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Abstract—Self-supervised learning has achieved great success in
both natural language processing and 2D vision, where masked
modeling is a quite popular pre-training scheme. However,
extending masking to 3D point cloud understanding that combines
local and global features poses a new challenge. In our work,
we present Point-LGMask, a novel method to embed both local
and global contexts with multi-ratio masking, which is quite
effective for self-supervised feature learning of point clouds but is
unfortunately ignored by existing pre-training works. Specifically,
to avoid fitting to a fixed masking ratio, we first propose multi-ratio
masking, which prompts the encoder to fully explore representative
features thanks to tasks of different difficulties. Next, to encourage
the embedding of both local and global features, we formulate
a compound loss, which consists of (i) a global representation
contrastive loss to encourage the cluster assignments of the masked
point clouds to be consistent to that of the completed input, and (ii)
a local point cloud prediction loss to encourage accurate prediction
of masked points. Equipped with our Point-LGMask, we show that
our learned representations transfer well to various downstream
tasks, including few-shot classification, shape classification, object
part segmentation, as well as real-world scene-based 3D object
detection and 3D semantic segmentation. Particularly, our model
largely advances existing pre-training methods on the difficult
few-shot classification task using the real-captured ScanObjectNN
dataset by surpassing over 4% to the second-best method. Also,
our Point-LGMask achieves 0.4% AP25 and 0.8% AP50 gains
on 3D object detection task over the second-best method. For
semantic segmentation, our Point-LGMask surpasses the second-
best method by 0.4% mAcc and 0.5% mIoU.

Index Terms—Local and global contexts embedding, self-
supervised learning, point cloud understanding, representation
learning.
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I. INTRODUCTION

S ELF-SUPERVISED learning (SSL) enables AI systems to
learn powerful representations from orders of magnitude

data by leveraging the supervisory signals from the data itself,
which has made great success in advancing the field of natural
language processing (NLP) [1], 2D vision [2], [3], multimodal
analysis [4], etc. Generally, models pre-trained this way yield
considerably higher performance than when solely trained in a
supervised manner.

Among existing SSL techniques, the masked modeling
scheme shows a particularly profound impact on both NLP and
2D vision, which aims to predict any unobserved or hidden part
(or property) of the input from any observed or unhidden part of
the input. In our work, we consider whether 3D point cloud can
also continue the success of employing the masking scheme for
point cloud pre-training.

So far, only a few works try to apply masking to point cloud
pre-training. Point-BERT [5] constructs a pretext task by pre-
dicting the tokens of the masked point clouds. Yet, the pro-
cess requires an offline tokenizer. Later, Point-McBert [6] pro-
poses multi-choice tokens to overcome the ambiguity in the
self-supervised signal generated by Point-BERT’s tokenizer.
However, both Point-BERT and Point-McBert are limited by
the ability of the tokenizer. In contrast, MaskPoint [7] and
Point-MAE [8] do not require an offline tokenizer. MaskPoint is
designed to distinguish whether local points are noise or masked
points, while Point-MAE reconstructs the masked points. How-
ever, they both ignored the global representation, which is ben-
eficial for downstream high-level tasks. Previous works like
PointNet++ [9] show that considering local and global features
together is crucial for point cloud understanding. However, ex-
isting attempts that use the masked modeling scheme in point
cloud self-supervised learning, unfortunately, ignore the em-
bedding of local and global features. In our work, we present
Point-LGMask, a novel method to skillfully combine the em-
bedding of local and global contexts and self-supervised learn-
ing with multi-ratio masking for point cloud pre-training. Unlike
existing works [5], [6], [7], [8], we first propose to mask points
using multiple ratios rather than a single ratio. Intuitively, com-
pared to single-ratio masking, our multi-ratio masking prompts
the encoder to fully explore representative features thanks to pre-
text tasks of different difficulties, thus producing more universal
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Fig. 1. Illustrating our proposed local and global contexts embedding for self-
supervised learning. Given a 3D point cloud, our Point-LGMask first uses multi-
ratio masking to generate multiple masked point clouds, then constructs a global
representation pretext task (top) to encourage the cluster assignments of the
masked point clouds to be consistent to that of the completed input, and a local
perception pretext task (bottom) to predict the masked point clouds.

representations that work across a wider variety of downstream
tasks. Also, the trained network model after multi-ratio mask-
ing scheme can be regarded as averaging the predictions of all
possible settings of the parameters, thus avoiding the overfit-
ting to a fixed ratio and increasing the generalization ability.
Although the stochastic masking used in Point-BERT [5] and
Point-McBert [6] tries to strengthen model generalization, it
sacrifices training stability. In contrast, our method can balance
training stability and model generalization by fixed multi-ratio
masking. Further, to extract both local and global features, we
construct two pretext tasks (see Fig. 1): one global representa-
tion pretext task to encourage cluster assignments of the masked
point clouds to be consistent to that of the complete input, and
one local perception pretext task to predict the masked point
clouds. During end-to-end pre-training, the former pretext task
drives model to capture global features, while the latter one
drives to focus on local features.

Equipped with our Point-LGMask, we show that our learned
representations transfer well to various downstream applica-
tions, including few-shot classification, shape classification, ob-
ject part segmentation, 3D object detection and semantic seg-
mentation on real-world large-scale scenes. Particularly, our
Point-LGMask gets over 4% performance improvement com-
pared to the second-best method on ScanObjectNN [10] dataset
for the difficult few-shot classification. Our Point-LGMask also
achieves 0.4% AP25 and 0.8% AP50 gains on 3D object detec-
tion task over the second-best method. For semantic segmen-
tation, our Point-LGMask surpasses the second-best method by
0.4% mAcc and 0.5% mIoU. In general, we summarize our con-
tributions as follows:

1) We present Point-LGMask, a novel method to effectively
and skillfully integrate both local and global features into
self-supervised learning by designing a compound loss to
encourage our network model to embed both local and
global contexts for point cloud pre-training.

2) We propose a multi-ratio masking scheme to enrich the
difficulty of pretext tasks for representative feature learn-
ing and avoid overfitting.

3) We conduct extensive experiments to show the superior
performance of our Point-LGMask for transferring the
learned knowledge to various downstream tasks.

II. RELATED WORK

Self-supervised Learning on Point Clouds: The core of SSL
is to design a mechanism (or pretext tasks) to generate super-
vision signals from the input data itself. In the early stage,
the generative model is designed to reconstruct or complete
the given input point cloud via auto-encoders. For instance,
Han et al. [11] presents MAP-VAE for unsupervised feature
learning by jointly leveraging local and global self-supervision,
where local self-supervision is enabled by multi-angle analy-
sis and global geometry is learned by self-reconstruction. Cai
et al. [12] proposes to learn a unified and structured latent space
that encodes both partial and complete point clouds through
self-reconstruction and completion. In recent years, pretext tasks
that exploit the rich attributes of point clouds have been intro-
duced, which drive the model to learn deeper semantic knowl-
edge, such as contrastive learning [13], [14], [15], orientation
estimation [16], category-level 6D object pose estimation [17],
BERT-style pre-training for point cloud [5], [6], [7], [8], etc.
Our work is greatly inspired by Point-BERT [5], which gen-
eralizes the concept of BERT [1] to 3D point clouds. Point-
BERT constructs a pretext task by predicting the tokens of
the masked point clouds. Yet, the process requires an offline
tokenizer. Later, Point-McBert [6] proposes multi-choice to-
kens to overcome the ambiguity in the self-supervised signal
generated by Point-BERT’s tokenizer. However, Point-BERT
and Point-McBert both require a tokenizer to be trained of-
fline, resulting in the learned representations of point clouds
being limited by the ability of the tokenizer. MaskPoint [7] and
Point-MAE [8] do not require an offline tokenizer. MaskPoint is
designed to distinguish whether local points are noise or masked
points, while Point-MAE is designed to reconstruct the masked
points. Furthermore, the self-supervised signal utilized by Con-
Clu [15] is at a global level derived from contrastive and cluster-
ing losses, while disregarding local perception. In contrast, the
self-supervisory signal of our Point-LGMask is derived from
both global representation and local perception, which enables
the model to learn richer knowledge.

Masked Image Modeling: Inspired by the masked language
modeling in natural language processing, masked image model-
ing (MIM) motivates a flux of research [2], [3], [18], [19], [20]
in terms of 2D image self-supervised pre-training. Following
the “mask-and-reconstruct” pipeline, at the image token level,
PeCo [18] and BEIT [20] utilize an offline trained tokenizer to
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Fig. 2. Overview of our Point-LGMask. We first divide input point clouds P into N target point patches Pt. Next, we propose to employ multiple ratios to mask
Pt to get multiple anchor patches {Pa}. Then, we embed both Pt and {Pa}, which are fed into encoders to obtain high-level representations. We formulate a
compound objective function with two terms (i.e., LGRC & LPCP ) for both global and local contexts embedding.

predict masked tokens, enabling the model to learn local repre-
sentations higher than pixels. In contrast, IBOT [19] proposes
to rely on the teacher-student architecture for self-supervision
without tokenizer. At the pixel level, MAE [2] and SimMIM [3]
mask parts of image pixels, prompting the model to predict
masked regions to encourage the model to focus on image lo-
cal semantics. Inspired by MAE [2], one of our objectives is
to predict the masked parts of point clouds in the pre-training
stage.

Contrastive Learning: As a key technique in SSL, contrastive
learning constructs a pretext task to learn generalizable represen-
tations using contrastive pairs without relying on labeled data.
The development of contrastive learning so far can be roughly
divided into the following four stages. In the first stage, early
contrastive learning methods [21], [22] are still in exploration,
where the model structure, objective function, and pretext task
style are not unified. In the second stage, the objective func-
tions are roughly unified into infoNCE and its variants. In ad-
dition, diverse works [23], [24] have realized the importance of
data augmentation and projection head. In the third stage, some
methods [25], [26] begin to discard negative samples and focus
on positive sample augmentation. In the fourth stage, with the
huge impact of Transformers on visual, several works [27], [28]
organically combine Transformers with contrastive learning. At
the same time, the emerging MIM also provides an augmentation
idea for contrastive learning. MSN [29] proposes to match the
representation of an image view containing randomly masked
patches to the representation of the original unmasked image. In

this work, we seek to continue the success of contrastive learning
and extend it to point cloud feature learning.

III. METHOD

A. Overview

The goal of this work is to develop a pre-training method for
feature learning of 3D point clouds in a self-supervised man-
ner. Inspired by masked point modeling [5], we design our
Point-LGMask as shown in Fig. 2. Generally, given an input
point cloud P , we first divide it into N point patches (denoted
as target point patches Pt) by using the farthest point sampling
(FPS) and k-nearest neighbor algorithm (kNN). To capture good
representations, we propose to apply multiple different mask-
ing ratios to the N patches, and the resulting incomplete point
patches after masking are regarded as multiple anchor point
patches {Pa}. Next, both the target point patch Pt and the multi-
ple anchor point patches {Pa} are embedded to target tokens Tt

and multiple anchor tokens {Ta} via a patch embedding module,
which is implemented using mini-PointNet [30]. Subsequently,
we design a target encoder to lift the target tokens Tt and the
target class token Ct that is a learnable parameter to higher em-
beddings T̃t and C̃t, respectively. Similarly, we also design an
anchor encoder to lift multiple anchor tokens {Ta} and mul-
tiple anchor class tokens {Ca} that are learnable parameters
to higher embeddings {T̃a} and {C̃a}, respectively. Note that,
both the target encoder and the anchor encoder are built upon
standard Transformer, which shall be detailed later. Finally, as
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shown in the right part of Fig. 2, to learn both global and lo-
cal contexts, we design a global representation contrastive loss
LGRC to enforce consistency between cluster assignments pro-
duced by target and anchor representations, and design a point
cloud prediction loss LPCP to measure the accuracy of pre-
dictions. For end-to-end training, the anchor encoder is trained
by using the two loss terms, and the parameters of the target
encoder are updated using exponential moving average (EMA)
combined with the parameters of the anchor encoder.

Below, we will present the details of our key components
in Point-LGMask, including the process of patch generation,
masking and tokenization, the (target and anchor) encoder de-
sign based on Transformer, as well as two objectives to learn
local and global contexts.

B. Patch Generation, Masking and Tokenization

In this subsection, we describe the detailed process of patch
generation, multi-ratio masking, and tokenization.

Patch generation: To adopt the masked point modeling
scheme, we follow Point-BERT [5] to treat a local region around
a reference point as one token. Specifically, as shown in the
left-side of Fig. 2, given an input point cloud P , we first employ
FPS to pick N points as patch centers Pc ∈ RN×3. Then we use
kNN to group a local patch around each center point, where k is
set to be 32 empirically. In this way, we totally obtain N target
point patches Pt ∈ RN×k×3. Note that, for fast convergence, we
further normalize Pt by taking Pc as the coordinate origin.

Multi-ratio patch masking: Once we obtain the N target
patches Pt, the next step is to mask a certain percentage of
them. Not surprisingly, when a larger proportion of patches
are dropped, the context size is reduced, thus creating a harder
task. On the contrary, when we discard only a small number
of patches, the network makes predictions based on more in-
put contexts. Though reducing the training difficulty, it may not
generalize well during inference. Hence, exploring a suitable
masking ratio is quite important, but not easy. Existing mask-
ing strategies can be broadly classified into stochastic masking
(used in Point-BERT [5] and Point-McBert [6]) and fixed ratio
masking (used in Point-MAE [8] and MaskPoint [7]). The for-
mer uses a varying but random ratio during training, which may
lead to unstable training due to the random changes in pretext
task difficulty. The latter with a single fixed ratio circumvents
the training instability but sacrifices the model generalization.

In our work, instead of using a single-ratio masking like [5],
[6], [7], [8], we propose to use multi-ratio masking to balance
training stability and model generalization, though simple yet
quite effective. During each training iteration, we assign multi-
ple different but fixed masking ratios to generate a set of masked
patches, and then design our network to learn tokens under each
masking ratio. Intuitively, compared to the single-ratio masking,
our multi-ratio masking scheme enables multiple pretext tasks
with different difficulties, thus promoting the encoder to fully
exploit and extract representative features thanks to pretext tasks
of different difficulties, thus facilitating the downstream tasks.
Also, similar to the idea of Dropout layer, the trained network

model after multi-ratio masking scheme can be regarded as av-
eraging the predictions of all possible settings of the parameters,
thus avoiding the overfitting to a fixed ratio and increasing the
generalization ability. Specifically, we set totally three different
masking ratios {rm} = {0.3, 0.6, 0.9}, and then randomly se-
lect and drop patches fromPt according to each ratio to generate
the associated anchor patch Pa.

Patch tokenization: The purpose of this step is to embed each
point patch into a token. Here, we follow Point-BERT [5] to
use the mini-PointNet [30] to project each sub-cloud (i.e., point
patch) into point embedding (i.e., patch token). More specifi-
cally, given the unmasked target point patches Pt, we obtain the
corresponding target tokens Tt using mini-PointNet. While for
the multiple anchor point patches {Pa} after masking, we obtain
the corresponding multiple anchor tokens {Ta}.

C. Transformer Encoder

This work designs two encoders, i.e., the target encoder and
the anchor encoder, obtaining the self-supervised signal of con-
trastive learning. In detail, during the training phase, the parame-
ters of the anchor encoder θa are trained with back-propagation
updates, which are exponentially moving averaged (EMA) to
the parameters of the target encoder θt. Formally,

θt = αθt + (1− α)θa, where α = 0.999. (1)

As shown in Fig. 2, both the target encoder and the anchor en-
coder consume patch tokens as well as class tokens as inputs.
More specifically, let’s take the anchor encoder as an exam-
ple for explanation. The inputs consist of multiple class tokens
{Ca}which are learnable parameters, and multiple anchor patch
tokens {Ta}. For the processing of masked patches, instead of
using learnable parameters to replace the masked tokens as input
to the encoder in Point-BERT, we directly discard the masked
tokens, and only feed the tokens of visible patches and their
corresponding position embeddings as inputs. The operation of
discarding masked tokens reduces the data volume of inputs and
significantly improves the training speed.

The backbones of both encoders use the same architecture
based on the standard Transformer [31], consisting of multiple
blocks that are composed of multi-head self-attention layer and
feed-forward network.

D. End-to-End Network Training

To make the pre-trained network adaptable to various down-
stream tasks, the network should capture both global and local
features for point clouds during self-supervised learning. There-
fore, we design a compound loss function, which consists of a
global representation contrastive loss LGRC and a point cloud
prediction loss LPCP .

Global representation contrastive loss:LGRC aims to enforce
consistency between cluster assignments produced by target
and anchor representations. Specifically, inspired by MSN [29],
we design learnable prototypes W ∈ RT×D as cluster centers,
where T is the number of prototypes and D is the dimension
of each prototype. We empirically set T = 40 in experiments.
Then, as shown in Fig. 2, for the anchor encoder’s output C̃a, we

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 07,2025 at 10:19:47 UTC from IEEE Xplore.  Restrictions apply. 



8364 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

Fig. 3. Detailed architecture for point cloud prediction.

first use an MLP projection head to project it into the prototype
space to obtain the anchor patches representation C̃a,p. Next, we
calculate the cosine similarity between C̃a,p and W to get the
similarity distribution Sa of anchor patches:

Sa = softmax

(
C̃a,p ·W

ta

)
, (2)

where ta ∈ (0, 1) is a temperature parameter. Similarly, we can
use the same way to calculate the similarity distribution St of
target patches. Then, to encourage to consistent similarity distri-
bution of target patches and anchor patches, we follow MSN [29]
to formulate LGRC as

LGRC =
1

M

⎛⎝ ∑
Z∈{Sa}

H (Z, St)

⎞⎠− λH
(
Sa

)
, (3)

where M represents the number of different masking ratios
in {rm}, i.e., M = 3 in experiments, H(·, ·) is the standard
cross-entropy to measure the consistency of the two distribu-
tions. H(Sa) is a regularization term weighted by λ > 0, where
Sa denotes the averaged similarity distribution. To encourage
the model to utilize the full set of prototypes, we maximize the
entropy of the averaged similarity distribution. For more details,
please refer to [29].

Point cloud prediction loss: LPCP aims to measure the sim-
ilarity between the predicted point clouds and the associated
ground truths, thus encouraging the network to better perceive
local features. Specifically, as shown in Fig. 3, we first concate-
nate the anchor encoder’s output {T̃a}with learnable placehold-
ers {Tm} of the masked tokens, then feed them and the position
embeddingsPe into a decoder that contains four layers of Trans-
former and one layer of prediction header. Next, the decoder
outputs the predicted point clouds Ppred. Finally, we use the L2

Chamfer Distance [32] to compute the errors between Ppred and
its masked (ground-truth) point clouds Pmasked. Formally,

Ppred = Decoder
(

Concat
(
{T̃a}, {Tm}

)
, Pe

)
, (4)

LPCP =
1

|Ppred |
∑

b∈Ppred

min
c∈Pmasked

‖b− c‖22

+
1

|Pmasked|
∑

c∈Pmasked

min
b∈Ppred

‖b− c‖22. (5)

Compound loss: Overall, we train Point-LGMask end-to-end by
minimizing the compound loss function:

L = LGRC + βLPCP , (6)

where β is a weight to balance the importance of each loss term,
and we set it to be 1,000 to make them equal.

IV. EXPERIMENTS AND RESULTS

A. Pre-Training Settings

Pre-training datasets: We follow existing works [5], [6], [7],
[8] to also pre-train our Point-LGMask on ShapeNet [33], which
consists of over 50,000 3D models from 55 object categories.
We sample 1,024 points on each 3D model, and crop each point
cloud into N = 64 point patches following the aforementioned
procedure, where each patch contains 32 points.

Implementation details: We implement our Point-LGMask on
PyTorch and pre-train it for 300 epochs with a batch size of 128.
Besides, we use AdamW [34] optimizer with a cosine learning
rate scheduler, and the initial learning rate and weight decay are
set to be 0.001 and 0.05, respectively. Generally, it takes about
20 hours to pre-train our network on ShapeNet [33] dataset using
one RTX 3090 GPU.

B. Evaluation on Few-Shot Classification

SSL is expected to extract representative features from a large
amount of unlabeled data, and then successfully transfer it to
even a smaller dataset with promising performance. Motivated
by this, we would like to delve into the performance of our ap-
proach on particularly small datasets by conducting few-shot
classification task. Specifically, following previous works [5],
[14], we used the standard “K-way N -shot” experimental set-
ting, where K classes were first randomly selected and then
N + 20 objects were randomly sampled from each class. We
trained the model with the K ×N samples (support set), and
evaluated on the remaining K × 20 samples (query set). To
avoid randomness, we repeated each “K-way N -shot” experi-
ment 10 times by independently sampling samples, then reported
the mean accuracy and standard deviation over 10 times.

Evaluation on real-world data: We first conduct few-shot
classification on the real-captured ScanObjectNN [10] which is
collected from the real world including background and occlu-
sions. We used the pre-trained network parameters for initializa-
tion and re-trained our top branch in Fig. 2 on the same training
samples following CrossPoint [14], which is connected with a
classification head. We reproduced Point-BERT and Point-MAE
using the code and pre-trained weights provided in their papers.
As shown in Table I, our method yields the highest accuracies
across every few-shot setting on real-captured samples. Partic-
ularly, we can achieve a 4.2% performance improvement on
“5-way 1-shot” setting against the second-best method. We be-
lieve that the excellent performance of Point-LGMask compared
to other pre-training methods is mainly because of extracting
global and local features in the pre-training stage.

Evaluation on synthetic data: We further conduct few-shot
classification on ModelNet40 [37] and the results are shown in
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TABLE I
COMPARING THE FEW-SHOT CLASSIFICATION RESULTS ON SCANOBJECTNN

TABLE II
COMPARING THE FEW-SHOT CLASSIFICATION RESULTS ON MODELNET40

Table II. Clearly, our method still achieves the highest mean ac-
curacies compared to all the existing methods over most few-shot
settings. The excellent results of few-shot classification show
that our Point-LGMask can balance training stability and model
generalization ability on datasets with few training samples by
virtue of our proposed multi-ratio masking.

C. Evaluation on 3D Shape Classification

We evaluate our Point-LGMask’s generalization ability in
transferring knowledge from synthetic data to real-world data.
Here, we performed classification on ScanObjectNN [10] which
has 2,902 3D objects in 15 categories, and we use the main
three variants: OBJ-BG, OBJ-ONLY, and PB-T50-RS. Note that,
our model is pre-trained on the synthetic ShapeNet dataset. Ta-
ble III shows the experimental results. As we can see, Point-
LGMask achieves the highest accuracies under PB-T50-RS set-
ting (the hardest variant), and yields the second-best accuracy
on OBJ-BG and OBJ-ONLY settings. This indicates that our
Point-LGMask has strong knowledge generalization ability even
on real-scanned data.

TABLE III
COMPARING THE SHAPE CLASSIFICATION RESULTS ON THE REAL-SCANNED

SCANOBJECTNN DATASET

D. Evaluation on Object Part Segmentation

Next, we evaluate the performance of our method against
others on object part segmentation, which can be regarded
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TABLE IV
COMPARING THE PART SEGMENTATION RESULTS ON SHAPENETPART DATASET

TABLE V
COMPARING 3D OBJECT DETECTION RESULTS ON SCANNET V2 DATASET

as per-point classification, thus requiring methods to extract
representative local features. Here, we conduct experiment on
ShapeNetPart [40] dataset, which contains 16,881 models from
16 categories. Table IV shows the results and we report the mean
IoU across all part categories mIoUC (%) and the mean IoU
across all instance mIoUI (%), as well as the IoU (%) for each
category. Comparing the methods trained from scratch, our ap-
proach gets the highest mIoUC and mIoUI , and obtains better or
on-par performance compared with other pre-training methods.
We believe that such promising performance benefits from our
loss design that encourages both the local and global contexts
embedding.

E. Evaluation on 3D Object Detection

We further evaluate the performance of our Point-LGMask
on 3D object detection task, which requires methods to have a
strong understanding ability of large-scale scenes. Here, we con-
duct an experiment on ScanNet V2 [47], which is a widely-used
real-world dataset. ScanNet V2 has 1513 scene data covering a
total of 21 categories of objects, where 1201 scenes are used for
training and 312 scenes are used for testing. Table V shows the
results in terms of AP25 and AP50. Comparing both the meth-
ods trained from scratch and the pre-training methods, our ap-
proach gets the highest AP25 and AP50. Particularly, our model

TABLE VI
SEMANTIC SEGMENTATION RESULTS ON THE S3DIS AREA 5

achieves 0.4% AP25 and 0.8% AP50 gains compared to the
second-best method.

F. Evaluation on 3D Semantic Segmentation

At last, we evaluate the performance of our Point-LGMask on
the 3D semantic segmentation of large-scale scenes, which is a
challenging task that requires an understanding of both global se-
mantics and local geometric information. The S3DIS [49] (Stan-
ford Large-Scale 3D Indoor Spaces) dataset provides instance-
level semantic segmentation for 6 large indoor areas, compris-
ing a total of 271 rooms and 13 semantic categories. Following
common practice, we reserved area 5 for testing while using the
remaining areas for training.

Table VI reports the results of our experiment. We observed
significant improvement of our Point-LGMask compared to the
Transformer [5] trained from scratch, with a performance gain
of 1.7% mAcc and 1.3% mIoU. This result demonstrates that our
Point-LGMask can substantially enhance the Transformer’s ca-
pabilities in addressing such challenging downstream task. Fur-
ther, our Point-LGMask also outperformed other self-supervised
methods, achieving the best performance by improving 0.4%
mAcc and 0.5% mIoU, compared to the second-best result of-
fered by Point-MAE. Even when compared to approaches that
rely on scene geometric features and colors (top four methods in
Table VI), our Point-LGMask still exhibits comparable or even
superior performance.
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Fig. 4. Our qualitative results on 3D real-world semantic segmentation. Clearly, our Point-LGMask effectively segmented objects such as doors and clutter with
high accuracy, outperforming the Transformer significantly.

Fig. 4 illustrates the qualitative results of our Point-LGMask
on S3DIS. The results demonstrate that Point-LGMask achieves
more accurate and precise semantic segmentation compared to
the Transformer (trained from scratch). This is evidenced by the
closer proximity of Point-LGMask to the ground truth labels.
Our Point-LGMask effectively segmented objects such as doors
and clutter with high accuracy.

G. Ablation Study

Multi-ratio Masking Strategies: First of all, we conduct abla-
tion studies to validate the effectiveness of our introduced multi-
ratio masking scheme. As shown in Table VII, we pre-trained our
Point-LGMask using different masking strategies and then com-
pared the shape classification accuracy on ScanObjectNN [10].
By analyzing the results, we can draw some discoveries as fol-
lows:

1) When the number of mask ratios is fixed, different values
of mask ratios affect the results: For example, when there
is only one single mask ratio, by comparing Rows #1-#3,
we can find that using a mask ratio of 0.6 results in a bet-
ter performance than a ratio of 0.3 or 0.9. This may be
attributed to the fact that a mask ratio of 0.6 maintains a
suitable balance between preserving geometric informa-
tion and generating more difficult self-supervised signals.

2) To some extent, increasing the number of mask ratios leads
to a better performance: However, we have to clarify that
too many mask ratios will definitely increase the training
time, thus degrading the model performance. Experimen-
tally, we find that the setting of {0.3, 0.6, 0.9} is more
suitable.

TABLE VII
COMPARING DIFFERENT MASKING STRATEGIES ON SHAPE CLASSIFICATION

USING SCANOBJECTNN

3) Under the same number of masks, using different mask
ratios outperforms using the same ratios: For example, by
comparing Rows #7-#9 vs. Rows #10-#12, we can observe
that even if both use three masks, increasing the diversity
inside the masks works better.

4) With the same value of mask ratio, increasing the number
of masks leads to a better performance: For example, by
comparing Row #1 vs. #7, Row #2 vs. #8, or Row #3 vs. #9,
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Fig. 5. Our reconstruction results from masked point clouds under different
masking ratios. Clearly, even masking 90% of the total points, our Point-LGMask
can still successfully recover the overall shape with fine details.

even if the values of mask ratios are the same, increasing
the number of masks works better.

5) Generally, random masking works better than block mask-
ing: In the limited multi-ratio masking strategy search
experiment, we find that random masking achieved the
highest performance than that of block masking; see par-
ticularly Row #12 vs. #15.

Loss Design: We further validate the contribution of each
term in (6) by removing either LPCP or LGRC , which results
in the accuracy of 83.5% and 84.7% respectively, as compared
to 85.3% of our full pipeline on shape classification task us-
ing ScanObjectNN [10]. Results show that each loss term con-
tributes to a better point cloud representation.

H. Network Analysis and Discussions

Visualization of reconstruction results: Fig. 5 shows our pre-
dicted point clouds Ppred given unseen ShapeNet sample (left)
and ScanObjectNN [10] sample (right) under different mask-
ing ratios. Clearly, our Point-LGMask can successfully recon-
struct the missing parts even masking 90%, validating that it
has learned rich geometrical knowledge via our designed SSL
scheme and shows strong generalization ability on even unseen
real-world samples.

Effect of the number of prototypes: In experiments, we set the
number of learnable prototypes to be T = 40. We also conduct
experiments to test the sensitivity of our network to different
values of T . Results show that when T ∈ [20, 64], the accuracy
fluctuation is less than 0.3%.

Limitations: Despite the promising performance that our
method has achieved, one limitation is that insufficient train-
ing samples or severely uneven class size would certainly affect
the network’s capability. However, such a requirement for train-
ing data also appears in typical self-supervised methods. On the
other hand, compared to single-ratio masking, our multi-ratio
masking scheme is more time-consuming in the pre-training
stage. This also restricts us to conduct experiments only on the
combination of three different ratios, and it is possible that the

combination of more than three ratios may lead to a better per-
formance.

V. CONCLUSION

In this work, we propose Point-LGMask, a novel method to
embed both local and global contexts with multi-ratio mask-
ing scheme, which is quite effective for self-supervised feature
learning of point clouds. We introduce multiple masking ratios
to replace a single fixed ratio, and also formulate a global repre-
sentation pretext task and a local perception pretext task to drive
the model to extract knowledge from large unlabeled samples.
Extensive experiments on few-shot classification, shape clas-
sification, object part segmentation, 3D object detection, and
3D semantic segmentation show that our Point-LGMask has
strong representation ability, particularly facilitating the chal-
lenging few-shot task. In the future, we plan to investigate the
potential of multi-modality feature learning by incorporating
2D images into pretext tasks to enrich the knowledge learning,
instead of only relying on 3D point clouds. Furthermore, we
intend to explore the extending of our approach to process 3D
CAD data by leveraging existing methods [50], [51]. We be-
lieve that these extensions will further advance geometric deep
learning.
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