE Internet Things J., 2024, early Access.

[116] A. Shams, C. M. Day, and S. Mahmud, “Digital twin of phys-
ical intersection to trajectory-based traffic signal controller,”
in Proc. IEEE Int. Conf. Automated Veh. Valid. (IAVVC),
Portsmouth, United Kingdom, Aug. 2023, pp. 1–6.

[117] H. Wang, Y. Guan, L. Zhao, J. Shi, S. Li, W. So, J. Ma, Q.
Song, Y. Zhang, and X. Liu, “Optimization method for urban
traffic signal control based on digital twin technology,” in Proc.
Int. Conf. Commun. Softw. Netw. (ICCSN), Shenyang, China,
Jul. 2023, pp. 444–448.

[118] V. K. Kumarasamy, A. J. Saroj, Y. Liang, D. Wu, M. P.
Hunter, A. Guin, and M. Sartipi, “Traffic signal optimization
by integrating reinforcement learning and digital twins,” in
Proc. IEEE Smart World Congr. (SWC), Portsmouth, United
Kingdom, Aug. 2023, pp. 1–8.
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twin for automated guided vehicles fleet management,” Proce-
dia Comput. Sci., vol. 199, pp. 1363–1369, 2022.

[156] C. Campolo, G. Genovese, A. Molinaro, and B. Pizzimenti,
“Digital twins at the edge to track mobility for maas appli-
cations,” in Proc. IEEE/ACM Int. Symp. Distrib. Simul. Real-
Time Appl. (DS-RT), Prague, Czech Republic, Sept. 2020, pp.
1–6.

[157] Y. Hu, M. Wu, J. Kang, and R. Yu, “D-tracking: Digital twin
enabled trajectory tracking system of autonomous vehicles,”
IEEE Trans. Veh. Technol., pp. 1–13, 2024, early Access.

[158] S. M. Serrano, R. Izquierdo, I. G. Daza, M. A. Sotelo, and
D. F. Llorca, “Digital twin in virtual reality for human-vehicle
interactions in the context of autonomous driving,” in Proc.
IEEE Int. Conf. Intell. Transp. Syst. (ITSC), Bilbao, Spain,
Sept. 2023, pp. 590–595.

[159] S. Ju, P. van Vliet, O. Arenz, and J. Peters, “Digital twin
of a driver-in-the-loop race car simulation with contextual
reinforcement learning,” IEEE Robot. Autom. Lett., vol. 8,
no. 7, pp. 4107–4114, Jul. 2023.

[160] X. Liao, Z. Wang, X. Zhao, K. Han, P. Tiwari, M. J. Barth,
and G. Wu, “Cooperative ramp merging design and field
implementation: A digital twin approach based on vehicle-
to-cloud communication,” IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 5, pp. 4490–4500, May 2021.

[161] Q. Wang, Y. Wang, Q. Hou, X. Wu, J. Meng, Y. Shan, and
B. Sun, “Research on lane changing strategy for automated
vehicles basing on vehicle-in-the-loop system,” in Proc. IEEE
Int. Conf. Autom. Electron. Electr. Eng. (AUTEEE), Shenyang,
China, Dec. 2023, pp. 173–177.

[162] S. Ye, R. Li, T. Li, G. Yang, P. Lv, H. Li, and Z. Pan, “Scenario
digitalization autonomous driving based on digital twin maps,”
in Proc. China Autom. Congr. (CAC), Chongqing, China, Nov.
2023, pp. 1466–1471.

[163] M. N. H. Shuvo, Q. Zhu, and M. Hossain, “Empowering digital
twin: Early action decision through GAN-enhanced predictive
frame synthesis for autonomous vehicles,” in Proc. IEEE/ACM
Symp. Edge Comput. (SEC), Wilmington, DE, USA, Dec.
2023, pp. 330–335.

[164] L. Bariah and M. Debbah, “The interplay of AI and digital
twin: Bridging the gap between data-driven and model-driven
approaches,” IEEE Wireless Commun., vol. 31, no. 3, pp. 219–
225, Jun. 2024.

[165] Z. Wang, K. Han, and P. Tiwari, “Digital twin-assisted coop-
erative driving at non-signalized intersections,” IEEE Trans.
Intell. Veh., vol. 7, no. 2, pp. 198–209, Jun. 2022.

[166] K. Wang, T. Yu, Z. Li, K. Sakaguchi, O. Hashash, and W.
Saad, “Digital twins for autonomous driving: A comprehensive
implementation and demonstration,” in Proc. Int. Conf. Inf.
Netw. (ICOIN), Ho Chi Minh City, Vietnam, Jan. 2024, pp.
452–457.

[167] Y. Liu, Z. Wang, K. Han, Z. Shou, P. Tiwari, and J. H. L.
Hansen, “Vision-cloud data fusion for ADAS: A lane change
prediction case study,” IEEE Trans. Intell. Veh., vol. 7, no. 2,
pp. 210–220, Jun. 2022.

[168] K. Olayemi, M. Van, S. McLoone, Y. Sun, J. Close, N.
M. Nhat, and S. McIlvanna, “A twin delayed deep deter-
ministic policy gradient algorithm for autonomous ground
vehicle navigation via digital twin perception awareness,”
arXiv:2403.15067, Mar. 2024.

[169] Z. Li, S. Li, A. Abdelraouf, R. Gupta, K. Han, O. Altintas,
and Z. Wang, “Digital twin-based cooperative driving at round-
abouts for connected and automated vehicles,” in Proc. Forum
Innovative Sustain. Transp. Syst. (FISTS), Riverside, CA, USA,
Feb. 2024, pp. 1–6.

[170] W. Lu, Z. Yi, Y. Gu, Y. Rui, and B. Ran, “TD3LVSL: A lane-
level variable speed limit approach based on twin delayed deep
deterministic policy gradient in a connected automated vehicle
environment,” Transp. Res. Part C: Emerg. Technol., vol. 153,

p. 104221, Aug. 2023.
[171] T. Fan, I. W.-H. Ho, and E. Chung, “Digital twin-assisted

lane-changing and variable speed limit control for weaving
segments,” in Proc. IEEE Int. Conf. Digital Twins Parallel
Intell. (DTPI), Boston, MA, USA, Oct. 2022, pp. 1–5.

[172] P. Kremer, N. Nourani-Vatani, and S. Park, “A digital twin
for teleoperation of vehicles in urban environments,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), London, United King-
dom, May 2023, pp. 12 521–12 527.

[173] L. Zhao, Z. Zhao, E. Zhang, A. Hawbani, A. Al-Dubai, Z.
Tan, and A. Hussain, “A digital twin-assisted intelligent partial
offloading approach for vehicular edge computing,” IEEE J.
Sel. Areas Commun., vol. 41, no. 11, pp. 3386–3400, Nov.
2023.

[174] K. Zhang, J. Cao, and Y. Zhang, “Adaptive digital twin and
multiagent deep reinforcement learning for vehicular edge
computing and networks,” IEEE Trans. Ind. Inform., vol. 18,
no. 2, pp. 1405–1413, Feb. 2021.

[175] K. Zhang, J. Cao, S. Maharjan, and Y. Zhang, “Digital twin
empowered content caching in social-aware vehicular edge
networks,” IEEE Trans. Comput. Soc. Syst., vol. 9, no. 1, pp.
239–251, Feb. 2022.

[176] K. Qu and W. Zhuang, “Digital twin assisted intel-
ligent network management for vehicular applications,”
arXiv:2403.16021, Mar. 2024.

[177] M. Li, J. Gao, C. Zhou, X. Shen, and W. Zhuang, “Digital
twin-driven computing resource management for vehicular net-
works,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Rio de Janeiro, Brazil, Dec. 2022, pp. 5735–5740.

[178] Y. Xie, Q. Wu, P. Fan, N. Cheng, W. Chen, J. Wang, and
K. B. Letaief, “Resource allocation for twin maintenance
and computing task processing in digital twin vehicular edge
computing network,” arXiv:2407.07575, Jul. 2024.

[179] J. Zheng, Y. Zhang, T. H. Luan, P. K. Mu, G. Li, M. Dong,
and Y. Wu, “Digital twin enabled task offloading for iovs: A
learning-based approach,” IEEE Trans. Netw. Sci. Eng., vol. 11,
no. 1, pp. 659–672, Jan.-Feb. 2024.

[180] A. Paul, K. Singh, C.-P. Li, O. A. Dobre, and T. Q. Duong,
“Digital twin-aided vehicular edge network: A large-scale
model optimization by quantum-DRL,” IEEE Trans. Veh. Tech-
nol., pp. 1–17, 2024, early Access.

[181] S. R. Jeremiah, L. T. Yang, and J. H. Park, “Digital twin-
assisted resource allocation framework based on edge collabo-
ration for vehicular edge computing,” Future Gener. Comput.
Syst., vol. 150, pp. 243–254, Jan. 2024.

[182] B. Hazarika, K. Singh, C.-P. Li, A. Schmeink, and K. F. Tsang,
“RADiT: Resource allocation in digital twin-driven UAV-aided
internet of vehicle networks,” IEEE J. Sel. Areas Commun.,
vol. 41, no. 11, pp. 3369–3385, Nov. 2023.

[183] B. Hazarika, K. Singh, A. Paul, and T. Q. Duong, “Hybrid
machine learning approach for resource allocation of digital
twin in UAV-aided internet-of-vehicles networks,” IEEE Trans.
Intell. Veh., vol. 9, no. 1, pp. 2923–2939, Jan. 2024.

[184] J. Yang, F. Lin, C. Chakraborty, K. Yu, Z. Guo, A.-T. Nguyen,
and J. J. P. C. Rodrigues, “A parallel intelligence-driven
resource scheduling scheme for digital twins-based intelligent
vehicular systems,” IEEE Trans. Intell. Veh., vol. 8, no. 4, pp.
2770–2785, Apr. 2023.

[185] X. Tan, Q. Meng, M. Wang, Q. Zheng, J. Wu, and J. Yang,
“Digital twin-based cloud-native vehicular networks architec-
ture for intelligent driving,” IEEE Netw., vol. 38, no. 1, pp.
69–76, Jan. 2024.

[186] B. Fan, Y. Wu, Z. He, Y. Chen, T. Q. S. Quek, and C.-
Z. Xu, “Digital twin empowered mobile edge computing
for intelligent vehicular lane-changing,” IEEE Netw., vol. 35,
no. 6, pp. 194–201, Nov./Dec. 2021.

[187] M. Parrish, M. Wang, and R. Zhang, “Digital-twin enabled
range modulation strategy for V2V safety messaging consid-
ering human reaction time,” in Proc. IEEE Veh. Technol. Conf.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2025.3581152

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:03:58 UTC from IEEE Xplore.  Restrictions apply. 



SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS 38

(VTC2022-Spring), Helsinki, Finland, Jun. 2022, pp. 1–6.
[188] C. Hu, W. Fan, E. Zeng, Z. Hang, F. Wang, L. Qi, and M. Z. A.

Bhuiyan, “Digital twin-assisted real-time traffic data prediction
method for 5G-enabled internet of vehicles,” IEEE Trans. Ind.
Inform., vol. 18, no. 4, pp. 2811–2819, Apr. 2022.

[189] Y. Hui, X. Ma, Z. Su, N. Cheng, Z. Yin, T. H. Luan, and Y.
Chen, “Collaboration as a service: Digital-twin-enabled col-
laborative and distributed autonomous driving,” IEEE Internet
Things J., vol. 9, no. 19, pp. 18 607–18 619, Oct. 2022.

[190] T. Wágner, T. Ormándi, T. Tettamanti, and I. Varga,
“SPaT/MAP V2X communication between traffic light and
vehicles and a realization with digital twin,” Comput. Electr.
Eng., vol. 106, pp. 108 560–108 575, Mar. 2023.

[191] Y. Hao, J. Wang, D. Huo, N. Guizani, L. Hu, and M.
Chen, “Digital twin-assisted URLLC-enabled task offloading
in mobile edge network via robust combinatorial optimization,”
IEEE J. Sel. Areas Commun., vol. 41, no. 10, pp. 3022–3033,
Oct. 2023.

[192] Y. Hui, Y. Qiu, N. Cheng, Z. Yin, R. Chen, K. Liang, and
T. H. Luan, “Digital-twin-enabled on-demand content delivery
in HetVNets,” IEEE Internet Things J., vol. 10, no. 16, pp.
14 028–14 041, Aug. 2023.

[193] L. Cazzella, F. Linsalata, M. Magarini, M. Matteucci, and U.
Spagnolini, “A multi-modal simulation framework to enable
digital twin-based V2X communications in dynamic environ-
ments,” arXiv:2303.06947, Mar. 2023.

[194] K. Sun, J. Wu, Q. Pan, X. Zheng, J. Li, and S. Yu, “Leveraging
digital twin and DRL for collaborative context offloading in C-
V2X autonomous driving,” IEEE Trans. Veh. Technol., vol. 73,
no. 4, pp. 5020–5035, Apr. 2024.

[195] B. Fan, Z. Su, Y. Chen, Y. Wu, C. Xu, and T. Q. S. Quek,
“Ubiquitous control over heterogeneous vehicles: A digital
twin empowered edge AI approach,” IEEE Wireless Commun.,
vol. 30, no. 1, pp. 166–173, Feb. 2023.

[196] M. Palmieri, C. Quadri, A. Fagiolini, and C. Bernardeschi,
“Co-simulated digital twin on the network edge: A vehicle
platoon,” Comput. Commun., vol. 212, pp. 35–47, Dec. 2023.

[197] L. Zhao, Z. Bi, A. Hawbani, K. Yu, Y. Zhang, and M.
Guizani, “ELITE: An intelligent digital twin-based hierarchical
routing scheme for softwarized vehicular networks,” IEEE
Trans. Mobile Comput., vol. 22, no. 9, pp. 5231–5247, Sept.
2023.

[198] M. Z. Alam, K. S. Khan, and A. Jamalipour, “Multi-agent best
routing in high mobility digital-twin-driven internet of vehicles
(IoVs),” IEEE Internet Things J., vol. 11, no. 8, pp. 13 708–
13 721, Apr. 2024.

[199] C. Ding and I. Wang-Hei Ho, “Digital-twin-enabled city-
model-aware deep learning for dynamic channel estimation in
urban vehicular environments,” IEEE Trans. Green Commun.
Netw., vol. 6, no. 3, pp. 1604–1612, Sept. 2022.

[200] Y. Gong, Y. Wei, Z. Feng, F. R. Yu, and Y. Zhang, “Resource
allocation for integrated sensing and communication in digital
twin enabled internet of vehicles,” IEEE Trans. Veh. Technol.,
vol. 72, no. 4, pp. 4510–4524, Apr. 2022.

[201] J. Zheng, T. H. Luan, Y. Hui, Z. Yin, N. Cheng, L. Gao, and
L. X. Cai, “Digital twin empowered heterogeneous network
selection in vehicular networks with knowledge transfer,” IEEE
Trans. Veh. Technol., vol. 71, no. 11, pp. 12 154–12 168, Nov.
2022.

[202] X. Tan, M. Wang, T. Wang, Q. Zheng, J. Wu, and J. Yang,
“Adaptive task scheduling in digital twin empowered cloud-
native vehicular networks,” IEEE Trans. Veh. Technol., vol. 73,
no. 6, pp. 8973–8987, Jun. 2024.

[203] X. Yuan, J. Chen, N. Zhang, J. Ni, F. R. Yu, and V. C. M.
Leung, “Digital twin-driven vehicular task offloading and irs
configuration in the internet of vehicles,” IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 12, pp. 24 290–24 304, Dec. 2022.

[204] B. Cao, Z. Li, X. Liu, Z. Lv, and H. He, “Mobility-aware
multiobjective task offloading for vehicular edge computing

in digital twin environment,” IEEE J. Sel. Areas Commun.,
vol. 41, no. 10, pp. 3046–3055, Oct. 2023.

[205] G. Cai, B. Fan, Y. Dong, T. Li, Y. Wu, and Y. Zhang, “Task-
efficiency oriented V2X communications: Digital twin meets
mobile edge computing,” IEEE Wireless Commun., vol. 31,
no. 2, pp. 149–155, Apr. 2023.

[206] J. Zheng, T. H. Luan, Y. Zhang, R. Li, Y. Hui, L. Gao, and M.
Dong, “Data synchronization in vehicular digital twin network:
A game theoretic approach,” IEEE Trans. Wireless Commun.,
vol. 22, no. 11, pp. 7635–7647, Nov. 2023.

[207] L. Zhao, T. Li, E. Zhang, Y. Lin, S. Wan, A. Hawbani, and
M. Guizani, “Adaptive swarm intelligent offloading based on
digital twin-assisted prediction in VEC,” IEEE Trans. Mobile
Comput., vol. 23, no. 8, pp. 8158–8174, Aug. 2024.

[208] “Prescan: Advanced driving simulation environment for ADAS
and AV testing,” Accessed: Aug. 15, 2024. [Online]. Avail-
able: https://es.mathworks.com/products/connections/product
detail/prescan.html.

[209] “PanoSim: Advanced driving simulation environment,” Ac-
cessed: Aug. 15, 2024. [Online]. Available: https://www.
panosim.com/en/.

[210] “Hyperledger fabric project,” Accessed: Aug. 15, 2024. [On-
line]. Available: https://www.hyperledger.org/projects/fabric.

[211] Z. Wang, K. Han, and P. Tiwari, “Digital twin simulation of
connected and automated vehicles with the unity game engine,”
in 2021 IEEE 1st Int. Conf. on Digital Twins and Parallel
Intelligence (DTPI), Beijing, China, Jul.-Aug. 2021, pp. 1–4.

Xiaohui Gu received the B.E. and Ph.D. degrees
from Nantong University, Nantong, China, in 2017
and 2023, respectively. She is currently a Lecturer
with the School of Information Science and Technol-
ogy, Nantong University. Her main research interests
include vehicular networks and edge intelligence.

Wei Duan received the Ph.D. degree from Chonbuk
National University, Jeonju, South Korea, in 2017.
He is currently a Full Professor with Nantong Uni-
versity, Nantong, China. He has authored more than
80 journal articles. His research interests include a
variety of topics in the areas of wireless communi-
cations.

He is serving as a Guest Editor for IEEE Net-
work Special Issue on Near-Field Communications:
Challenges and Opportunities in the Networking
Landscape, and served as a Guest Editor for IEEE

INTERNET OF THINGS Special Issue on Near-Field Communications (NFC)
in Internet of Everything, China Communications Special Issue on New
Advances in Nonorthogonal Multiple Access; and a Lead Guest Editor for
Wireless Communications and Mobile Computing Special Issue on Architec-
tures, Challenges, and Opportunities within 6G Emerging Technologies. He is
an Editor of Frontiers in Communications and Networks. Dr. Duan is serving
or served as TPC member for many conferences including ICC, GLOBECOM,
WCNC and VTC.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2025.3581152

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:03:58 UTC from IEEE Xplore.  Restrictions apply. 

https://es.mathworks.com/products/connections/product_detail/prescan.html
https://es.mathworks.com/products/connections/product_detail/prescan.html
https://www.panosim.com/en/
https://www.panosim.com/en/
https://www.hyperledger.org/projects/fabric


SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS 39

Guoan Zhang (Member, IEEE) received the B.S.
degree in precision instruments, the M.S. degree in
automatic instruments and equipment, and the Ph.D.
degree in communication and information systems
from Southeast University, Nanjing, China, in 1986,
1989, and 2001, respectively. He is currently a
Full Professor with the School of Information Sci-
ence and Technology, Nantong University, Nantong,
China. His current research interests include wireless
communications and vehicular networks.

Jia Hou received his B.S. degree in Communication
Engineering from Wuhan University of Technology,
China, in 2000. M.S. and Ph.D degrees in Infor-
mation & Communication from Chonbuk National
University, Korea, in 2002 and 2005, respectively.
He was the post-doctoral research fellow and the
invited professor in Chonbuk National University,
Korea, from April 2005 to April 2007. And now
he is the professor in Soochow University, China.
His main research interests are Signal Processing,
Coding and Modulation, Security and Cryptography,

Wireless Communications and Networking.

Limei Peng is with Shenzhen Institute for Advanced
Study, University of Electronic Science and Tech-
nology of China, and with the School of Computer
Science and Engineering, Kyungpook National Uni-
versity (KNU), Daegu, South Korea. Her research
interests include edge computing, wireless commu-
nications, and Internet of Things (IoT).

Miaowen Wen (Senior Member, IEEE) received the
Ph.D. degree in signal and information processing
from Peking University, Beijing, China, in 2014.
From 2019 to 2021, he was a Hong Kong Scholar
with the Department of Electrical and Electronic
Engineering, The University of Hong Kong, Hong
Kong. He is currently a Professor with the South
China University of Technology, Guangzhou, China.
He has authored or coauthored two books and more
than 200 journal articles. His research interests in-
clude a variety of topics in the areas of wireless and

molecular communications.
Dr. Wen was a recipient of the IEEE Communications Society Asia-Pacific

Outstanding Young Researcher Award in 2020. He served as an Editor for
the IEEE Transactions on Communications (2019-2024). Currently, he is
serving as an Editor/Senior Editor for the IEEE Transactions on Wireless
Communications, the IEEE Transactions on Molecular, Biological, and Multi-
scale Communications, and the IEEE Communications Letters.

Feifei Gao (Fellow, IEEE) received the B.Eng. de-
gree from Xi’an Jiaotong University, Xi’an, China in
2002, the M.Sc. degree from McMaster University,
Hamilton, ON, Canada in 2004, and the Ph.D. degree
from National University of Singapore, Singapore
in 2007. Since 2011, he joined the Department of
Automation, Tsinghua University, Beijing, China,
where he is currently a Tenured Full Professor.

Prof. Gao’s research interests include signal pro-
cessing for communications, array signal processing,
convex optimizations, and artificial intelligence as-

sisted communications. He has authored/coauthored more than 150 refereed
IEEE journal papers and more than 150 IEEE conference proceeding papers
that are cited more than 22000 times in Google Scholar. Prof. Gao has served
as an Editor of IEEE Transactions on Communications, IEEE Transactions
on Wireless Communications, IEEE Journal of Selected Topics in Signal
Processing (Lead Guest Editor), IEEE Transactions on Cognitive Communica-
tions and Networking, IEEE Signal Processing Letters (Senior Editor), IEEE
Communications Letters (Senior Editor), IEEE Wireless Communications
Letters, and China Communications. He has also served as the symposium
co-chair for 2019 IEEE Conference on Communications (ICC), 2018 IEEE
Vehicular Technology Conference Spring (VTC), 2015 IEEE Conference
on Communications (ICC), 2014 IEEE Global Communications Conference
(GLOBECOM), 2014 IEEE Vehicular Technology Conference Fall (VTC), as
well as Technical Committee Members for more than 50 IEEE conferences.

Min Chen (Fellow, IEEE) is currently a Full Pro-
fessor with the School of Computer Science and
Engineering, South China University of Technology.
He was the Director of the Embedded and Pervasive
Computing (EPIC) Laboratory, Huazhong University
of Science and Technology (HUST). Before joined
HUST, he was an Assistant Professor with the
School of Computer Science and Engineering, Seoul
National University. His Google Scholar Citations
reached more than 51,050 with an H-index of 100.
His top paper was cited more than 5,375 times. He

is a fellow of IET. He was a recipient of the IEEE Communications Society
Fred W. Ellersick Prize in 2017, the IEEE Jack Neubauer Memorial Award in
2019, and the IEEE ComSoc APB Oustanding Paper Award in 2022. He is the
founding Chair of the IEEE Computer Society Special Technical Communities
on Big Data and the Chair of IEEE Globecom 2022 eHealth Symposium. He
was selected as a Highly Cited Researcher from 2018 to 2024.

Pin-Han Ho (Fellow, IEEE) received the Ph.D.
degree from Queens University, Kingston, ON,
Canada, in 2002. He is currently a full professor
in the Department of Electrical and Computer Engi-
neering, University of Waterloo.

He is the author/co-author of over 400 refer-
eed technical papers, several book chapters, and
the coauthor of two books on Internet and optical
network survivability. His current research interests
cover a wide range of topics in broadband wired
and wireless communication networks, including

wireless transmission techniques, mobile system design and optimization, and
network dimensioning and resource allocation.

Dr. Ho is a Professional Engineer in Ontario.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2025.3581152

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:03:58 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Background and Motivation
	Related Works and Contributions
	Structure and Organization

	Enabling Technologies for Digital Twins
	Digital‐Twin Architecture and Its Network Perspective
	Physical Layer
	Communication Layer
	Digital Layer

	Data-Related Technologies
	Data Collection and Sensing Technologies
	Data Transmission Technologies
	Data Storage Solutions
	Data Processing and Transformation
	Advanced Analytics and Real-Time Decision-Making

	Physical-Related Technologies
	Sensors and Data Acquisition
	Integration with Control Systems
	Advanced Measurement Technologies
	Actuation Technologies and Control

	Model-Related Technologies
	Geometric Modeling
	Physics-Based Simulation
	Behavioral Modeling
	Model Verification and Validation

	Connection-Related Technologies
	Communication Networks
	Integration Platforms
	Middleware Technologies
	Interfaces and Protocols
	Security Technologies
	Interoperability Standards

	Service-Related Technologies
	Simulation Services
	Monitoring Services
	Optimization Services
	Diagnostic and Prognostic Services
	Knowledge Services

	Interaction and Coordination of Physical and Digital ITS

	Digital Twins for Vehicle Safety
	Overview of Vehicle Safety Challenges
	Technological Challenges in Data Communications
	Network-Dependent Interaction with Infrastructure
	Human Factors and Network-Based Situational Awareness

	Potentials of Digital Twin Technology for Vehicle Safety
	Enhancing Safety Features through Digital-Twin Integration
	Optimizing Traffic Flow and Network-Aware Safety Interventions
	Digital-Twin-Enabled Virtual Prototyping and System Resilience
	High-Fidelity Scenario-Based Testing for Autonomous Vehicles
	Predictive Maintenance and Fault Detection in Real Time
	Adaptive Network Management in Vehicular Edge Computing

	Digital Twin Applications for Vehicle Safety: A State-of-The-Art Review
	Enhancement of Vehicle Safety Features and Operations
	Simulation and Testing of Safety Scenarios
	Security and Privacy in Vehicular Systems

	Lessons Learned in Vehicle Safety Applications of Digital Twins

	Digital Twins for Traffic Management
	Overview Traffic Management Challenges
	Latency Constraints in Real-Time Data Exchange
	Network Congestion in High-Density Traffic Scenarios
	Reliability and Resilience in Networked Traffic Systems
	Data Integrity and Quality Control in Real-Time Networks
	Coordination Complexity with High Data Volume and Velocity

	Potentials of Digital Twin Technology for Traffic Management
	Unified, High-Fidelity Network Perception
	Predictive, Simulation-Driven Traffic Control
	Network-Aware Resource Orchestration
	Virtual Testbed for Policy Experimentation
	Continuous Anomaly Detection And Rapid Incident Recovery

	Digital Twin Applications for Traffic Management: A State-of-The-Art Review
	Traffic Signal Control and Optimization
	Transportation Traffic Prediction and Management
	Smart City and Infrastructure Management

	Lessons Learned in Traffic-Management Applications of Digital Twins

	Digital Twins for Intelligent and Autonomous Vehicles
	Overview of Challenges in Intelligent and Autonomous Vehicles
	High Data Volume and Transfer Rates
	Latency Sensitivity
	Network Reliability and Stability
	Spectrum Scarcity and Interference
	Human-Machine Interaction (HMI) Complexity

	Potentials of Digital Twin Technology for Intelligent and Autonomous Vehicles
	Predictive QoS Control and Dynamic Resource Allocation
	Twin-Guided Channel Adaptation and Interference Awareness
	Edge–Cloud Partitioning for Hierarchical Autonomy
	Fleet-Level Coordination and Efficient Spectrum Usage
	Scenario-Based Policy Validation and Safe Over-the-Air (OTA) Deployment

	Digital Twin Applications for Intelligent and Autonomous Vehicles: A State-of-The-Art Review
	Development and Validation of Autonomous Driving Systems
	Connected and Cooperative Vehicle Systems
	Optimizing Network Resource Management for CAV

	Lessons Learned in Intelligent- and Autonomous-Vehicle Applications of Digital Twins

	Future Research Opportunities
	Emerging IoT and Sensor Technologies
	5G and Beyond for Low-Latency, High-Bandwidth Connectivity
	Multi-Sensor Fusion and Advanced Sensors
	Distributed Sensing with Edge Intelligence
	Energy-Efficient IoT

	Simulation Model Innovations
	High-Fidelity Modeling for Complex Scenarios
	Cloud-based and Distributed Simulation Systems
	Sim-to-Real Transfer and Virtual Prototyping
	Real-Time Simulation and Optimization

	AI and ML Advancements
	RL for Autonomous Vehicle Decision-Making
	FL for for Distributed DT Systems
	Explainable AI (XAI) for Autonomous Systems
	Vehicular AI models Improved by Digital Twin

	Cybersecurity and Resilience in Distributed DT Networks
	Secure Communication Protocols for V2X Systems
	Anomaly Detection and Intrusion Prevention
	Resilient System Architectures
	Privacy-Preserving Techniques


	Conclusion
	Appendix
	Biographies
	Xiaohui Gu
	Wei Duan
	Guoan Zhang
	Jia Hou
	Limei Peng
	Miaowen Wen
	Feifei Gao
	Min Chen
	Pin-Han Ho


