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A B S T R A C T

With the continuous expansion of data scale, data condensation technology has emerged as a means to reduce
costs related to storage, time, and energy consumption. Data condensation can generate a synthesized dataset
of reduced size, enabling the training of models that exhibit high performance comparable to the original
dataset. Nevertheless, data condensation has also exposed privacy issues. Although many approaches have been
proposed to preserve privacy for data condensation, the privacy protection for data condensation has not been
well explored. Furthermore, to the best of our knowledge, none of the existing approaches propose dynamic
parameters-based differential privacy dataset condensation considering unnecessary noise introduced by the
fixed privacy parameter strategy. Most approaches typically inject constant noise with the fixed variance into
gradients across all layers using predefined privacy parameters, which can significantly impact model accuracy.
In this paper, we investigate alternative approaches for data condensation with differential privacy (DP) that
aim to ensure DP while minimizing the noise added to gradients and improving the model accuracy. First, we
develop a dynamic threshold method to reduce the noise added to gradients in the later stages of training by
using a clipping threshold that decreases with training rounds. Second, noise injection in our method is not
arbitrary as in conventional approaches; instead, it is based on the maximum size of the gradient after clipping.
This approach ensures that only minimal noise increments are introduced, thereby mitigating accuracy loss
and parameter instability that may arise from excessive noise injection. Finally, our privacy analysis confirms
that the proposed method provides a rigorous privacy guarantee. Extensive evaluations on different datasets
demonstrate that our approach can improve accuracy compared to existing DP data condensation techniques
while adhering to the same privacy budget and applying a specified clipping threshold.
1. Introduction

Datasets play a crucial role in any machine learning task. Typically,
a machine learning problem starts by taking in a dataset and leveraging
it to craft a model that fulfills a predefined objective. However, the
increasing use of machine learning has presented two challenges for
datasets. One challenge arises from the necessity to train numerous
models on extensive datasets in both algorithm design and practical
implementation in deep learning, substantially elevating the demands
on storage and transmission resources. Another challenge stems from
the increasing importance of privacy issues, prompting concerns about
potential breaches of privacy resulting from dataset usage.

For the first challenge, the primary difficulty lies in handling mas-
sive datasets. One natural idea is to compress the original datasets into
smaller ones and store only useful information for target tasks, which
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alleviates the burden on storage while maintaining model performance.
Data distillation (DD), introduced by Wang et al. [1], aims to synthesize
a small dataset so that models trained on it achieve high performance
on the original large dataset. A dataset distillation algorithm takes a
large real dataset (training set) as input and outputs a small synthetic
distilled dataset. This synthesized dataset is then evaluated by testing
models trained on it against a separate real dataset (validation/test
set). Dataset condensation (DC) was proposed by Zhao et al. [2,3],
which for the first time employs a gradient matching strategy to distill
datasets, resulting in a significant improvement in testing accuracy and
generalization ability. Therefore, DC can be a potential technique to
address the first challenge. Considering the second challenge, recent
work endeavors to demonstrate that training efficiency and privacy
can be achieved simultaneously by employing DC [4]. Unfortunately,
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Table 1
The averaged testing accuracy of ConvNets on different datasets. Comparison under
different number of samples per class 𝑠𝑝𝑐 ∈ {1, 10} and clipping norm 𝐶 = 0.1.
𝐶 = 0.1 Spc = 1 Spc = 10

Non-private PSG Non-private PSG

MNIST 88.73% 88.69% 99.66% 94.92%
FashionMNIST 66.14% 65.65% 93.54% 75.61%
SVHN 31.97% 25.73% 74.63% 29.85%
CIFAR10 30.60% 29.82% 49.63% 25.68%

able 2
he averaged testing accuracy of ConvNets on colored datasets. Comparison under
ifferent clipping norm 𝐶 ∈ {0.1, 2, 4, 8, 16} and the number of samples per class 𝑠𝑝𝑐 =
0.

PSG
Spc = 10

𝐶 = 0.1 𝐶 = 2 𝐶 = 4 𝐶 = 8 𝐶 = 16

SVHN 29.85% 44.57% 43.71% 48.46% 44.16%
CIFAR10 25.68% 32.18% 33.96% 34.08% 31.61%

C fails to improve the privacy of training machine learning models
ver a naive baseline [5]. The utilization of differential privacy (DP)
n machine learning is a leading privacy strategy, attracting attention
ue to its mathematical guarantee of privacy preservation. To tackle
rivacy concerns, many recent works combine DD and DC with DP [6–
]. Chen et al. [8] propose private set generation (PSG) to optimize a
radient matching objective for estimating a DP-based distilled dataset.
nspired by DP-SGD [9], PSG incorporates DP constraints by sanitizing
he stochastic gradient on real data at each outer iteration, resulting in
he generation of high-dimensional private data.

PSG enhances sample utility while maintaining generality and re-
ucing storage and computation consumption. However, when dealing
ith colored datasets, the excessive noise added by PSG to the gradient

an significantly affect both utility and visual quality. Table 1 shows
hat compared to MNIST and FashionMNIST, PSG has a significantly
reater impact on the accuracy of the synthesized datasets generated
n SVHN and CIFAR10. This is because Chen et al. [2] use clipping
orm 𝐶 = 0.1 as the default hyperparameter for the main experiments,
hich is suitable for simpler datasets like MNIST. However, for SVHN
nd CIFAR10, both of which are colored datasets, a small clipping norm
as a substantial impact on accuracy. We conduct an experiment to
erify the above claim. Table 2 illustrates that the accuracy of the PSG
lgorithm varies under different sizes of clipping norm 𝐶 and various
atasets. Fig. 1 illustrates that for colored datasets, increasing the
lipping norm 𝐶 to a certain size enhances visual quality. Better visual
uality indicates that the generated image is closer to a recognizable
mage and better reflects the characteristics and distribution of the
riginal dataset. Based on the above findings, we conclude that:

The generated dataset exhibits reduced utility and visual quality
ue to the significant impact of noise injected using conventional ap-
roaches, particularly when dealing with colored datasets. It is imper-
tive to decrease the magnitude of injected noise while still satisfying
P. For colored datasets, a small clipping norm causes the gradient to
e excessively clipped, and images cannot be distilled well.

ur contributions. In conclusion, the primary objective of this paper is
o significantly enhance the method of data condensation with respect
o differential privacy. Our proposed solution aims to minimize the
oise added to gradients while improving the overall accuracy of the
odel.

(1) We analyzed the performance of PSG across various datasets and
observed a significant decrease in accuracy compared to non-
privacy conditions when dealing with colored datasets. However,
we found that under high clipping norm conditions, the accuracy
decrease caused by DP in PSG when facing colored datasets was
alleviated. This realization highlighted the importance of the
clipping norm in the method.
2 
Fig. 1. Synthetic images generated by PSG under (𝜖, 𝛿) = (10, 10−5) for CIFAR10 and
SVHN datasets with clipping norm 𝐶 ∈ {0.1, 8}.

(2) We propose Dyn-PSG, a dynamic differential privacy data con-
densation method designed to address the limitations associated
with conventional noise addition using fixed DP parameters. Dyn-
PSG employs adaptive DP parameters to adjust the level of noise
added during the condensation process adaptively. Specifically,
we utilize a combination of dynamic gradient clipping methods
and dynamic sensitivity to apply smaller noise perturbations to
the gradient in later rounds.

(3) We conduct extensive experiments to evaluate Dyn-PSG on mul-
tiple datasets, including MNIST, FashionMNIST, SVHN, and CI-
FAR10. Our results demonstrate that compared to existing works,
Dyn-PSG effectively improves the utility and visual quality of the
images.

Roadmap. In Section 2, we provide an overview of DC and intro-
duce related concepts of DP. Section 3 elaborates on our algorithm
and outlines the design of the dynamic privacy parameter strategy.
In Section 4, we conduct extensive experiments to demonstrate the
superiority of our algorithm and evaluate the impact of key factors
on the utility and visual quality of the generated images. We discuss
related work in Section 5 and conclude the paper in Section 6.

2. Preliminary

2.1. Dataset condensation with gradient matching

Given a large dataset consisting of |𝑇 | pairs of samples and their
corresponding labels, denoted as 𝑇 = {(𝑥𝑖, 𝑦𝑖)}|

|𝑇 |
𝑖=1, where 𝑥𝑖 ∈ R𝑑

represents the feature, 𝑦𝑖 ∈ {1,… , 𝐿} indicates the class label, and
𝐿 is the total number of label classes. 𝑓𝜃(⋅) refers to the model with
parameters 𝜃. Let 𝑆 = {(𝑥𝑆𝑖 , 𝑦

𝑆
𝑖 )}

|𝑆|
𝑖=1 denotes the synthetic dataset. Then

we can formulate the dataset condensation problem as follows:

arg min
𝑆

E(𝑥,𝑦)∼𝑇 𝓁(𝑓𝜃(𝑆)(𝑥), 𝑦), (1)

where arg minE(𝑥,𝑦)∼𝑆𝓁(𝑓𝜃(𝑥), 𝑦), |𝑆| ≪ |𝑇 |

𝜃
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𝓁(⋅, ⋅) represents a task-specific loss function, such as cross-entropy.
(𝑓𝜃(𝑥), 𝑦) denotes to the cross-entropy between the model output 𝑓𝜃(𝑥)

and the label 𝑦.
Gradient matching, as proposed in [2], is a method to solve the

above optimization problem, which minimizes a matching loss between
the model gradients on the original and synthetic data. For gradient
matching, let 𝜃𝑇 and 𝜃𝑆 be the parameters trained on 𝑇 and 𝑆,
respectively. The objective of DC can be formulated as follows:

E(𝑥,𝑦)∼𝑃𝐷 [𝓁(𝐹 (𝑥; 𝜃𝐷), 𝑦)] ≃ E(𝑥,𝑦)∼𝑃𝐷 [𝓁(𝐹 (𝑥; 𝜃𝑆 ), 𝑦)]. (2)

The expectation is taken over the real data distribution 𝑃𝐷. Eq. (2) can
be naturally achieved once 𝜃𝑆 ≈ 𝜃𝐷. Specifically, initialized with the
same values 𝜃𝑆0 = 𝜃𝐷0 , solving for 𝜃𝑆𝑡 ≈ 𝜃𝐷𝑡 at each training iteration 𝑡
results in 𝜃𝑆 ≈ 𝜃𝐷 as desired. This can be achieved by optimizing the
synthetic set 𝑆 to produce a similar gradient as if the network were
trained on the real dataset at each iteration 𝑖:

min
𝑆

𝑑𝑖𝑠(∇𝜃(𝑆, 𝜃𝑖),∇𝜃(𝐷, 𝜃𝑖)), (3)

where ∇𝜃(𝑆, 𝜃𝑖) represents the gradient of the classification loss on
the synthetic set 𝑆, ∇𝜃(𝐷, 𝜃𝑖) denotes the stochastic gradient on the
eal data, and 𝑑𝑖𝑠 is a sum of cosine distances between the gradients
t each layer.

To replicate the training procedure, both the synthetic set 𝑆 and
he network 𝐹 (⋅, 𝜃) are updated jointly in an iterative manner. In each
uter iteration, 𝑆 is trained to minimize the gradient matching loss 𝑑𝑖𝑠,

while in each inner iteration, the network parameters 𝜃𝑡 are optimized
to minimize the classification loss on the synthetic set 𝑆. Moreover,
𝑆 is optimized over multiple initializations of the network parameters
𝜃0 to ensure the generalization ability of 𝑆 across different random
initializations when training a downstream model. The objective can
be summarized as follows:

𝑆 = arg min
𝑆

E𝜃0∼𝑃𝜃0

𝐼−1
∑

𝑖=0
[𝑑𝑖𝑠(∇𝜃(𝑆, 𝜃𝑖),∇𝜃(𝐷, 𝜃𝑖))], (4)

where 𝑃𝜃0 denotes the distribution over the initialization of network
parameters.

2.2. Differential privacy

Definition 1 (Differential Privacy(DP) [10]). For two adjacent datasets
𝐷 and 𝐷′, where 𝐷 and 𝐷′ differ from each other with only one
training example, and for every possible output set 𝑂, if a randomized
mechanism 𝑀 satisfies

𝑃𝑟[𝑀(𝐷) ∈ 𝑂] ≤ 𝑒𝜖 ⋅ 𝑃𝑟[𝑀(𝐷′) ∈ 𝑂] + 𝛿, (5)

then M obeys (𝜖, 𝛿)-DP.

Definition 2 (Sensitivity [11]). Let 𝐷 denote the domain of possible in-
put data and 𝑅 denote the domain of all possible output. The sensitivity
of a function 𝑓 : 𝐷 → 𝑅 is the maximum amount by which the function
value changes when a single entry of the input is perturbed.

𝑆′ = 𝑚𝑎𝑥𝐴,𝐴′⊆𝐷,‖𝐴−𝐴′
‖0=1‖𝑓 (𝐴) − 𝑓 (𝐴′)‖𝑝⋅ (6)

Definition 2 implies that to create a randomized differential privacy
algorithm 𝑀(𝑓 ) by adding noise that follows some randomization
distribution while preserving the utility of 𝑓 , we need to normalize the
noise by the maximum change, defined as the sensitivity of function 𝑓
with neighboring inputs.

Definition 3 (Gaussian Mechanism [10]). Let 𝑓 ∶ 𝑋 → 𝑅𝑑 be an
arbitrary 𝑑-dimensional function with sensitivity defined as

𝛥2𝑓 = 𝑚𝑎𝑥𝐷,𝐷‖𝑓 (𝐷) − 𝑓 (𝐷′)‖2 (7)

over all adjacent datasets 𝐷 and 𝐷′. The Gaussian mechanism 𝑀𝜎 ,
parameterized by 𝜎, adds noise into the output, i.e.,

𝑀 (𝑥) = 𝑓 (𝑥) +𝑁(0, 𝜎2𝑙) (8)
𝜎

3 
𝑀𝜎 satisfies (𝜖, 𝛿)-DP for 𝜎 ≥
√

2𝑙𝑛(1.25∕𝛿)𝛥2𝑓∕𝜖.

Any privacy cost is normalized upon releasing the private set of
generated data due to the closure of DP under post-processing.

Lemma 1. Let the noise variance 𝜍2 in the Gaussian mechanism be 𝜎2𝑆′2,
where 𝜎 is the noise scale and 𝑆′ is the 𝑙2 sensitivity. We have the noise scale
𝜎 satisfying 𝜎2 > 2𝑙𝑜𝑓 (1.25∕𝛿)

𝜖2
.

According to Lemma 1, the noise scale 𝜎 and privacy loss 𝜖 have an
nverse correlation given a fixed 𝛿. That is, a large noise scale indicates
small 𝜖, while a small noise scale implies the expenditure of a large

rivacy budget 𝜖.

heorem 1 (Post-processing [10]). If 𝑀 satisfies (𝜖, 𝛿)-DP, then 𝐹◦𝑋 will
lso satisfy (𝜖, 𝛿)-DP for any data-independent function 𝐹 , where ◦ denotes
he composition operator.

.3. Dataset condensation with differential privacy

Some works, such as PSG [8], modify the gradient matching frame-
ork by clipping and adding white noise to the gradients obtained from

he original dataset during the optimization process. These methods
ntegrate DP constraints by sanitizing the stochastic gradient on real
ata at each outer iteration, while maintaining the inner iterations
nchanged as their privacy is guaranteed by the post-processing, as
emonstrated in Theorem 1. The final objective can be formulated as
ollows:

= arg min
𝑆

E𝜃0∼𝑃𝜃0

𝐼−1
∑

𝑖=0
[𝑑𝑖𝑠(𝑔𝑆𝜃𝑡 , 𝑔

𝑇
𝜃𝑡
)]

here 𝑔𝑇𝜃𝑡 denotes the parameter gradient on 𝐷 that is sanitized via
aussian mechanism (Definition 3), and 𝑔𝑆𝜃𝑡 denotes the parameter
radient on 𝑇 . Such a routine has been demonstrated to offer im-
roved sample utility, while also satisfying strict differential privacy
uarantees.

. Our algorithm: Dyn-PSG

In this section, we introduce our method, Dyn-PSG, which utilizes
ynamic gradient clipping and dynamic sensitivity to minimize the
oise added to the gradient while maintaining accuracy performance.

.1. Outline of Dyn-PSG

We demonstrate the process of dataset condensation with differen-
ial privacy in Fig. 2(a) and outline Dyn-PSG in Algorithm 1. Dyn-PSG
s devised based on matching gradients of original and synthetic data.
iven a dataset 𝐷 = {(𝑥𝑖, 𝑦𝑖)

𝑁
𝑖=1} where 𝑥𝑖 ∈ R𝑑 represents the feature,

𝑖 ∈ {1,… , 𝐿} denotes the class label, 𝑁 is the number of samples, and
is the number of label classes. Our objective is to synthesize a set of

amples 𝑆 = {(𝑥𝑆𝑖 , 𝑦
𝑆
𝑖 )

𝑁
𝑖=1} such that samples in 𝑆 have the same form

s data in 𝐷.
For each uniformly sampled random batch {(𝑥𝑖, 𝑦𝑖)

𝐵
𝑖=1}, let 𝑔𝐷𝜃𝑡 (𝑥𝑖)

enote the per-example gradient on real data. With the clipping norm
𝑡 = 𝐷𝐸𝐶𝐴𝑌 (𝐶, 𝑡), the per-example gradient on real data 𝑔𝐷𝜃𝑡 (𝑥𝑖)

s preserved if its 𝑙2 norm satisfies ‖𝑔𝐷𝜃𝑡 (𝑥𝑖)‖2 ≤ 𝐶𝑡. Otherwise, if
𝑔𝐷𝜃𝑡 (𝑥𝑖)‖2 > 𝐶𝑡, the gradient vector 𝑔𝐷𝜃𝑡 (𝑥𝑖) needs to be brought down so
hat its 𝑙2 norm is capped by 𝐶𝑡. This is achieved by multiplying every
oordinate of the gradients with a scaling factor: 𝐶𝑡∕‖𝑔𝐷𝜃𝑡 (𝑥𝑖)‖2. Such
er-example gradient clipping is applied to each example (𝑥𝑖, 𝑦𝑖) in the
atch of the current iteration. Then, we calculate 𝑆𝑑𝑦𝑛 = 𝑚𝑎𝑥𝑖‖𝑔𝐷𝜃𝑡 (𝑥𝑖)‖2
nd inject the (𝜖, 𝛿)-differential privacy controlled Gaussian noise to
he average gradient: 𝑔𝐷𝜃𝑡 =

1
𝐵
∑𝐵

𝑖=1(𝑔
𝐷
𝜃𝑡
(𝑥𝑖) + (0, 𝜎2𝑆𝑑𝑦𝑛

2𝐼)). The entire
process of gradient clipping and noise addition is shown in Fig. 2(b).
We compute parameter gradients on synthetic data 𝑔𝑆 and update 𝑆 by
𝜃𝑡
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Fig. 2. Dataset condensation with differential privacy (left) is achieved by clipping gradients and adding noise to stochastic gradient on large training set. Our algorithm uses
dynamic parameters during gradient clipping and noise addition (right), thereby reducing the noise added during training. CE denotes Cross-Entropy.
∇𝑆𝑑𝑖𝑠(𝑔𝑆𝜃𝑡 , 𝑔
𝐷
𝜃𝑡
), where 𝑑𝑖𝑠 is the sum of cosine distances between the

gradients at each layer [2,3]. Subsequently, the network parameters 𝜃𝑡
are optimized to minimize the classification loss on the synthetic set 𝑆
in each inner iterations.

Proposition 1. The Dyn-PSD algorithm produces a (𝜖, 𝛿)-DP distilled
dataset.

Proof. Our privacy computation is based on the notion of Rényi-DP,
which we recall as follows.

Definition 4 (Rényi Differential Privacy (RDP) [12]). A randomized
mechanism 𝑀 is (𝛼, 𝜖)-RDP with order 𝛼, if

𝐷𝛼(𝑀(𝐷) ∥ 𝑀(𝐷′)) =
1

𝛼 − 1
𝑙𝑜𝑔E𝑥∼𝑀(𝐷)

[(𝑃𝑟[𝑀(𝐷) = 𝑋]
𝑃𝑟[𝑀(𝐷′) = 𝑥]

)𝛼−1]
≤ 𝜖

(9)

holds for any adjacent datasets 𝐷 and 𝐷′, where

𝐷𝛼(𝑃 ∥ 𝑄) = 1
𝛼 − 1

𝑙𝑜𝑔E𝑥∼𝑄[(𝑃 (𝑥)∕𝑄(𝑥))𝛼]

is the Rényi divergence of order 𝛼 >1 between the distributions 𝑃 and
𝑄.

To compute the privacy cost of our approach, we numerically com-
pute 𝐷𝛼(𝑀(𝐷) ∥ 𝐷(𝐷′)) in Definition 4 for a range of orders 𝛼 [13,14]
in each training step, which involves accessing the real gradient 𝑔𝐷𝜃 .
To obtain the overall accumulated privacy cost over multiple training
iterations, we utilize the composition properties of RDP, as summarized
by the following theorem.

Theorem 2 (Adaptive Composition of RDP [13]). Let 𝑓 ∶ 𝐷 → 𝑅1
be (𝛼, 𝜖1) − 𝑅𝐷𝑃 and 𝑔 ∶ 𝑅1 × 𝐷 → 𝑅2 be (𝛼, 𝜖2) − 𝑅𝐷𝑃 , then the
mechanism defined as (𝑋, 𝑌 ), where 𝑋 ∼ 𝑓 (𝐷) and 𝑌 ∼ 𝑔(𝑋,𝐷), satisfies
(𝛼, 𝜖1 + 𝜖2)-RDP

In total, our Dyn-PSG approach, as depicted in Algorithm 1, can be
regarded as a composition over 𝑅𝑇𝐾 (i.e., the number of iterations
where the real gradient is used) homogeneous subsampled Gaussian
mechanisms, with the subsampling ratio set to 𝐵∕𝑁 , in terms of the
privacy cost [15].

Theorem 3 (From RDP to (𝜖, 𝛿)-DP [12]). if𝑀 is a (𝛼, 𝜖)-RDP mechanism,
then M is also (𝜖 + 𝑙𝑜𝑔1∕𝛿 , 𝛿)-DP for any 0 < 𝛿 < 1.
𝛼−1

4 
Lastly, we leverage Theorem 3 to convert (𝛼, 𝜖)-RDP to (𝜖, 𝛿)-DP, and
prove that the Dyn-PSD algorithm produces a (𝜖, 𝛿)-DP distilled dataset.

3.2. Dynamic privacy parameters in Dyn-PSG

In order to mitigate the excessive noise added to gradients, we adopt
a dynamic privacy parameter strategy as follow.

𝐶_decay. Given that gradients tend to leak more information during
early training iterations than in later stages [16], a natural approach
is to design a differential privacy algorithm that injects larger noise
during the early stages of training and gradually reduces the noise as
training progresses. In the subsequent experiments, we used a linear
decay method to make clipping norm 𝐶𝑡 decay with t: Defined as
𝐶𝑡 = 𝐶(1 − 𝛾𝑡) where 𝛾 > 0 is the smooth controlling term for clipping
at iteration t. Given that clipping controls the largest gradient change
during training, the maximum gradient changes decrease with training
and progressively approach zero as convergence is reached. Therefore,
a dynamic decaying clipping method can predict the maximum changes
in gradients and adjust the dynamic sensitivity correspondingly.

𝑙2-max sensitivity. The sensitivity is calibrated to the 𝑙2-norm of
the gradients to prevent the addition of excessive noise. A smaller
noise variance is then employed to inject noise during the later stages
of training, enhancing the convergence speed while maintaining high
accuracy performance.

Given that the constant noise generated by the numerical value
of 𝐶 is excessive for the later stages of model training, the method
for dynamically adjusting the noise variance calibrated is to use the
max 𝑙2 norm measured on per-example gradients in a batch 𝐵 as
the sensitivity of the training function 𝑓𝑡 for iteration 𝑡. Consider the
following scenario: if the 𝑙2 norm of all per-example gradients in a batch
is smaller than the pre-defined clipping norm 𝐶, then 𝐶 becomes an
overestimation of the true sensitivity of the function 𝑓𝑡 at iteration 𝑡.

To address this, we redefine the sensitivity of 𝑓𝑡 as the maximum 𝑙2
norm among these per-example gradients in the batch. In other words,
the 𝑙2-max sensitivity will be the smaller value between the maximum
𝑙2 norm and the clipping norm 𝐶. Since the 𝑙2 norm of the gradients
closely follows the trend of gradient changes throughout the training
process, our dynamic 𝑙2 sensitivity approach adjusts the sensitivity 𝑆′

accordingly. This results in the injection of smaller differential privacy
noise during the later stages of training.

We integrate both the 𝑙2-max sensitivity and the clipping decay sen-
sitivity 𝐶_decay into PSG to leverage the benefits of both approaches.
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Algorithm 1: Dyn-PSG
Input:Dataset 𝐷 = {(𝑥𝑖, 𝑦𝑖)

𝑁
𝑖=1}, learning rate 𝜂𝜃∕𝜂𝑆 , clipping norm

𝐶, batch size 𝐵, number of experiment 𝐸, outer iterations 𝑇 , inner
iterations 𝐽 , batches 𝐾, desired privacy cost 𝜖 given a pre-defined
𝛿
Output:Synthetic set S
Compute the required DP noise scale 𝜎 numerically [11,13] so that
the privacy cost equals 𝜖 after the training; Initialize synthetic set
S using Kaiming initialization and the synthetic samples using
standard Gaussian ;
for exp in {1,. . . , E} do

Initialize model parameter 𝜃0 ∼ 𝑃𝜃0 ;
for 𝑜𝑢𝑡𝑒𝑟_𝑖𝑡𝑒𝑟 in {1,. . . ,T} do

𝜃𝑡+1=𝜃𝑡;
𝐶𝑡 = 𝐶(1 − 𝛾𝑡);
for 𝑏𝑎𝑡𝑐ℎ_𝑖𝑛𝑑𝑒𝑥 in {1,. . . ,K} do

Uniformly sample random batch {(𝑥𝑖, 𝑦𝑖)}𝐵𝑖=1 from 𝐷;
for 𝑒𝑎𝑐ℎ(𝑥𝑖, 𝑦𝑖) do

// Compute per-example gradients on
real data

𝑔𝐷𝜃𝑡 (𝑥𝑖) = 𝓁(𝐹 (𝑥𝑖; 𝜃𝑡), 𝑦𝑖);
// Clip gradients
𝑔𝐷𝜃𝑡 (𝑥𝑖) = 𝑔𝐷𝜃𝑡 (𝑥𝑖) ⋅ 𝑚𝑖𝑛(1, 𝐶𝑡∕||𝑔𝐷𝜃𝑡 (𝑥𝑖)||);

end
// Compute the max of 𝑙2 norm over 𝑀 layers

on the batch gradient for iteration 𝑡,
assign the sensitivity 𝑆𝑑𝑦𝑛.

𝑆𝑑𝑦𝑛 = 𝑚𝑎𝑥𝑖||𝑔𝐷𝜃𝑡 (𝑥𝑖)||2;
// Add noise to average gradient with

Gaussian mechanism
𝑔𝐷𝜃𝑡 =

1
𝐵
∑𝐵

𝑖=1(𝑔
𝐷
𝜃𝑡
(𝑥𝑖) + (0, 𝜎2𝑆𝑑𝑦𝑛

2𝐼));
// Compute parameter gradients on

synthetic data and update 𝑆
𝑔𝑆𝜃𝑡 = ∇𝜃(𝑆, 𝜃𝑡) =

1
𝑀

∑𝑀
𝑖=1 𝓁(𝐹 (𝑥𝑆𝑖 ; 𝜃𝑡), 𝑦

𝑆
𝑖 );

𝑆 = 𝑆 − 𝜂𝑆 ⋅ ∇𝑆𝑑𝑖𝑠(𝑔𝑆𝜃𝑡 , 𝑔
𝐷
𝜃𝑡
);

end
for 𝑖𝑛𝑛𝑒𝑟_𝑖𝑡𝑒𝑟 in 1,… , 𝐽 do

// Update network parameter using 𝑆
𝜃𝑡 = 𝜃𝑡 − 𝜂𝜃 ⋅ ∇𝜃(𝑆, 𝜃𝑡);

end
end

end
return Synthetic set 𝑆

This integration involves using the decaying clipping sensitivity 𝐶
instead of the initially large clipping norm. According to Lemma 1,
neither the decay clipping-based dynamic sensitivity nor 𝑙2-max sen-
sitivity directly affect the differential privacy guarantee. However,
when aiming for a specific accuracy target, the model optimized with
combined sensitivity approaches may achieve the target accuracy and
terminate training earlier, resulting in reduced overall privacy cost.

4. Experiments

In this section, we conduct experiments to verify the effectiveness
of Dyn-PSG. Specifically, we compare Dyn-PSG to baseline methods on
datasets with varying resolutions. We assess its cross-architecture per-
formance and the generalization capabilities of the synthetic datasets.
Additionally, we analyze the impact of various hyperparameters.
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Table 3
The accuracy of ConvNets on DP Sinkhorn, DP-MERF, PSG and Dyn-PSG. We set 𝜖 = 1
and show the averaged accuracy over three independent runs.

Method MNIST FMNIST SVHN CIFAR10

DP Sinkhorn 86.95% 43.22% 19.92% 12.65%
DP-MERF 84.88% 64.65% 22.31% 17.26%
PSG(Spc = 1) 86.34% 65.53% 25.46% 25.13%
Dyn-PSG(Spc = 1) 87.11% 66.70% 25.73% 29.10%
PSG(Spc = 10) 90.01% 70.49% 47.30% 31.23%
Dyn-PSG(Spc = 10) 92.55% 71.83% 49.09% 33.85%

Table 4
The averaged testing accuracy of ConvNets on SVHN and CIFAR10. Comparison under
different clipping norm 𝐶 ∈ {2, 4, 8, 16} and the number of samples per class 𝑠𝑝𝑐 = 10

Spc = 10 Method 𝐶 = 2 𝐶 = 4 𝐶 = 8 𝐶 = 16

SVHN
Non-private 76.1%

PSG 44.57% 43.71% 48.46% 44.16%
Ours 44.04% 49.01% 52.12% 51.96%

CIFAR10
Non-private 44.9%

PSG 32.18% 33.96% 34.08% 31.61%
Ours 31.59% 35.06% 35.84% 35.45%

4.1. Experimental setup

4.1.1. Datasets
We utilize two widely used benchmark datasets in this paper.

• MNIST [17] consists of 60,000 samples of 28 × 28 grayscale
images depicting handwritten digits sorted into 10 classes.

• FashionMNIST [18] consists of 60,000 samples of 28 × 28
grayscale images depicting items of clothing sorted into 10 classes.

• CIFAR10 [19] consists of 60,000, 32 × 32 colored images in 10
classes, with 6000 images per class. There are 50,000 training im-
ages and 10,000 test images. The classes are airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck.

• SVHN [20] is a digit classification benchmark dataset containing
images of printed digits (from 0 to 9) clipped from pictures of
house number plates. Each sample is sized at 32 × 32. The dataset
comprises 73,257 digits for training and 26,032 digits for testing.

4.1.2. Baselines
We compare our method to PSG, DP Sinkhorn [21] and DP-MERF

[22]. For PSG, we use Chen et al. [8]’s code and set 𝜖 = 1 or 𝜖 = 10.
For DP Sinkhorn, we use Cao et al. [21]’s code to run the experiments.
We set 𝑚 to 1 and 𝜖 = 1. For DP-MERF, we utilize Harder et al. [22]’s
code and set 𝜖 = 1.

4.1.3. Model and hyperparameters
We utilize a ConvNet with 3 blocks as the default architecture. Each

block consists of one Convolutional layer with 128 filters, followed
by Instance Normalization [23], ReLU activation, and Average Pooling
modules. The final output layer is a fully connected (FC) layer. We
initialize the network parameters using Kaiming initialization [24] and
the synthetic samples are initialized using a standard Gaussian distribu-
tion. The default hyperparameters used for the main experiments are as
follows: 𝑅 = 1000, 𝐾 = 10, and 𝑇 = 10. For MNIST and FashionMINST,
𝐽 = 1, while for SVHN and CIFAR10, 𝐽 = 10.

4.2. Main result

We conduct comparative experiments using Dyn-PSG, PSG, DP-
MERF and DP Sinkhorn on MNIST, FashionMNIST, SVHN, and CI-

FAR10, and analyze the experimental results. The main experimental
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Table 5
Comparison of generalization ability across different network architecture with (𝜖, 𝛿) = (10, 10−5) and clipping norm 𝐶 = 8. Generated set is optimized with ConvNet, while the
downstream classifiers are of different architecture.

SVHN CIFAR10

ConvNet MLP LeNet AlexNet VGG11 ResNet18 ConvNet MLP LeNet AlexNet VGG11 ResNet18

non-private 74.63% 28.86% 27.61% 28.67% 52.28% 20.01% 49.63% 30.87% 27.47% 15.11% 39.08% 22.25%

PSG 48.46% 21.04% 17.47% 13.87% 29.64% 15.34% 34.08% 27.91% 27.67% 26.95% 31.71% 17.08%
Ours 52.12% 17.92% 22.01% 19.74% 30.17% 15.41% 35.84% 28.60% 29.00% 26.35% 32.99% 21.58%
=

c
p
c
B
g
h
h
f
Z
n
s
e
l
e
l
w
u

results are shown in Table 3. PSG and our Dyn-PSG algorithm achieve
comparable performance to DP-MERF and DP-Sinkhorn with 1 sam-
ple per class. However, when using 10 samples per class, Dyn-PSG
outperforms PSG, DP-Sinkhorn, and DP-MERF, particularly on colored
datasets.

In order to provide a more comprehensive comparison with PSG, we
conduct extensive experiments comparing Dyn-PSG with PSG. Table 4
reports the results of experiments comparing Dyn-PSG with PSG on
colored datasets with different clipping norms. Our experiments on col-
ored image classification datasets demonstrate that compared with PSG,
Dyn-PSG improves accuracy by 3.66% on SVHN and 1.76% on CIFAR10
under the same privacy budget and a certain clipping threshold. Table 4
also indicates that PSG’s performance is sensitive to the settings of
clipping bound for colored datasets, leading to lower accuracy when the
clipping bound is set too large (e.g. C = 16). In contrast, Dyn-PSG uses
ynamic 𝑙2-max sensitivity, which adapts from iteration to iteration,
losely aligning with the decreasing trend of gradients throughout the
raining. From Fig. 3, we observe that when (𝜖, 𝛿) = (1, 10−5) and the

clipping norm 𝐶 = 8, the accuracy of Dyn-PSG increases more rapidly
than that of the baseline and ultimately achieves better results. This
demonstrates that our method reaches the target accuracy earlier and
surpasses the final performance of the baseline.

As shown in Table 5, we further train various model architectures
on the synthetic data generated by PSG and Dyn-PSG and present the
testing accuracy.

We visualize synthetic images generated by PSG and Dyn-PSG in
Fig. 4. Compared to PSG-generated images, we find that the images
generated by Dyn-PSG, particularly when optimized with ConvNet,
exhibit superior visual quality, even when utilized with downstream
classifiers of different architectures.

5. Related work

5.1. Synthetic data generation

Previous research has explored a variety of generative methods for
synthesizing data [25–30]. Due to the growing concerns of personal
privacy and the escalating frequency of data breaches, research in the
field of data privacy has been rapidly expanding in recent years. This
surge has witnessed a substantial increase in research efforts aimed at
developing differential private generative methods, particularly within
the domain of medical image research [31,32]. Existing work primarily
leverages DP-SGD to implement privacy within the Generative Adver-
sarial Networks (GANs) framework by privatizing the generator. In
GANs, the generator never has direct access to training data and thus
requires no privatization, as long as the discriminator is differential pri-
vate. Examples of this approach include DP-CGAN [33], DP-GAN [34],
G-PATE [35], DataLens [36], and GS-WGAN [37]. Recently, some new
works outside the GANs framework have been proposed, such as DP-
MERF [22] and DPHP [38], which adopt the approximate versions of
the maximum mean discrepancy (MMD) as their loss function; and DP-
Sinkhorn [21] that proposes using the Sinkhorn divergence in privacy
settings.

5.2. Dynamic privacy parameters for deep learning

Pichapati et al. [39] propose Adaclip, a differential private SGD

algorithm that provably adds less noise compared DP-SGD, by using r

6 
Fig. 3. Accuracy on SVHN and CIFAR10. We set (𝜖, 𝛿) = (1, 10−5) and clipping norm 𝐶
8.

oordinate-wise adaptive clipping of the gradient. Andrew et al. [40]
ropose Quantileclip wherein instead of a fixed clipping norm, one
lips to a value at a specified quantile of the update norm distribution.
oth of the above methods reduce excessive noise by changing the
radient clipping method. Wei et al. [41] propose DP-dyn[S, 𝜎], which
ave the sensitivity calibrated to the 𝑙2-norm of the gradients, and
ave a smoothly decaying noise scale such that the noise variance
ollows the trend of gradient updates across the 𝑇 training iterations.
hu et al. [42] propose a fine-grained differentially private mecha-
ism to mitigate the issue of privacy leakage in federated learning
ystems, specifically focusing on the potential leakage from gradi-
nts. The fine-grained approach to differential privacy in federated
earning is innovative and addresses a critical privacy concern. Liu
t al. [43] propose PADL, a privacy-aware and asynchronous deep
earning framework designed for Internet of Things (IoT) applications,
hich is specifically designed for IoT applications, addressing the
nique challenges of these environments, such as heterogeneity and

esource constraints.
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Fig. 4. Synthetic images generated by PSG and Dyn-PSG under (𝜖, 𝛿) = (10, 10−5) for
CIFAR10 and SVHN datasets with clipping norm 𝐶 = 8.

6. Conclusion

In this paper, we revisit the challenge of privacy-preserving dataset
condensation and identify issues associated with fixed clipping norms,
particularly when dealing with colored data. Our experiments on PSG
with colored datasets demonstrate that a too-small clipping norm re-
stricts the condensation on such datasets, while a larger pruning thresh-
old helps mitigate the impact of gradient clipping. To address these
challenges and enhance the utility of the generated dataset, we propose
dynamic privacy parameters dataset condensation algorithm called
Dyn-PSG. We show that datasets optimized with Dyn-PSG offer im-
proved utility and visual quality. Furthermore, we observe our gen-
erated sets optimized with ConvNet provides better utility even when
downstream classifiers have different architectures. We hope our work
can inspire further research in this promising direction to alleviate the
cost burden and privacy concern in deep learning.
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