
Natural Language Fine-Tuning
Jia Liu1,2 , Yue Wang1,3 , Zhiqi Lin1,3 , Min Chen1,3∗ , Yixue Hao2∗ , Long Hu2∗

1Pazhou Laboratory, Guangzhou, China
2Huazhong University of Science and Technology, Wuhan, China

3South China University of Technology, Guangzhou, China
{liujia0330, yixuehao, hulong}@hust.edu.cn,

{csyuewang, 202311089192}@mail.scut.edu.cn,
minchen@ieee.org

Abstract

Large language model fine-tuning techniques typ-
ically depend on extensive labeled data, external
guidance, and feedback, such as human alignment,
scalar rewards, and demonstration. However, in
practical application, the scarcity of specific knowl-
edge poses unprecedented challenges to existing
fine-tuning techniques. In this paper, focusing on
fine-tuning tasks in specific domains with limited
data, we introduce Natural Language Fine-Tuning
(NLFT), which utilizes natural language for fine-
tuning for the first time. By leveraging the strong
language comprehension capability of the target
LM, NLFT attaches the guidance of natural lan-
guage to the token-level outputs. Then, saliency
tokens are identified with calculated probabilities.
Since linguistic information is effectively utilized
in NLFT, our proposed method significantly re-
duces training costs. It markedly enhances training
efficiency, comprehensively outperforming rein-
forcement fine-tuning algorithms in accuracy, time-
saving, and resource conservation. Additionally, on
the macro level, NLFT can be viewed as a token-
level fine-grained optimization of SFT, thereby effi-
ciently replacing the SFT process without the need
for warm-up (as opposed to ReFT requiring mul-
tiple rounds of warm-up with SFT). Compared to
SFT, NLFT does not increase the algorithmic com-
plexity, maintaining O(n). Extensive experiments
on the GSM8K dataset demonstrate that NLFT,
with only 50 data instances, achieves an accuracy
increase that exceeds SFT by 219%. Compared to
ReFT, the time complexity and space complexity of
NLFT are reduced by 78.27% and 92.24%, respec-
tively. The superior technique of NLFT is paving
the way for the deployment of various innovative
LLM fine-tuning applications when resources are
limited at network edges.
Our code has been released at https://github.com/
Julia-LiuJ/NLFT.

∗Corresponding authors: Min Chen, Yixue Hao, Long Hu

1 Introduction

Figure 1: Accuracy Comparison of SFT and NLFT on GSM8K
dataset. NLFT has the same time and space complexity as SFT but
achieves a 27% increase in fine-tuning performance, maintaining a
stable performance advantage thereafter. With minimal dataset sam-
ples (only 50 data points), a brief training period (3 epochs, 287
seconds), and low computational resource consumption (44.46 GB
of GPU memory usage), NLFT does not require a warm-up phase
and can achieve a performance 1.19 times greater than SFT. Accord-
ing to the ReFT paper, ReFT is unable to outperform SFT within 8
epochs.

Supervised Fine-Tuning (SFT) is the most commonly
employed method for fine-tuning Large Language Models
(LLMs). As a foundational step in model fine-tuning, its ap-
plication enables LLMs to better adapt to tasks across various
domains and more effectively address specialized issues. For
instance, in the alignment tasks, both Reinforcement Learn-
ing with Human Feedback (RLHF) [Ouyang et al., 2022]
and Direct Preference Optimization (DPO) [Rafailov et al.,
2024b] utilize SFT to provide a solid initial condition for the

ar
X

iv
:2

41
2.

20
38

2v
1

 [
cs

.C
L

]
 2

9
D

ec
 2

02
4

https://github.com/Julia-LiuJ/NLFT
https://github.com/Julia-LiuJ/NLFT

Figure 2: Training process of SFT, ReFT, and NLFT. (a) The training process of SFT, which can be analogous to a student directly learning
from a collection of exercises, which include problems and their reference solutions; (b) The training process of ReFT, which can be realized
as a student repeatedly submitting their exam answers to a grading system, receiving scores, and striving to discover the strategies that
maximize their marks; (c) The training process of our proposed algorithm NLFT, which is similar to a student submitting exam answers
and receiving detailed feedback from a natural language evaluator. The system highlights the scoring points and losing points, allowing the
student to learn from both well-graded examples (i.e., for learning from teaching) and their work (i.e., for self-study), thereby increasing their
performance.

LLM, thereby leading the learning process to be more effi-
cient and stable. Typically, for mathematical problem solv-
ing, researchers employ Chain-of-Thought (CoT) [Wei et al.,
2022] to annotate problems and answers, then use SFT to
fine-tune the model for better tackling mathematical ques-
tions [Feng et al., 2024a] [Chu et al., 2023] [Wang et al.,
2022].

As the application field of LLMs continues to expand, fine-
tuning with small-scale, domain-specific data remains chal-
lenging due to the inefficiency of existing methods in utiliz-
ing limited samples. Consequently, researchers are progres-
sively exploring renovated fine-tuning methods to optimize
models. Recently, Reinforced Fine-Tuning (ReFT [Luong et
al., 2024] or RFT [OpenAI, 2024]) has garnered widespread
attention in the academic community for its superior perfor-
mance in terms of accuracy increment. It employs Reinforce-
ment Learning (RL) for the fine-tuning of model parameters,
and thus achieving more efficient model optimization within
the same data scale. However, introducing RL into LLMs
results in a significant increase in time and space complex-
ity, thereby raising the barriers to the deployment and utiliza-
tion of this technology, especially in a mobile and/or dynamic
network environment. Meanwhile, ReFT does not entirely re-
place SFT. In practical applications, it still requires the SFT
to warming-up to ensure that the model can more effectively

adapt to specific tasks or datasets [Luong et al., 2024]
To address these issues, in this paper, we propose a novel

minimal data fine-tuning method named Natural Language
Fine-Tuning (NLFT). Compared to previous methods, NLFT
utilizes natural language as the supervising signal and em-
ploys a simple minimal data fine-tuning algorithm to enhance
the efficiency of fine-tuning. To better illustrate the differ-
ences among SFT, ReFT, and NLFT, we give the following
analogy.

LLM is analogous to a student, and LLM’s fine-tuning pro-
cess is similar to the learning process of the student. Then,
SFT, ReFT, and NLFT represent three individual learning
processes of the student. Given learning math reasoning as an
example, in SFT, the student studies in parrot-fashion, where
the student is expected to write down a predetermined an-
swer when seeing some particular question after screening
numerous pairs of questions and standard answers. In ReFT,
the student first obtains the basic technique of solving math
reasoning problems by several epochs of SFT. Then, in or-
der to further improve the technique, ReFT requires the stu-
dent to submit answer sheets which include the detailed anal-
ysis for leading the math problem solution. In ReFT, a score
is given for each answer sheet by comparing it to the stan-
dard answer. By the score, the student adjusts the strategy
of math reasoning, which is similar to reinforcement learn-

ing. Since the target of the student is to achieve a high score
as much as possible, lots of rounds of submitting the answer
sheet and obtaining feedback from the evaluating system are
needed. However, in NLFT, the student’s learning process
more closely resembles a self-study method. When the an-
swer sheet hits majority scoring points, which represents the
student is on a good studying track at the beginning, the stu-
dent will re-answer the exam based on the standard answer
and compare it with the previous one to identify the scoring
points (see the upper part in Fig. 2c). When the answer sheet
contains lots of incorrect points, the student will re-answer
the exam based on both the standard answer and the judg-
ment from external evaluating system (see the bottom part in
Fig. 2c). After that, the losing points is identified by similar
comparison. Repeating these steps, the student’s ability im-
proves as the score hitting and point losing become clear. It
should be noted that the initial ”answer sheet” may not nec-
essarily be completed by the efforts of the student. That is if
the student’s ability is not enough, learning from others’ an-
swers is encouraged, especially from “good students”. If the
student is capable, self-studying is a better strategy than the
use of the student’s answers.

Specifically, for the reasoning output, NLFT evaluates the
conditional probability variations of each token under dif-
ferent prompt conditions to allocate the saliency token. On
this basis, the model refines the loss function based on the
saliency level of each token, thereby enabling more efficient
fine-tuning of the model. An overview of our algorithm is
shown in fig.2.

In summary, the contributions of this paper are as follows:

1. This paper introduces NLFT, a token-level natural lan-
guage fine-tuning algorithm. In contrast to previous
response-level fine-tuning methods that convert natu-
ral language into scalar rewards, our approach directly
leverages natural language and conducts token-level an-
notation. This method significantly improves the infor-
mation utilization efficiency within datasets, thereby re-
ducing the data requirements for NLFT. As a result, by
the use of only tens to thousands of data entries, NLFT
can achieve domain-specific fine-tuning of LLMs.

2. In this paper, we propose a novel Minimal data fine-
tuning that eliminates the need for a warm-up phase,
which is required by ReFT process. Furthermore, NLFT
achieves an accuracy rate that significantly surpasses
SFT with a small number of data entries. Besides, due
to the efficient algorithm design in both GPU memory
usage and training time, our method offers a substantial
advantage in time and memory utilization compared to
other methods (such as ReFT).

3. NLFT exhibits the extraordinary ability to solve the in-
trinsic pitfall of overfitting phenomenon associated with
small-sample data [Li et al., 2019]. Moreover, as a
token-level fine-tuning approach, NLFT possesses an
outstanding interpretability compared to response-level
fine-tuning. NLFT achieves a 64.29% accuracy with
only 50 training data samples, exhibiting a faster im-
provement rate compared to SFT and outperforming
SFT by 219%, as shown in Fig. 1.

2 Related Work
2.1 Natural Language Learning
In the past few years, much of the research in the area of LLM
fine-tuning has focused on scalar rewards, which are less ef-
ficient than directly using explicit natural language feedback.
This is because scalar reward-based methods provide only an
indirect understanding of semantic information, which can be
suboptimal. In contrast, natural language feedback enables
the expression with more delicate and complex preferences.
For example, Contrastive Unlikelihood Training (CUT) [Xu
et al., 2023] uses negative judgments to align values at the to-
ken level. Building on this idea, Natural Language Reinforce-
ment Learning (NLRL) [Feng et al., 2024b] redefines RL
principles within a natural language representation space, fur-
ther demonstrating how natural language can facilitate both
efficient policy optimization and improved interpretability.

2.2 Token-level LLMs Fine-Tuning
Response-level fine-tuning has played a significant role in
pretraining LLMs, but it often faces challenges in terms
of training difficulty and stability. In contrast, token-level
fine-tuning has emerged as a promising alternative. Re-
cently, several notable works have been proposed to im-
prove token-level fine-tuning. For instance, [Rafailov et al.,
2024a] extends DPO to a token-level Markov Decision Pro-
cess (MDP), which enhances alignment with the autoregres-
sive structure of LLMs and optimizes credit assignment. Ad-
ditionally, [Zhong et al., 2024] introduces Reinforced Token
Optimization (RTO), which combines token-level rewards
with DPO and Proximal Policy Optimization (PPO) to im-
prove policy learning efficiency significantly. These meth-
ods demonstrate the substantial potential of token-level fine-
tuning in improving model performance, particularly in com-
plex tasks where precision and consistency are crucial.

3 Method
In this section, we will provide a comprehensive overview
of the token-based fine-tuning algorithm NLFT, a novel fine-
tuning algorithm that concentrates on natural language CoT
and its result. Assuming the input of LLM is X and the rea-
soning outcomes from CoT is Y = {y1, y2, ..., yn}, by con-
ducting different input prompt X , we can obtain the condi-
tional probabilities of each token within the same CoT output
under different input conditions. After that, by comparing
these conditional probabilities, the saliency tokens are allo-
cated and we perform token-level loss calculation, thereby
achieving fine-grained tuning of the LLM. In short, the NLFT
algorithm yields significantly superior results with time and
space complexity compared to SFT. The detailed process of
NLFT is shown in Algorithm 1: Natural Language Fine-
Tuning. A more intuitive illustration can be observed in Fig.
3.

3.1 Preliminary Considerations
Recently, an interesting work on AI alignment via linguis-
tic feedback, Contrastive Unlikelihood Training(CUT) [Xu
et al., 2023] employs contrastive learning to fine-tune LLMs

Algorithm 1 Natural Language Fine-Tuning

1: Input: Xbase=<question>,
Xjudge=<question, judgment>,
Xstandard =< question, standard answer>, a CoT
reasoning output Y = {y1, y2, ..., yn}

2: Output: Fine-tuned model
3: if Y is correct then
4: for t = 1 to n do
5: Collect P (yt|Xbase, yt−), P (yt|Xstandard, yt−)
6: Calculate S(yt)
7: end for
8: else
9: for t = 1 to n do

10: Collect P (yt|Xbase, yt−), P (yt|Xjudge, yt−),
P (yt|Xstandard, yt−)

11: Calculate S(yt)
12: end for
13: end if
14: L = 1

N

∑
S(yt)× logP (yt|Xbase, yt−)

15: Fine-tune model
16: return Fine-tuned model

to modify erroneous output based on human negative judg-
ments. CUT reveals that, in contrast to the error-free tokens,
erroneous tokens experience significant variations in condi-
tional probabilities under the two distinct input conditions of
presence and absence of judgment. Building upon this in-
sight, we formulate the following hypotheses through exten-
sive experimental observations: Denoted different prompt in-
puts as X , the CoT reasoning results as Y = {y1, y2, ..., yn},
and the conditional probability of each token under different
input as P (yt|X, yt−), we assume that:

1. When the output Y aligns with expectations (that
is, the output is correct), the conditional probability
P (yt|X, yt−) of key scoring token (Saliency Token) yt
is significantly higher with prompt input Xstandard =<
question, standard answer> compared to Xbase =
< question>.

2. When the output Y falls to meet expectation (that
is, the output is incorrect), the conditional proba-
bility P (yt|X, yt−) of key scoring token (Saliency
Token) yt exhibit substantial variations under three
prompt inputs: Xbase =< question >, Xjudge =
< question, judgment >, and Xstandard =<
question, standard answer>.

Based on these assumptions, we introduce the NLFT algo-
rithm. Firstly, depending on whether the output meets ex-
pectations, the conditional probabilities of each token are ob-
tained under different prompt inputs. After that, Saliency To-
kens are located through contrastive learning, and the phrases
containing these tokens are located using a semantic similar-
ity cluster. Finally, a token-level loss function is constructed
to achieve fine-grained fine-tuning.

3.2 Token-level Conditional Probability Analysis
Formally, the process of generating results through the nat-
ural language CoT can be decomposed into a sequence of

Figure 3: An example of the training process of NLFT, which takes
question, standard answer, and judgment as inputs and generates dif-
ferent Input Prompts. Then, under different prompts, the algorithm
compares different conditional probabilities to allocate the saliency
token and assign scale values.

next-token prediction actions. To be specific, take the CoT
reasoning result as Y = {y1, y2, ..., yn}, where each< yt >
is a token inferred based on the given input X and the previ-
ous output yt− = {y1, y2, ..., yt−1}. Besides, each yt has its
own conditional probability function P (yt|X, yt−). As pre-
viously stated, the conditional probabilities of salient tokens
undergo significant changes with varying inputs X . Build-
ing on this observation, we categorize the reasoning results
Y into correct and incorrect outcomes, then selectively per-
form conditional probability lookup and collection for each
category.

Correct Output. When the CoT reasoning output
Y is correct, the input X is divided into two cate-
gories: Xbase =< question > and Xstandard =<
question, standard answer >. Then, for each token
yt of output Y , we will have two conditional probability
P (yt|Xbase, yt−) and P (yt|Xstandard, yt−). In following
section, we will allocate the saliency token based on these
conditional probabilities.

Incorrect Output. When the reasoning output Y is incor-

rect, the input X is divided into three categories: Xbase =
< question >, Xjudge =< question, judgement >, and
Xstandard =< question, standard answer >. Then,
for each token yt of output Y , we will have three condi-
tional probabilityP (yt|Xbase, yt−), P (yt|Xjudge, yt−), and
P (yt|Xstandard, yt−). In the following section, we will allo-
cate the saliency token based on these conditional probabili-
ties.

3.3 Probability-driven Saliency Token Allocation
After obtaining the conditional probabilities, we proceed to
classify them and allocate the saliency tokens. Similarly, the
allocation strategies are divided into two categories: correct
outcomes and incorrect outcomes.

Correct Output. When the CoT reasoning output Y is
correct, we set the threshold conditional probability pcorrect0 .
When the conditional probability P (yt|Xstandard, yt−) >
pcorrect0 , it is considered that the token is more likely to be
adopted under Xstandard condition than the threshold condi-
tional probability. This implies a greater correlation between
the token and the Xstandard condition, hence it is allocated
as a saliency token. After that, we perform semantic cluster-
ing around these saliency tokens to identify their associated
phrase and designate them as sub-saliency tokens. Finanlly,
the remaining token are categorized as irrelevant tokens.

Incorrect Output. For the incorrect CoT reasoning output
Y , we cannot simply set a threshold conditional probability,
as the conditional probabilities for all tokens are generally
lower in such instances. Therefore, we calculate the follow-
ing two ratios,

r1 =
P (yt|Xjudge, yt−)

P (yt|Xbase, yt−)
, (1)

r2 =
P (yt|Xjudge, yt−)

P (yt|Xstandard, yt−)
. (2)

If a token is a saliency token, then its conditional probabil-
ity under Xjudge condition should be much higher than that
under Xbase and Xstandard. Consequently, its correspond-
ing ratios r1 and r2 will also be higher. Therefore, if a token
has both its corresponding ratios r1 and r2 exceeding a pre-
set value r0, and its own conditional probability surpasses the
threshold pincorrect0 , the token will be allocated as a saliency
token. After that, we also perform semantic clustering around
these saliency tokens to identify the associated phrase. Given
that these tokens are close to the saliency token under incor-
rect situations, we directly categorize them as irrelevant to-
kens and assign a scale of zero to them in subsequent con-
trastive learning processes.

3.4 Token-level Loss Calculation
In this section, we will assign scale values based on the previ-
ously allocated saliency tokens and proceed with contrastive
learning. Similarly, the scale strategies are divided into two
categories: correct outcomes and incorrect outcomes.

Correct Output. As we shown before, in the correct CoT
reasoning output, the tokens are classified into three kinds:
saliency tokens, sub-saliency tokens, and irrelevant tokens.
For each token, we have scales,

S(yt) =

1 +

(
P (yt | Xstandard, yt−)− pcorrect0

1− pcorrect0

)c1

,

if yt ∈ Ysaliency,(
P (yt | Xstandard, yt−)

pcorrect0

)c2

,

if yt ∈ Ysub−saliency,(
P (yt | Xstandard, yt−)

pcorrect0

)c3

,

if yt ∈ Yirrelevant.
(3)

where c1, c2, and c3 are hyper-parameters and c2 < c3. It
can be observed that under such configuration, all three scales
increase as the conditional probability P (yt|Xstandard)
grows. Meanwhile, the scales of the saliency tokens are the
largest and always exceed 1, while the scales of the sub-
saliency tokens are consistently greater than that of the ir-
relevant tokens.

Incorrect Output. In the incorrect CoT reasoning output,
the tokens are classified into two kinds: saliency tokens and
irrelevant tokens. For the irrelevant tokens, we will set the
scales to 0, as within incorrect Output, we only wish to con-
sider the saliency tokens. For the saliency tokens, we have
scales,

S(yt) =
2

1 + e−(r1−r0)
(4)

The scales are larger than 0 and smaller than 1, and
these scales also increase as the conditional probability
P (yt|Xjudge) grows.

After obtaining the scales of each token, we get our final
loss function,

L =
1

N

 ∑
yt∈Ycorrect

S(yt)× logP (yt|Xbase, yt−)

+
∑

yt∈Yincorrect

S(yt)× (1− logP (yt|Xbase, yt−))

(5)

4 Experiments
4.1 Dataset
We conduct experiments on the Mathematics problem dataset
GSM8K [Cobbe et al., 2021]. It offers mathematics prob-
lems in natural language form, standard solution processes,
and numerical standard answers. The training set of GSM8K
contains 7473 entries, while the test set contains 1319 entries.
We employed data prompting and CoT prompting to obtain
the analysis and result (that is, the reasoning output).

Learning from teaching: When the accuracy of the base
model to be fine-tuned is low, we choose to use other mod-
els with better performance to generate the analysis and re-
sult (that is, the reasoning output). We refer to this pro-
cess as “teaching”. Specifically, We utilized LLAMA3-8B-

Instruct [Roziere et al., 2023] to obtain the analysis and result
of the case.

Learning from self-study: When the model has the capac-
ity to generate a certain percentage of correct responses, we
proceed to let the trained model learn from its own answers
and produce results. We refer to this process as self-study. In
this scenario, we directly utilize the trained model to produce
the reasoning output.

When the reasoning output is incorrect, we leverage the
GPT-4o [OpenAI, 2023] to acquire the annotations for judg-
ment. The instruction prompt for judgment is provided in
Appendix. A.1.

4.2 Experimental Setup
We conduct experiments on the LLAMA3-8B base
model [Roziere et al., 2023].

Training Subset Setup: To investigate the learning capac-
ity of NLFT with a small dataset, we randomly shuffle the
data in the training set. According to the shuffled index or-
der, we take the first 400, first 800, first 25%, first 50%, and
100% respectively to construct training sets for experimental
preparations.

Hyper-parameter Settings: All experiments are carried
out on two A800 GPUs, which is four times lower than the
requirement demanded by reinforcement learning-based fine-
tuning methods such as ReFT. Besides, we select the AdamW
optimizer [Loshchilov and Hutter, 2019] and the cosine learn-
ing rate scheduler. The batch size is set to be 4 and the learn-
ing rate is set to be 5 × 10−5. If a small dataset is utilized,
the model is trained for 10 epochs, while with an extensive
dataset, training is trained for 3 epochs. For the parameters in
NLFT, pcorrect0 is set to be 0.95, pincorrect0 is set to be 0.01,
and r0 is set to be 1.5. For the scale hyper-parameters, c1, c2,
and c3 are set to be 5, 0.3, and 0.6. Detailed hyper-parameter
configurations are shown in Appendix B.

Evaluation: We utilize the full dataset to assess the ac-
curacy of natural language CoT reasoning Output from fine-
tuned LLM. The evaluation process employs the same prompt
templates as those used during the Training phase. In our set-
tings, the temperature is set to 0.6 during text generation, and
maximum generation length is 512 tokens.

4.3 Baseline
We compare our model NLFT with SFT [Ouyang et al., 2022]
and ReFT [Luong et al., 2024] baselines. To ensure a fair
comparison, we make sure that the hyperparameter settings
for the SFT baseline match those of the NLFT experiments.
The details on the hyperparameter settings is shown in Ap-
pendix B. Besides, our study concentrates on natural lan-
guage fine-tuning, hence we only select the corresponding
component of ReFT, that is, the CoT-N portion. Although
the procedural language (CoT-P) component of ReFT shows
better performance on the GSM8K dataset for mathematical
reasoning tasks, it significantly deviates from our experimen-
tal setup, leading to its omission.

4.4 Results
Full dataset experiment: Fig. 4 compares the performance
of NLFT and SFT baseline on GSM8K dataset. Starting

Figure 4: Comparison of accuracy of SFT and NLFT using 25%,
50%, 75%, and 100% of GSM8K training set, corresponding to
1868, 3737, 5605, and 7473 samples, respectively. At proportion
of 0 represents base model before fine-tuning.

Figure 5: Comparison of accuracy of NLFT using minimal dataset
samples of GSM8K as a training set, including NLFT trained with
200 steps, 1 epoch, and 2 epochs, respectively. To better illustrate the
increase in accuracy from the data size of 50 to 100, we additionally
provide plots for data size of 75, under the settings of 1-epoch and
2-epoch training.

from the same initial base model at proportion of 0 1, we
can observe that NLFT consistently achieves higher accuracy
over SFT, with NLFT achieving an accuracy rate above 70%
across all four percentage datasets, whereas SFT is between
44% and 46%. NLFT outperformed SFT with an accuracy
improvement of over 25%. Furthermore, the change in the
proportion of the training dataset has little impact on the ac-
curacy of both NLFT and SFT, which indicates the boundary
effect on accuracy improvement by expanding data size will
gradually decrease. Therefore, it is reasonable to shift our fo-
cus to a smaller size of training dataset especially lower than
25%, to fill the gaps of accuracy details from 0 to 25%.

Limited-size dataset experiment: To investigate the per-

1In our experiments, LLAMA3-8B base model failed to provide
any reasoning for getting answer, and its generation mostly just re-
peats the instruction prompt. The accuracy claimed in LLAMA3
official website is achieved by LLAMA3-8B-Instruct under our re-
production.

Figure 6: Accuracy comparison between SFT and NLFT trained in
minimal dataset samples with data size of 50 from 1 to 16 epochs.

Figure 7: Comparison of GPU memory utilization between SFT,
ReFT, and NLFT. The batch size in ReFT is set to 2. SFT and NLFT
share the same runtime batch size of 2. NLFT has GPU memory
usage as lightweight as SFT, which is more than 10 times lower than
ReFT.

formance of NLFT when using minimal dataset samples as
a training set, we adopt data sizes ranging from 50 to 400,
separated by 50. In Fig. 5, we conduct experiments with
fixed training steps at 200 across different data sizes. We ob-
serve that the first plot, utilizing shuffled 50 data entries, has
achieved an accuracy rate of 62.93%, which is close to the
last plot with 400 data entries.

To reveal the intermediate states of models when LLM
learns from different data entries, we evaluate model accu-
racies trained after 1 and 2 epochs and plot them as dotted
lines. In our settings, the more epochs or steps the model is
trained, the closer it converges to the line of NLFT with 200
steps.

Fig. 6 compares the accuracy of NLFT over 16 continu-
ous epochs. We observe that the accuracy in epoch 1 was
11.30%. By epoch 2, it sharply increased to 30.8%, reaching
the accuracy of SFT by epoch 5. Subsequently, the model
accuracy continued to improve, reaching 60.1% by epoch 4,
after which it remained consistently above 60%. Meanwhile,
SFT started its rapid ascent from epoch 1 to 5, achieving the

Figure 8: Comparison of per-epoch average time cost of NLFT, SFT,
and ReFT. The data size of each experiment is fixed to 800. ReFT
has a significantly higher time cost compared to NLFT and SFT.
NLFT takes approximately 3 times longer than SFT on average.

highest accuracy of 34.4% at epoch 8, after which it gradu-
ally declined. These results indicate that NLFT demonstrates
breakthrough learning potential with a limited dataset, which,
to the best of our knowledge, is not possessed by fine-tuning
algorithms such as SFT.

Algorithm comparison: To validate the performance of
different fine-tuning algorithms under identical data scales
and training conditions, Fig. 9 conducted experiments using a
random subset of the first 800 data points, training and testing
the accuracy of NLFT, SFT, and ReFT after 10 epochs. The
hyperparameters for NLFT and SFT were configured consis-
tently, while those for ReFT were set according to the origi-
nal paper. Following [Luong et al., 2024], ReFT trains on the
basis of SFT warm-up with 2 epochs. In the first test, we ob-
served that ReFT accuracy persistently declined over the first
4 epochs, and dropped to zero by epoch 5 2. To ensure the
experimental result is correct, we conducted a second experi-
ment with ReFT, maintaining a data scale of 800 instances,
and observed a similar decline to zero accuracy by the 6
epoch. Upon reviewing the output, we discovered that the
model regraded to repeating the instruction. This degradation
is attributed to the instability of ReFT (and other reinforce-
ment learning-based fine-tuning algorithms), which have sig-
nificant requirements for data quantity. While ReFT can learn
effectively with the full dataset, it often reverts to a state of
non-learning when data quantity is insufficient. Under 800
data samples, SFT is capable of learning effectively, reaching
an accuracy of 39.88% at epoch 5, after which the accuracy
had a decline of over 10%. In contrast, NLFT achieved an
accuracy of 71.65%, with no significant drop in accuracy fol-
lowing the epoch of peak performance. This demonstrates
the universality of NLFT with respect to data quantity and

2We reproduced ReFT, and experiments show that under full
dataset of GSM8K, ReFT can improve accuracy on top of SFT-
warmup models, just as in the original paper. However, here we fo-
cus on experiments of minimal data fine-tuning, and in order to make
consistency with NLFT and SFT experiments, we adopted training
results with 800 data points instead of full dataset.

Figure 9: Comparison of accuracy of NLFT, SFT, ReFT with data size of 800. Both experiments of ReFT are pre-warmed using SFT, and the
initial accuracy is shown in epoch 0.

the efficiency of its training outcomes.
Time Cost Analysis: Under 800 data samples, we con-

ducted a comparative analysis of the training time required
for NLFT, SFT, and ReFT across 10 epochs. Since ReFT al-
gorithm cannot be executed in two-GPU configuration, we
recorded time consumption of each algorithm under an eight-
GPU configuration for fair comparison. As shown in Fig. 8,
ReFT required an average of 30 minutes per epoch, whereas
NLFT, due to the use of more GPUs, saw a significant reduc-
tion in training time compared to 26.1 minutes the two-GPU
setup, averaging 6.5 minutes.

It is worth noticing that, the time consumption ratio be-
tween NLFT and SFT is around 3. NLFT involves three times
the forward inference processes compared to SFT, hence its
time complexity constant is at least 3. Despite the increased
constant term, NLFT still qualifies as a lightweight fine-
tuning algorithm with linear time complexity.

Memory Use Analysis: Fig. 7 illustrates the runtime GPU
memory usage of each fine-tuning algorithm. With a two-
GPU configuration, SFT averages a total memory usage of
44.55 GB, while NLFT averages 46.87 GB. NLFT’s memory
usage is only 5.2% higher than SFT’s, which still falls within
the category of lightweight fine-tuning algorithms. In con-
trast, ReFT requires an average of 599.57 GB of total mem-
ory, which is not in the same order of magnitude as NLFT.
Regarding hardware configuration and memory usage, NLFT
not only matches SFT’s requirements but also significantly
outperforms reinforcement learning-based fine-tuning algo-
rithms like ReFT, offering a unique advantage in terms of
hardware resource demands.

5 Analysis
5.1 Stability Analysis
Compared with SFT and ReFT, the NLFT shows a robust ca-
pacity to mitigate overfitting in minimal data scenarios. Fig. 6
shows the performance of SFT and NLFT with a minimal data
dataset of 50 samples across 1-16 epochs. It can be observed
that SFT exhibits pronounced overfitting, while NLFT main-
tains a consistent level of accuracy. Fig. 9 shows the perfor-
mance of ReFT, SFT, and NLFT with a dataset of 800 sam-

ples. It can be observed that SFT exhibits slow improvement
in the initial epochs and reaches near-optimal performance
after 5 epochs. However, as the number of epochs increases,
the risk of overfitting grows, leading to a significant over-
fitting and a sharp decline in accuracy. In contrast, NLFT
exhibits a stable accuracy of approximately 70%, reflecting
its robust stability. We suppose this is because the algorithm
shows more attention to the saliency token, thereby focusing
on the most critical problem-solving pathway and improving
training stability. This approach is similar to causal-inspired
stable learning in computer vision [Zhang et al., 2021], which
effectively filters out irrelevant features and uses only truly
relevant ones for prediction, resulting in more stable perfor-
mance in wild, non-stationary environments.

5.2 Algorithm Complexity Analysis
The time complexity and space complexity of our algorithm
are both O(n), which means that as the input size n grows,
the required time and space resources grow linearly. This
linear growth indicates that our algorithm is efficient and re-
source consumption is controllable when dealing with large-
scale data. In contrast, the ReFT algorithm uses the PPO al-
gorithm [Schulman et al., 2017] for optimization, whose time
complexity is O(TC + NBP), which is proportional to the
product of the number of samples, the neural network’s for-
ward and backward propagation complexity, and the number
of update iterations [Luong et al., 2024]. Due to its higher
time and space complexity, ReFT may suffer from decreasing
efficiency and increasing resource consumption when pro-
cessing large data. Therefore, in applications involving large-
scale data processing, our algorithm demonstrates a signifi-
cant performance advantage over the ReFT.

6 Discussion
6.1 Learning Efficiency from Incorrect Samples
Our experiments indicate that increasing the proportion of
incorrect samples in the training data leads to a decrease in
learning efficiency. To fine-grained investigate the contribu-
tion of incorrect samples to model fine-tuning, we attempt to

Figure 10: Token-level selection comparison between CUT and
NLFT on a single instance from the GSM8K dataset. Green tokens
are marked by CUT, blue tokens by NLFT with ratio values, red to-
kens represent incorrect selections, and red circles indicate correctly
marked tokens.

visualize saliency tokens at the token level to reflect the in-
termediate process of LLM training. In Fig. 10, we compare
NLFT with another token-level LLM fine-tuning algorithm,
CUT [Xu et al., 2023], and mark the recognized incorrect
token of NLFT and CUT. The results demonstrate that com-
pared to the CUT algorithm, NLFT can more accurately iden-
tify incorrect tokens in answers. Additionally, we implement
a filtering strategy for entirely incorrect samples. When the
proportion of erroneous tokens exceeds a certain threshold,
NLFT will exclude that training data.

However, after such processing, the efficiency of learning
from incorrect samples still remains significantly lower com-
pared to learning from correct samples. We analyze that, on
one hand, the value of acquiring new knowledge may out-
weigh the restrain of incorrect tokens; on the other hand, af-
ter multiple rounds of training, the model may exhibit a phe-
nomenon of ”logical coherence”, it avoids marking incorrect
tokens, thereby reducing the MLE loss. Regarding how to en-

hance the learning efficiency from incorrect samples, we will
continue to explore this in our subsequent research.

6.2 Model Generalization
In our previous research, we applied the simplified version
of the NLFT to human-computer collaborative tasks and
achieved significant performance improvement. Theoreti-
cally, NLFT is applicable to scenarios where outputs can be
generated through CoT and labeled data is available, such as
coding, medical diagnosis, natural language inference, and
complex question-answering systems. By comparing the gen-
erated output with the labels, it is possible to annotate the
saliency tokens, thereby applying NLFT for token-level fine-
tuning. In our future work, we will explore the application of
NLFT to broader fields and refine the NLFT algorithm based
on the characteristics of each task.

7 Conclusion
In this paper, we propose a novel natural language minimal
data fine-tuning algorithm NLFT. The algorithm compares
the conditional probabilities of various natural language to-
kens under different prompts, utilizing natural language as a
supervisory signal to identify saliency tokens and assign them
scaling values. Experimental results demonstrate that our al-
gorithm, compared to previous ones, has lower time com-
plexity and better performance. Under the GSM8K dataset
evaluation, only random 50 training data allows NLFT to
achieve over 60% accuracy, and performance of NLFT is
stably increased by 25% compared to SFT. In contrast to
RL-based fine-tuning algorithm like ReFT, NLFT saves huge
time and space complexity, enabling broader imagination for
lightweight fine-tuning and applications.

References
[Chu et al., 2023] Zheng Chu, Jingchang Chen, Qianglong

Chen, Weijiang Yu, Tao He, Haotian Wang, Weihua Peng,
Ming Liu, Bing Qin, and Ting Liu. A survey of chain of
thought reasoning: Advances, frontiers and future. arXiv
preprint arXiv:2309.15402, 2023.

[Cobbe et al., 2021] Karl Cobbe, Vineet Kosaraju, Moham-
mad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman. Training
Verifiers to Solve Math Word Problems, November 2021.

[Feng et al., 2024a] Guhao Feng, Bohang Zhang, Yuntian
Gu, Haotian Ye, Di He, and Liwei Wang. Towards re-
vealing the mystery behind chain of thought: a theoretical
perspective. Advances in Neural Information Processing
Systems, 36, 2024.

[Feng et al., 2024b] Xidong Feng, Ziyu Wan, Haotian Fu,
Bo Liu, Mengyue Yang, Girish A. Koushik, Zhiyuan Hu,
Ying Wen, and Jun Wang. Natural language reinforcement
learning, 2024.

[Hu et al., 2021] Edward J. Hu, Yelong Shen, Phillip Wallis,
Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large
language models, 2021.

[Li et al., 2019] Haidong Li, Jiongcheng Li, Xiaoming
Guan, Binghao Liang, Yuting Lai, and Xinglong Luo. Re-
search on overfitting of deep learning. In 2019 15th In-
ternational Conference on Computational Intelligence and
Security (CIS), pages 78–81, 2019.

[Loshchilov and Hutter, 2019] Ilya Loshchilov and Frank
Hutter. Decoupled Weight Decay Regularization, January
2019.

[Luong et al., 2024] Trung Quoc Luong, Xinbo Zhang,
Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft:
Reasoning with reinforced fine-tuning. arXiv preprint
arXiv:2401.08967, 2024.

[OpenAI, 2023] R OpenAI. Gpt-4 technical report. arxiv
2303.08774. View in Article, 2(5), 2023.

[OpenAI, 2024] OpenAI. Reinforcement learning from hu-
man feedback research program, 2024. Accessed: 2024-
12-23.

[Ouyang et al., 2022] Long Ouyang, Jeffrey Wu, Xu Jiang,
Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, et al. Training language models to follow instruc-
tions with human feedback. Advances in neural informa-
tion processing systems, 35:27730–27744, 2022.

[Rafailov et al., 2024a] Rafael Rafailov, Joey Hejna, Ryan
Park, and Chelsea Finn. From r to q∗: Your lan-
guage model is secretly a q-function. arXiv preprint
arXiv:2404.12358, 2024.

[Rafailov et al., 2024b] Rafael Rafailov, Archit Sharma, Eric
Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your lan-
guage model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36, 2024.

[Roziere et al., 2023] Baptiste Roziere, Jonas Gehring,
Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen
Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez,
et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[von Werra et al., 2020] Leandro von Werra, Younes
Belkada, Lewis Tunstall, Edward Beeching, Tristan
Thrush, Nathan Lambert, Shengyi Huang, Kashif Rasul,
and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

[Wang et al., 2022] Xuezhi Wang, Jason Wei, Dale Schu-
urmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves
chain of thought reasoning in language models. arXiv
preprint arXiv:2203.11171, 2022.

[Wei et al., 2022] Jason Wei, Xuezhi Wang, Dale Schuur-
mans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits

reasoning in large language models. Advances in neural
information processing systems, 35:24824–24837, 2022.

[Xu et al., 2023] Weiwen Xu, Deng Cai, Zhisong Zhang,
Wai Lam, and Shuming Shi. Reasons to reject? align-
ing language models with judgments. arXiv preprint
arXiv:2312.14591, 2023.

[Zhang et al., 2021] Xingxuan Zhang, Peng Cui, Renzhe Xu,
Linjun Zhou, Yue He, and Zheyan Shen. Deep stable
learning for out-of-distribution generalization. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5372–5382, 2021.

[Zhong et al., 2024] Han Zhong, Guhao Feng, Wei Xiong,
Li Zhao, Di He, Jiang Bian, and Liwei Wang. Dpo
meets ppo: Reinforced token optimization for rlhf. arXiv
preprint arXiv:2404.18922, 2024.

A Prompt Strategies

A.1 Prompt Strategy of Judgment on the GSM8K
Dataset

In this section, we present a prompt engineering strategy for
generating the judgment of incorrect samples.

Instruction

Suppose you are a math expert and you are presented
with a math problem, a student’s response, and the
correct answer.
Please first check whether the student’s response is
correct. Including checking the solution process and
whether the answer is correct.
If the student’s response is correct, please directly
output: ### The response is correct. ###
If the response is wrong, please analyze why the so-
lution is wrong.

A.2 Prompt Strategy of Math Reasoning on the
GSM8K Dataset

In this section we present a prompt engineering strategy for
testing model performance.

https://github.com/huggingface/trl

Instruction

Suppose you are a math expert. The following de-
scribes a math problem. Please read it carefully and
solve it STEP BY STEP!!!, and give the correct an-
swer.
Please ensure that your output strictly follows the fol-
lowing format requirements:
{Your analysis}\n#### {The answer number}
Your analysis should be very detailed. And make sure
the string ”####” only appears once following the an-
swer number in the end.
For example:
<Output Example>
Natalia sold 48 / 2 = <<48/2=24>>24 clips in May.
Natalia sold 48+24 = <<48+24=72>>72 clips alto-
gether in April and May.
72
</Output Example>
<Output Example>
The number of truck stamps is 11 + 9 =
<<11+9=20>>20.
The number of rose stamps is 20 - 13 = <<20-
13=7>>7.
Bella bought 11 + 20 + 7 = <<11+20+7=38>>38
stamps in all.
38
</Output Example>
<Output Example>
Lisa earned $60 * 1/2 = $<<60*1/2=30>>30.
Tommy earned $30 * 1/2 = $<<30*1/2=15>>15.
Lisa earned $30 - $15 = $<<30-15=15>>15 more
than Tommy.
15
</Output Example>
<Output Example>
He needs to save up $400 because 4 x 100 =
<<4*100=400>>400
He has 8 months to earn this money because 12 - 4 =
<<12-4=8>>8
He needs to earn $50 a month because 400 / 8 =
<<400/8=50>>50
He needs to do 5 tasks a month because 50 / 10 =
<<50/10=5>>5
5
</Output Example>
<Output Example>
15 coins collected in hour one
35 coins collected in hour two
35 coins collected in hour three
50 coins collected in hour four
Before giving her coworker some coins there were
15+35+35+50=<<15+35+35+50=135>>135 coins
The number of coins after giving 15 to her coworker
is 135-15=<<135-15=120>>120
120
</Output Example>

B Detailed Hyperparameter Settings
NLFT: NLFT is trained using LoRA [Hu et al., 2021], where
the parameters r, α and dropout are set to 16, 16, and 0.05,
respectively. The learning rate is set to 5 × 10−5. For most
NLFT experiments, the maximum number of epochs is set to
10, unless the setting in Fig. 9 specifies 30.

SFT: Our SFT implementation employs SFTTrainer in
trl [von Werra et al., 2020]. To ensure that the SFT code
configuration is largely consistent with NLFT configuration,
we have essentially adopted most of the parameter settings of
NLFT.

ReFT: Following [Luong et al., 2024], before ReFT algo-
rithm, we perform SFT warmup for 2 epochs with the learn-
ing rate of 1 × 10−5 on GSM8K dataset. When performing
SFT warmup, the batch size is set to 48, and the maximum
input length is set to 512. After warmup phase is finished, we
perform ReFT algorithm. The maximum input length is set
to 300, and the maximum length of model generation is set to
700. The batch size is set to 16 to avoid crash during training.
The number of updates per RL step is set to 2. The learning
rate is set to 3× 10−7.

	Introduction
	Related Work
	Natural Language Learning
	Token-level LLMs Fine-Tuning

	Method
	Preliminary Considerations
	Token-level Conditional Probability Analysis
	Probability-driven Saliency Token Allocation
	Token-level Loss Calculation

	Experiments
	Dataset
	Experimental Setup
	Baseline
	Results

	Analysis
	Stability Analysis
	Algorithm Complexity Analysis

	Discussion
	Learning Efficiency from Incorrect Samples
	Model Generalization

	Conclusion
	Prompt Strategies
	Prompt Strategy of Judgment on the GSM8K Dataset
	Prompt Strategy of Math Reasoning on the GSM8K Dataset

	Detailed Hyperparameter Settings

