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Abstract—Fabric metaverse employs intelligence fibers embed-
ded with flexible sensors to unknowingly gather and transmit mas-
sive hypermodal data around humans to a deep neural network-
based metaverse inference service (DMS) for continual and real-
time analysis. Each DMS has one primary branch and multiple
side branches that allow early termination of service with differ-
ential accuracy and energy consumption. However, the continual
provisioning of compute-intensive DMS with varying requirements
for service model, accuracy, delay, and reliability poses a challenge
for edge servers characterized by restricted computing resources
and intermittent green energy. In this paper, we focus on a continual
individualized DMS provisioning problem in the fabric metaverse
consisting of a side branch insertion subproblem and a server acti-
vation and service deployment subproblem, and formulate them
as Integer linear Programming and Markov Decision Process,
respectively. Then, we propose a green continual inference (GCI)
system, where a pruner with provable approximation ratios trims
superfluous branches of every model to the given number K to
minimize total overflow accuracy between accuracy demands and
reserved branches assigned to users. Based on this exit result,
each DMS is further divided into several blocks with dependencies
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to exploit constrained resources of computing and energy in a
fine-grained manner. Finally, a learning-based scheduler is merged
into GCI to maximize request throughput while minimizing the
activation number of edge servers on different demand scenarios,
by adaptively activating suitable servers and deploying required
blocks and their corresponding backups on selected servers. The-
oretical analyses, simulations, and experiments demonstrate that
the GCI is promising compared with baseline algorithms.

Index Terms—6G, accuracy, early exit point, edge intelligence,
fabric computing, green, inference, metaverse, reliability.

I. INTRODUCTION

THE fabric metaverse, composed of intelligence fibers em-
bedded with flexible sensors, edge servers, and a remote

cloud, heralds a new era of human-centered networks to boost
service performances directly from data sources and interac-
tions [1]. Compared to shape-fixed traditional sensors, intelli-
gence fibers are woven into various fabrics (e.g., clothes, hats,
and cushions) to mitigate the resistance emotion from users
and successfully lurk around them [2], [3]. Leveraging by this
characteristic, intelligence fibers can unknowingly collect and
transmit hypermodal data to personalized deep neural network-
enabled metaverse inference services (DMSs) hosted on servers
via 6G networks for continuous and real-time data analysis.
To reduce delay and energy consumption during uploading, the
fabric metaverse integrates mobile edge computing and renew-
able energy harvesting technologies to place rechargeable edge
servers around users. This integration not only mitigates waiting
times and single-point of failures caused by high workloads on
sensory devices and cloud centers in scenarios with numerous
users [4], [5], [6], [7], [8], [9], but also addresses concerns
regarding carbon emissions and the greenhouse effect resulting
from the increased carbon emissions and intensity associated
with cloud centers and wide-area networks [10].

Model accuracy emerges as a pivotal metric guiding per-
sonalized DMS provisioning in the fabric metaverse. Different
services typically require heterogeneous accuracy [11], such
as the requirements for computer vision fall between 66.4%
to 83.5% [12], whereas ones are between 74.1% to 81.2%
[13] for natural language processing. Moreover, within a single
service type, such as fault detection of AR equipment, bearing
data acquisition sensors need 80% accuracy to identify facility
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faults, while low-bearing data acquisition sensors must attain
90% accuracy to complete the same effect [14]. Consequently,
according to the distribution of accuracy requirements for all
users, each computation-intensive DMS is carefully structured
with a high-accuracy backbone and selected lower-accuracy
subbranches that support accelerating inference processes. This
model structure allows each service to be further divided into
fine-grained blocks with dependencies but requiring fewer com-
puting resources and less energy. In addition, the impact of
primary block failures due to hardware or software issues can
be mitigated by providing corresponding fine-grained backups.
These blocks are distributed across multiple edge servers pow-
ered by renewable energy and a cloud center fueled by fossil
fuels, and a confident prediction is agilely returned from a certain
subbranch running on a nearby server or the final subbranch on
the cloud.

However, the edge-cloud cooperative inference scheme in
fabric metaverse networks needs to tackle the following chal-
lenges. (1) The side branches need to be inserted and trained at
all feasible positions of each DMS with heterogeneous structure
in advance, which increases the energy consumption and com-
putation of the model itself due to additional parameters from
these intermediate classifiers. (2) Hypermodal data gathered by
intelligence fibers with extremely weak computing capacities
must be continuously offloaded to DMSs hosted on nearby
edge servers, yet the data of some users may be discarded or
not processed when serving massive users due to the limited
computing resources of servers. (3) To enjoy a low-latency
service experience, users desire requested DMS services to be
offloaded to edge servers as close to them as possible. However,
in some cases, the majority of users move to a few specific
regions, resulting in intensifying energy competition for edge
servers. Thus, high competition among services for intermittent
and limited renewable energy of advantageous edge servers
can compromise user experiences and even cause service de-
termination and server failures due to imbalanced workloads. In
the worst case where backups are deployed to improve service
reliability, the energy competition is further intensified due to
the additional consumption of backup monitoring energy. Thus,
how to optimally prune redundancy branches of overdecorated
and heterogeneous DMSs to the given number K to minimize
accuracy overflow, and distribute pruned DMSs across selected
edge servers to maximize service throughput while minimizing
the number of activated servers, subject to user demands on de-
lay, reliability, and accuracy and server restrictions on compute
and energy resources, is a challenging issue.

The novelty of this study is to explore the continual individu-
alized DMS provisioning in a fabric metaverse (or device-user-
service-network) for the first time. A green continual inference
provisioning system (GCI) was developed, as shown in Fig. 1.
And a performance-guaranteed algorithm for the problem built
on the system is then designed, where intelligence fibers collect
hypermodal data from humans and environments without being
perceived, and continuously transmit it to pruned DMS services
hosted on activated servers, so as to achieve the goal of process-
ing as many DMS requests as possible with the least activated
servers, while meeting various constraints in real-time.

Fig. 1. The GCI system for fabric metaverse network.

The main contributions of this paper are listed as follows.
� We formulate an Integer Linear Programming, a Markov

Decision Process for a side branch insertion subproblem,
and a server activation and service deployment subproblem
in DMS provisioning. We also show the NP-hardness of the
defined subproblems.

� To reduce resource consumption and improve inference
speed of the model itself by pruning superfluous branches
to a given K, we develop an exact pruner for a small
problem size with high requirements. Otherwise, we devise
an approximate pruner with a provable approximation ratio
for a large problem size, which achieves near-optimal
performance to compress overdecorated DNN models.

� To maximize service throughput while minimizing the
number of servers, we devise a scheduler with two sym-
biotic components: a learning-based activator specifies de-
ployment scope by adaptively activating a subset of servers
based on real-time users, model, and network information.
Concurrently, for each DMS with a differential delay sen-
sitivity, we develop two deployers that are based on an
approximation algorithm and a heuristic algorithm respec-
tively, by striking for non-trivial trades-off between differ-
ent user demands and resource limitations, near-optimally
placing DNN blocks and their backups to activated servers
to provide training rewards to the activator.

� To evaluate the performance of the proposed algorithms,
we conduct extensive simulations, which reveal that the
throughput delivered by the GCI system is from 1.1 to 1.6
times of DMS requests but consumes from 7% to 22%
less green energy compared to the baseline algorithms
while approaching the optimal solution. Additionally, we
build a hardware prototype to provide a realistic application
scenario.

The rest of this article is organized as follows. Section II
reviews related works and analyzes their limitations. Section III
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introduces the fabric metaverse network, performance metric,
and other mathematical models. Section IV introduces the GCI
system and shows mathematical analyses of algorithms in the
system. Section V evaluates the performances of our algorithms.
Section VI summarizes the paper.

II. RELATED WORK

Intelligence fabrics continuously collect and transmit massive
hypermodal data about humans and environments [1], [15], pro-
viding a stable data foundation for building various data-hungry
virtual worlds supported by DMS in the fabric metaverse. In
this section, we introduce relevant key technologies during DMS
provisioning to further evolve it towards immersive, reliable, and
green.

1) Multi-exit acceleration technology: Kaya et al. [16] for-
mulated an overthinking problem and designed a deep shallow
neural network architecture with internal classifiers, namely
side branches, to alleviate it. Laskaridis et al. [17] proposed
a hardware-aware progressive inference system to insert side
branches under stringent delay and hardware limitations for
maximizing service accuracy. Jo et al. [18] constructed a low-
cost early exit network that combines dynamic branch pruning
and novel branch structures to reduce the energy consumption of
side branches, and developed hardware architectures to support
the operations. Hu et al. [19] presented a layer-aware approxi-
mation algorithm to minimize the progressive inference delay of
models with acyclic graph structure models across edge devices.

2) Failure resistance technique: Inspired by residual con-
nection, Kaya et al. [20] designed a fault-resistant distributed
neural network with inserted several extended layers and hy-
perconnection layers connecting different physical nodes. By
skipping the part of neural networks running on failure nodes, the
continual and reliable transmissions of intermediate parameters
are ensured at the cost of some accuracy. In addition, Huang
et al. [21] designed a hybrid elastic inference algorithm to
best-effort ensure service accuracy under random interruption
time by dynamically saving intermediate results and skipping
some failure branches. Laskaridis et al. [22] utilizes multiple exit
points to calculate low-precision rollback results for best-effort
to meet user demands, where each model with graph structure
is divided into two inference parts on dynamic edge cloud
environments.

3) Energy harvesting technology: Mao et al. [23] surveyed
energy optimization and management problems in different
green communication networks from AI and energy harvesting
perspectives, and made a detailed summary and comparison. Zhu
et al. [24] proposed a base station sleeping algorithm based on a
recurrent neural network to predict user traffic distribution that
guides the opening or closing of base stations to save energy.
Shen et al. [25] designed a two-timescale algorithm based on
stochastic optimization to control the active or sleep of base sta-
tions for minimizing the purchase cost of power gird, renewable
generator, and energy switching. Ma et al. [10] studied inference
offloading and carbon emission right purchasing problem, and
established an online algorithm based on the Lyapunov opti-
mization technique to minimize accuracy loss under a given cost

TABLE I
NOTATIONS

budget. Gu et al. [26] designed a model-free deep reinforcement
learning algorithm to solve a service management and energy
scheduling problem for minimizing the long-term energy cost.

Unlike the studies in [16], [18], [19], [24] that only considered
single mode or hardware limitations during multi-exit accel-
eration, the GCI considers multi-user and imperfect dynamic
network limitations. In contrast to studies [20], [21], [22] where
intermediate results are returned by previous side branches when
a fault occurs to make the best effort to recover accuracy, the GCI
adopts a redundant backup method to return satisfactory results
by processing data to the specified branch. In addition, existing
works [10], [23], [24], [25], [26] ignored backup monitoring
energy consumption and intermittent energy competition among
users, and they cannot be applied to the continual individualized
DMS provisioning problem in the fabric metaverse directly.

III. PRELIMINARIES

In this section, we introduce the system model, notions and
notations, presented in Table I, and the problem definition pre-
cisely.

A. Fabric Metaverse Network

The system considers a finite time horizon T with equal time
slots. We model a fabric metaverse network as an undirected
weighted graph G = ({v0} ∪ V,E), which consists of a cloud
data center v0, the set V = {v1, . . . , vn} of edge servers, and
the set E of links with each link e ∈ E having length de and
bandwidth be. The edge server vj ∈ V co-located with an access
point (AP) has computing capacity Capj , which refers to the
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number of threads with a floating point operation rate of μ.
We assume that the cloud center is powered by fossil fuels
with ample resources, while the edge server powered by a
renewable energy collector has a battery capacity of Eb. The
energy collector uses solar photovoltaic panels and wind turbines
to convert solar and wind energy, respectively, generated at each
time slot t ∈ T into electricity and stores it in available battery
Eb

j . Typically, the solar energy Es
j (t) and wind energy Ew

j (t)
are dynamic, intermittent, and affected by local environments,
such as time-varying solar radiationQj(t) and wind speed sj(t)
per slot [27], [28]. The total amount of green energy Egreen

j (t)
at each time slot t thus is

Egreen
j (t) = min{Es

j (t) + Ew
j (t) + Eb

j (t− 1), Eb}, (1)

Es
j (t) = Qj(t) · Spanel · ϕ, (2)

Ew
j (t) = 1/2 · ρ · Sturbine · sj(t), (3)

where Spanel and Sturbine are receptor areas of energy collec-
tor devices, respectively. ϕ represents photoelectric conversion
efficiency, and ρ indicates the air density.

B. Deep Neural Network-Based Metaverse Inference Service
Request

The metaverse services based on various DNN models pro-
vide real-time and continual individualized inference by pro-
cessing hypermodal data from intelligence fibers worn by hu-
mans. Each user issues individualized DMS request γi(t) =
(Mi(t), Ai(t), Ri(t), Di(t), Li(t)) with diverse requirements
including service modelMi(t), accuracyAi(t), reliabilityRi(t),
delayDi(t), and user location Li(t). Note that each user moves
once randomly at begin of the time slot t ∈ T and generates a
new DMS request. Let R(t) be the set of DMSs issued by all
users wearing intelligence fibers at slot t.

There are M types of DMSs in the fabric metaverse net-
work, such as sitting posture analysis, human activity recogni-
tion, and sleep stage classification. To end service earlier with
confident accuracy Ai, an intermediate classifier, consisting of
fully connected layers and a softmax layer, is inserted between
adjacent convolution layers of each model as early exit points.
Intuitively, these exit points are natural partition points, because
each partition not only returns an intermediate result without
supernumerary energy and delay due to subsequent calcula-
tions, but also gathers as many layers with a complex graph
structure into one block as possible. Thus, every DNN model
m ∈ M even with a directed acyclic graph structure can be
simplified and modeled as a block-aware linear structure, where
the vertex represents a block with part of the primary branch
and a side branch, and the link indicates a logical relationship
between any two adjacent blocks. Note that adding these in-
termediate classifiers does not affect the structures of original
DMSs, and even improves service accuracy due to additional
parameters [17].

The hypermodal data db1 related to human bodies and their
surroundings is collected by intelligence fiber with sample rate
fs, and transmitted to edge servers as the input to the first block
of each DMS m. Then, for each block bk (k ≤ K), the data has

to execute floating point operations flopbk = flopmk
+ floppk

from the primary branchmk and an exit point pk to obtain a pre-
diction with varying accuracy apk

and intermediate parameter
with data size dbk+1

. K is a given threshold that represents the
maximum number of branches (exit points).

C. Metrics of User Service Experience

The below metrics are used to measure DMS service qualities:
accuracy, reliability, energy consumption, and delay.

1) Accuracy: The sampling rate fs of intelligence fibers
and the confidence threshold σ jointly determine inference
accuracy, and are constrained by accuracy requirements Ai =
σi · (Amax

Mi
−Amin

Mi
). Specifically, let F be the set of available

sample rates, and the quality and quantity of collected data grad-
ually increase with the improvement of fs. The optimal sampling
rate f ∗si under different models has been calculated in advance
from offline data sets by our previous algorithm [1], which is
regarded as known information. The maximum probability apk

of all prediction types of an early exit point is regarded as the
confidence criterion. That is, if an intermediate accuracy apk

is
not lower than the confidence thresholdσi of a user, then the pre-
diction process exits early, and otherwise continues to next one in
the groupPm = {pi,k|0 < k ≤ K} of candidate branches. Note
that the early exit point pi,k′ assigned to request γi can meet the
accuracy demand, while the subsequent part of the DNN model
in the cloud is usually idle and executed to obtain an entire result
when the user is not satisfied with the intermediate result at
this time.

2) Reliability: A DMS can be divided into K blocks with a
chain dependency for cooperative execution, according to the
threshold K of the early exit point. Each block has a different
reliability due to unpredictable failures of software and/or hard-
ware, such as priority preemption, power shortage, or natural
disasters. The reliability r indicates the percentage of running
time in a normal state to the total detection time, which can be
obtained based on historical log traces. Deploying redundant
backups is a practical way to improve service reliability. Thus,
the enhanced reliability r̂i,k of the kth block in model Mi with
its qi,k backup blocks is defined as follows:

r̂i,k = 1− (1− ri,k)
qi,k+1, (4)

where ri,k is the initial reliability of the kth block. We assumed
that failure between different blocks occurs independently and
does not propagate because these blocks run in a completely
isolated virtual environment [29]. Thus, the reliability ri of
whole DMS requested by γi that is composed of multiple DNN
blocks are given as follows:

ri =
k′∏

k=1

r̂i,k. (5)

Note that the blocks deployed on the cloud are assumed to be
infallible because the cloud has sufficient resources to employ
multiple failure prevention measures. Thus, we only consider
the reliability of blocks deployed on edge servers with limited
resources and energy, namely the part before the early exit
point pi,k′ .
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3) Energy Consumption: Typically, active and asleep are two
states of an edge server, which can be dynamically switched
based on the number of received users to reduce energy con-
sumption and carbon footprint. In terms of the asleep state,
servers and base stations only need to consume a small sleep
energy Esleep

j to maintain basic functions, while the collector
is still operating and continues to collect and store renewable
energy.

In terms of the active state, communication, computation,
backup, and leakage energy Eleak are considered. For an edge
server vj , the communication energy Ecm

j is mainly used to
transmit intermediate data among edge servers,

Ecm
j =

∑
γi∈R

k′∑
k=1

Ptra · dbi,k
be

· xi,k,j , (6)

where Ptra is the transmission power of servers, and xi,k,j is
a binary variable representing whether the block bk required by
γi is deployed on an edge server vj . The computation energy is
used to perform the float point calculations required by different
DMSs for users and expressed as follows:

Ecp
j =

∑
γi∈R

k′∑
k=1

Pcom · ηi ·
flopbi,k
ηi · μ · xi,k,j , (7)

wherePcom is the computation power per thread, and ηi denotes
the number of threads required by user request γi. The backup
monitoring energyEbu

j is provided to the backup block to listen
to the status information of the corresponding primary block,

Ebu
j =

∑
γi∈R

k′∑
k=1

Pbu · qi,k,j · xi,k,j , (8)

where qi,k,j is the number of backup blocks for kth block of
request γi in server vj , and Pbu is backup monitoring power. In
addition, the on-site backup scheme is adopted in all backup
scenarios in this paper due to its energy-friendly property.
Specifically, both the primary and backup blocks are deployed
in the same edge server. Compared with the off-site backup
scheme, each server in the on-site backup scheme only needs
to provide the running energy of the primary block and listening
energy of its backups, and it does not need to reserve additional
running energy required for these backups, because backups
usually remain idle unless the primary block fails. Thus, the total
energy consumption Etotal

j of edge server vj and its remaining
battery Eb

j (t) at time slot t are expressed as follows:

Etotal
j =

{
Ecm

j + Ecp
j + Ebu

j + Eleak, ifzj = 1,

Esleep, otherwise,
(9)

Eb
j (t) = max

{
Egreen

j (t)− Etotal
j (t), 0

}
, (10)

where zj is a binary variable indicating whether edge server
vj ∈ V is active or not.

4) Delay: The inference delay is affected by the early exit
pointpi,k′ . The DMS is divided into one part with multiple blocks
distributed on edge servers and another part in the cloud data
center according to the pi,k′ . The inference part of a DNN model
on edge servers becomes larger as the confidence threshold σ

increases, and DMS accuracy and delay become larger. Each
DMS provisioning will experience transmission Dt,i, propa-
gation Dp,i, and calculation delay Dc,i, which are defined as
follows.

Dt,i =
(fsi − 1) · di,b1 +

∑
k≤K di,bk

∑
j∈V xi,k,j

be
, (11)

Dp,i =
∑
j∈V

Pi,j · xi,1,j
3× 108

+
∑
k<K

∑
v,u∈V

Pv,u · wi,k,k+1
v,u

3× 108
, (12)

Dc,i =
∑
k≤K

∑
j∈V

flopi,bk
ηi · μ · xi,k,j , (13)

where Pv,u represents the shortest path from server v to
server u, and Pi,j is the distance from the user to its nearest
server plus the shortest distance from the nearest server to a
server vj , and 3× 108 km/s is electromagnetic waves speed.
wi,k,k+1

v,u = max{xi,k,v + xi,k+1,u − 1, 0}, and it is a binary
variable indicating whether the shortest path Pv,u is used to
transmit intermediate results block bk and bk+1.

D. Problem Definitions

Definition 1. The DNN model side branch insertion and allo-
cation problem (DIA): Given an integerK ∈ Z

+, the set of DNN
models M = {m | 1 ≤ m ≤ |M|}, and the set of inference
requests in R on the models. Each model m has one primary
branch and multiple side branches, namely early exit points,
Pm = {pk | 1 ≤ k ≤ |Pm|}, and each request γi ∈ R has a
minimum accuracy demand Ai and a service model demand
Mi to preliminarily immerse in a metaverse service enabled by
the DNN model Mi. The DIA is to select respectively one of
the K exit points for each overdecorated DNN model m ∈ M
to get the set M̂ of pruned DNN models m̂ ∈ M̂ with a set of
subbranches P̂m̂(|P̂m̂| = K), to minimize overflow accuracy of
all users from an accuracy demand to the exit point pi,k′ allocated
to a user in a fabric metaverse.

Definition 2. The server activation and service deployment
problem (SASD): Given a fabric metaverse network G =
({v0} ∪ V,E) where each edge server has computing capacity
capj and renewable energy Egreen

j . There is the set M̂ of

pruned DNN models m̂ with selected K exit points P̂m̂, and
the set R of inference requests, where each request γi ∈ R
has a service model demand Mi with early exit point pi,k′ , a
reliability demand Ri, delay demand Di, location demand Li.
The SASD problem is to strategically activate a subset of edge
servers, and deploy DMS consisting of multiple blocks and its
corresponding backup blocks on the set of activated edge servers,
to maximize throughput of DMS requests with the minimal
number of activated servers while meeting the model, reliability,
and delay demands of all DMS requests, subjected to resource
capacity and green energy budget on the network.

Theorem 1: The DIA problem in a fabric metaverse network
is NP-hard.

Proof: The NP-hardness of DIA is shown by reducing the
well-known NP-hard problem - K-median problem to the DIA
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problem in polynomial time. The K-median problem is de-
fined as follows: Given a weighted undirected graph G = (L ∪
U ,E ) with K facilities, where L is the set of potential loca-
tions lj ∈ L for the facilities, U is the set of users ui ∈ U ,
and E is the set of links e′i,j between user i and location j
with the euclidean distance disi,j , the K-median problem is
to locate K facilities into K locations in L so that the sum
of distances between all users and their nearest facilities is
minimized.

We show that an instance of the K-median problem can be
reduced to a special case of the DIA problem. Assume that there
is only a DNN model with |Pm| ≥ K insertable positions of
side branches, and all inference requests in R are issued at the
same time. Given a branch threshold K, the DIA problem is
to insert K side branches into K available positions to form
a pruned DNN model m̂ with an exit point set P̂m̂, namely
K = |P̂m̂| ≤ |Pm|, so as to minimize the sum of the overflow
accuracy of all inference requests from each accuracy demand
to the exit point allocated to the user.

A solution to the K-median problem returns a solution to the
DIA problem, and the reduction process is polynomial. Since
theK-median problem is NP-hard, the DIA problem is NP-hard,
too. �

Theorem 2: The SASD problem in a fabric metaverse network
is NP-hard.

Proof: The NP-hardness of the SASD problem is confirmed
by a polynomial reduction from the NP-hard problem - Gener-
alized Assignment Problem (GAP), which is defined as follows:
Given a group of items Item = {I1, . . . , In}, each Ii with a
profit profiti and size sizei, and a collection of bins with
Bin = {b1, . . . , bm}, and each bj has capacity capj . The GAP
is to maximize the overall profit by allocating as many items as
possible into them bins, subject to capacity capj on each bin bj
with j ∈ {1, . . . ,m}.

We consider a special case of the SASD problem, where each
DNN model with computing demand ηi as a whole and has
only one main branch, each server vj with computing resources
Capj remains activated and has plenty of green energy, and
all inference requests γi in R are issued at the same time. We
further assume that the reliability demand of each user is one
additional backup, and that delay demand is neglectable. The
system generates a profit of 1 when a DNN model and its backup
required by a user γi is successfully deployed on edge server v,
and otherwise, 0. The goal of the SASD problem is to maximize
the number of receiving DMS requests by deploying as many
satisfied DNNs as possible into edge servers in a fabric network,
subject to the capacity capj on each edge server.

It can be seen that the special case of the problem is equivalent
to the GAP problem, so the SASD problem is NP-hard. �

E. Problem Formulations

In this section, we mainly present the modeling of SASD
as a Markov Decision Process (MDP) by a tuple (S,A,P,R),
while the procedure of modeling DIA as an Integer Linear Pro-
gramming (ILP) is detailed in Section IV-A1. The fundamental
components in the MDP are defined as follows:
� State space S: The fabric metaverse network system ob-

served by an agent (the scheduler in the GCI) at each time

slot t consists of a finite group of environment states st ∈ S

containing various information about users, networks, and
models, namely:

st = {R,C,E,B,M̂},
where R is the set of DMS requests issued by
fabric users, C = {cap1, . . . , cap|V |} indicates the set
of remaining thread capacities on edge servers, E =
{Egreen

1 , . . . , Egreen
|V | } is the set of newly arrived energy,

B = {Eb
1, . . . , E

b
|V |} is the set of available green energy

at batteries, and M̂ represents a group of pruned DNN
models. Note that at the beginning of each time slot, the
above network resources fluctuate dynamically, due to the
random movements of users wearing intelligence fabrics
and the new DMS requests with individual demands issued
by them. In addition, the unpredictability of collected green
energy further makes the environment more chaotic.

� Action space A: Based on the observed environment
state st at each time slot t, the agent selects an action
at from action space A accordingly, which includes the
decision about server activation, block backup, and ser-
vice deployment, namely at = {Z,BN,MD}, where Z =
{zv1

, . . . , zv|V | } is a group of binary variables indicating
whether a server is activated. BN = {BN1, . . . , BN|R|}
indicates the DMS backup scheme for all users, where
BNi = {qi,1, . . . , qi,|K|} with length ofK stores the num-
ber of backup blocks. MD = {MD1, . . . ,MD|R|} repre-
sent the DNN block deployment scheme for all users. Each
MDi = {xi,1, . . . , xi,|K|} is a vector of length K, which
stores the indexes of deployment servers. Note that the
cloud center is indicated as 0, namely xi,|K| = 0.

� State transition probability: The fabric metaverse network
system achieves the state transition from the current st to
the next st+1 when the agent executes an action at with
conditional probability p(st+1|st, at). The environmental
state transition is dependent on itself and independent of
the agent, where C, E, and R are randomly extracted from
their respective discrete range, and affect other states.

� Reward: The reward value acts as a feedback signal from
the fabric network environment to evaluate the contribution
of action at to the agent for achieving the final goal in
state st. Let fi be a binary variable indicating that the user
demands and server constraints are met for DMS request
γi. Thus, the reward function Rt is designed according
to the objective and constraints for gradually guiding the
agent,

Rt = ψ · 1

|R| ·
∑
i∈R

fi − (1− ψ) · 1

|V | ·
∑
j∈V

zj , (14)

where ψ > 0 represents an adjustment coefficient.
Following the MDP modeling, solving SASD is to find the

optimal policy to maximize the long-term return R, namely
the average reward of all slots, earned by metaverse service
providers during a given time horizon T. The definition of the
optimal solution policy is given as follows:

Definition 3. The optimal policy π∗ for the SASD problem:
A policy π is defined as a mapping from state st to action at
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with reward Rt, namely, S
π→ A. In simpler terms, the scheduler

can take action at = π(st) in response to any observed state
st from the fabric metaverse networks under policy π. The
optimal determination policy π∗ refers to maximizing the return
R while considering user demands on service model, reliability,
delay, and accuracy, as well as server limitations on resource
and energy.

IV. GREEN CONTINUAL INFERENCE (GCI) SYSTEM

In this section, we study continuously individualized DMS
provisioning in a fabric metaverse by developing a Green Con-
tinual Inference system, namely GCI, as shown in Fig. 1. The
system consists of two parts to solve the DIA and SASD sub-
problems: the DMS pruner and the DMS scheduler.

A. DMS Pruner

The DMS pruner is mainly responsible for personalized model
compression based on user and service information, which com-
presses each overdecorated model by pruning the number of side
branches to K based on the practical distribution of accuracy
demands for massive users. In the following, we develop two
kinds of DMS pruners for the case of fewer models and more
models, respectively.

1) Exact Pruner: According to the above definition, the DIA
subproblem can be formulated as an ILP, where the optimization
objective of each model mj ∈ M is to

Minimizegi,k,hk

∑
i∈R

∑
k∈Pm

oai,k · gi,k, (15)

subject to:

oai,k =

{
api,k −Ai, ifapi,k ≥ Ai,
+∞, otherwise,

(16)∑
k∈Pm

gi,k = 1, i ∈ R (17)

∑
k∈Pm

hk = K, m ∈ M (18)

gi,k ≤ hk, k ∈ Pm, i ∈ R (19)

gi,k ∈ {0, 1}, k ∈ Pm, i ∈ R (20)

hk ∈ {0, 1}, k ∈ Pm, i ∈ R (21)

Constraint (16) ensures that the accuracy overflow oai,k of
an exit point pi,k exists only when exit accuracy api,k

is greater
than accuracy requirementAi, i.e., the accuracy gap between the
latter and the former. Constraints (17) and (18) indicate that each
user can only be assigned one early exit point, and the number
of early exit points of each model is equal to K, respectively.
Constraint (19) guarantees that whenever a user i is assigned to
an early exit point k, then the point must have been available
at the k in model Mi. Constraints (20) and (21) are two binary
variables, where gi,k indicates if DMS request i is assigned to
the kth early exit point in model Mi, and hk indicates if the kth
early exit point in model Mi is inserted, namely reserved.

Algorithm 1: AppPruner.

2) Approximate Pruner: To avoid the excessive complexity
of ILP pruner that experiences exponential growth in running
time with problem size, we design an approximation algorithm
Algorithm 1 to solve DIA in polynomial time as follows.

First, we initialize DNN models and candidate user sets that
require the same model (lines 3-5). Specifically, the main branch
with the maximum accuracy is set as the default one in branch
set P̂m̂ of each pruned model. Then, part of the users who choose
the same model m are merged into the candidate user set CUm.
In addition, let TUm and TPm be temporary variables forCUm

and Pm for subsequent updates to users and early exit points,
respectively.

Next, the personalized and pruned model m̂ is obtained by
iteratively pruning branches to K based on different accuracy
demands of users inTUm and the overflow indicatorsOInk (lines
8–13). Each early exit point has its own coverage [0, apk

], and
users can only be assigned to the points with higher accuracy
than they need. For a certain branch pk at the n-th iteration,
all users in TUm could be divided into two parts, where Ωn

k

indicates users allocated to this branch and TUm\Ωn
k represents

users who belong to the last identified branch (line 10). In
addition, the overflow indicatorOIk of a certain branch pk refers
to the sum of the accuracy overflow of the above two parts
for all users at this branch, namely OAk and OAindex. The
extra computation is less as the overflow indicator is reduced,
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which in turn saves more energy. Thus, the branch pk′ with the
minimum overflow indicator is preferred as the reserved early
exit point. Note that the remaining branches between the two
identified and adjacent branches should be removed because the
branch insertion process moves from high to low accuracy for a
pre-trained overdecorated model in Table II (line 13).

Finally, we assign users to the selected early exit point itera-
tively (line 14). The process of user assignment has hysteresis,
that is, the user assigned to the n− 1-th branch is determined
only when the n branch is determined. In the last iteration, the
pre-assigned users are assigned to the first branch of the model
if they exist.

B. DMS Scheduler

Another component of the GCI system is the DMS scheduler,
which serves to activate the suitable number of servers and
deploy DMS requests across these activated edge servers based
on the dynamic user and network resource limitations in the
fabric metaverse. In the subsequent sections, we design two
distinct schedulers based on ILP and reinforcement learning for
implementing continual and personalized DMS provisioning in
dynamic fabric metaverses with different detection times and
network scales.

1) Exact Scheduler: The first scheduler relies on ILP tech-
nology, presenting an exact and optimal scheme for each time
slot t ∈ T at smaller scales of the fabric metaverse. In particular,
the exact scheduler is as an oracle, comprehensively observing
the entire state space s and calculating the optimal approach a∗

for server activation Z
∗, block backup BN

∗, and service deploy-
ment MD

∗. More specifically, the exact scheduler transforms
the SASD subproblem from an MDP into an ILP to maximize
the average reward R at all slots as follows.

Maximizexi,k,j(t),qi,k(t),zj(t)
1

|T|
∑
t∈T

Rt, (22)

subject to:

xi,k,j(t) ≤ zj(t), i ∈ R, k ≤ K, vj ∈ V (23)∑
vj∈V

xi,k,j(t) = 1, i ∈ R, k ≤ K (24)

ri(t) ≥ Ri(t), i ∈ R (25)

(Ecm
j (t) + Ecp

j (t) + Ebu
j (t) + Eleak) · zj(t)+

Esleep · (1− zj(t)) ≤ Egreen
v (t), vj ∈ V (26)∑

k≤K

∑
i∈R

ηi(t) · xi,k,j(t) · (1 + qi,k) ≤ Capj , vj ∈ V (27)

xi,k,j(t) ∈ {0, 1}, i ∈ R, k ≤ k′, vj ∈ V (28)

xi,k,j(t) = 0, i ∈ R, k > k′, vj ∈ V (29)

zj(t) ∈ {0, 1}, vj ∈ V (30)

Constraints (23) and (24) indicate that each block of a DMS
is deployed to only an activated server. Constraint (25) is user

Algorithm 2: ExaScheduler.

demands on service reliability. Constraints (26) and (27) repre-
sent that the green energy and computing resources required to
receive DMS requests do not exceed the limitation of the fabric
metaverse network. Then, an exact algorithm Algorithm 2 based
on an ILP solver is designed to maximize the throughput of DMS
requests while minimizing the number of activated servers.

2) Hybrid Reinforcement Learning-Based Scheduler: The
ILP solution cannot predict subsequent server activation and
is only suitable for small problems because its running time
increases exponentially with problem size. To overcome this
shortcoming, the second scheduler based on a hybrid reinforce-
ment learning technique is designed, which can address the
activation prediction challenges over a period of time T ∈ T

during continual DMS provisioning in large-scale fabric meta-
verse caused by intermittent energy, time-varying computing
resources, and dynamic random moving users with personalized
demands. This scheduler has two symbiotic components, i.e.,
an activator and a deployer library, where the former specifies
the deployment scope over time T , and the latter provides a
near-optimal deployment solution at each time slot t ∈ T as
training rewards to the former.

The training process of the learning-based activator in
HrlScheduler is shown in Algorithm 3 in detail. First, compress
models and activate the appropriate edge servers at begin of
each time interval T . By running the pruner Algorithm 1, the
overdecorated models are pruned, and early exit points meeting
accuracy demands are assigned to users. In addition, a noise
process N is added to the sample of activation action to avoid
getting stuck in a local optimum. The actual activation action is
the value of the probability distribution calculated by the policy
minus the random noise because metaverse service providers
want to use the fewest edge servers to maximize user throughput.

Next, deployers in the deployer library perform service de-
ployment actions and calculate corresponding rewards accord-
ing to formula (14), which increases the expandability of the
training framework. Note that only one deployer can be used
during training. The deployer can find a near-optimal block
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Algorithm 3: Training Process of HrlScheduler.

backup and service deployment solutions based on the current
server activation status and constraints at each slot t ∈ T . For
example, Algorithm 4 only considers the server constraints on
energy and computing resources and user demands on reliability
and model, while Algorithm 5 additionally considers user de-
mands on service delay. After deployment, the gap between the
percentage of accepting requests and activated servers is stored
in a replay buffer as a reward by using formula (14).

Finally, a batch of data from the replay buffer is randomly
selected to update the related neural networks. Specifically, the
critic network θc is updated to minimize the loss function L us-
ing gradient descent, where yTi

= rTi
+ θtc(sTi+1

, θtp(sTi+1
)).

Subsequently, the upgraded critic network is utilized to refine
more accurate values that aid in the policy network θp updating
via the policy gradient. Then, both the target neural networks θtc
and θtp are updated using the soft target update method.

3) Different Deployers in the HrlScheduler: In the following,
two deployers are designed to place DMSs with differential
delay constraints.

Approximate Deployer: The approximate deployer is geared
toward DMS provisioning without delay requirements, such
as sleep detection and social media. Therefore, it primarily

Algorithm 4: AppDeployer.

considers the server constraints on green energy and computing
resources and user demands on services model and reliability.
The AppDeployer Algorithm 4 is described as follows. First,
the algorithm determines the minimum number of backups by
providing backups for the block with the least reliability in each
request iteratively until it meets user reliability requirements.
Then, it constructs a GAP instance, where all blocks and their
backups in each DMS request are regarded as items with two
dimensions demands on computing and energy resources, and all
activated edge servers are represented as bins with dynamic lim-
itations on computing and battery capacity (line 3). Finally, the
defined GAP instance is solved by integrating a two-dimensional
knapsack algorithm into a framework proposed by [30], and the
deployment location of each block and its backups is obtained.
The approximation algorithm with an approximation ratio of 2
for the two-dimensional knapsack problem is given as follows:
It sorts all items in descending order of their average value that is
the inverse of the sum of computing resources and green energy.
The sorted items are then placed in bins one by one until the
capacity of the bin is violated. The final items placed in a bin are
all items before the one without violating the bin constraint, or
the item with the bigger profit after the one yet without violating.
This procedure continues until all items are placed or no bin has
room for further item placements.

Heuristic Deployer: The second deployer is to place delay-
sensitive DMSs such as human action recognition and emotion
recognition, which takes into account the delay constraint. The
HeuDeployer Algorithm 5 is described as follows. Regarding
algorithm AppDeployer, the best backup scheme is calculated
first. Followed by a semi-lazy allocation strategy to consider the
delay constraint. Specifically, for request γi of user i, the first
block and its backups are always placed to an activated server
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Algorithm 5: HeuDeployer.

vj with sufficient resources closely to the user, i.e, there is the
shortest path Pi,j between user i and server vj ∈ V inG (line 7).
For subsequent blocks, namely before the index k′i of assigned
exit point, they are deployed to the activated servers that just
meet the remaining delay threshold and have the most remaining
resources of all servers to reduce resource competition among
users. In addition, during the deployment process, this algorithm
selects the appropriate server for each requested block in turn,
which further reduces competition and improves fairness. Note
that each time a block is successfully deployed, the remaining
delay is updated.

The detailed implementation of the GCI system is presented
in Algorithm 6, where Algorithm 3 is executed once every slot
period T , and Algorithm 4 or Algorithm 5 is executed at each
time slot t to obtain near-optimal action at.

C. Algorithm Analysis

At the end of this section, we analyze the approximation ratio
and time complexity of the proposed algorithms.

Lemma 1: The accuracy overflow of all selected users de-
clines with the insertion of side branches for any single DMS in
Algorithm 1.

Algorithm 6: GCI System.

Proof: For a DMS, the total accuracy overflow An
overflow

in the nth iteration includes two parts: the verified accuracy
overflow

∑K−1
n OAn

index for some users with assigned exit
points, and the uncertain accuracy overflow OAn

k′ for some
pre-assigned users. The gap between the accuracy overflows
between iterations n and n− 1 is estimated as follows:

An
overflow −An−1

overflow

= OAn
k′ +

K−1∑
n

OAn
index −

(
OAn−1

k′ +
K−1∑
n−1

OAn
index

)
= OAn

k′ − (OAn−1
k′ +OAn−1

index

)
= |Ωn−1

k′ |(aP̂ [n] − aP̂ [n−1])

≥ 0, (31)

where inequality (31) represents the reduction value of accuracy
overflow because some users are assigned to closer early exit
points in the next iteration (n− 1). Thus, the total accuracy
overflow decreases as the iteration process of insertion branches
increases. �

Theorem 3: Given the set R of DMS inference requests from
different users wearing intelligence fibers, and a given branch
number threshold K, there is an approximation algorithm,
Algorithm 1, with bounded approximation ratio 2ξ to compress
each model by pruning the branches to K to reduce the green
energy consumption in O(|M ||K|(|R||Pm|+ 1)), where |Pm|
is the branch number of an overdecorated DNN model m, δ
represents the average value of overflow accuracy of all DMS
requests for the DNN model m, aP̂ [K] is the accuracy of the

main branch P̂m̂[K], and ξ = aP̂ [K]/δ.
Proof: To simplify the proof, we calculate only the approxi-

mation ratio for a single model, while the actual approximation
ratio is the maximum of the upper limit of overflow accu-
racy among all models. To analyze the approximation ratio of
Algorithm 1, we denote by Φ the larger one between the
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number of chosen users Ωn
k′ and the number of not cho-

sen users TUm\Ωn
k′ for a model m, assuming that each

user requests only one DMS model each time, then Φ =
maxk′∈P̂m̂

{Ωn
k′ , TUm\Ωn

k′ }. The upper bound on the gap

Gapn,n−1
OI of accuracy indicators between two consecutive it-

erations is

Gapn,n−1
OI = OInk′ −OIn−1

k′

= OAn
k′ +OAn

index − (OAn−1
k′ +OAn−1

index)

= |Ωn−1
k′ |(aP̂ [n] − aP̂ [n−1]) +OAn

index (32)

= |Ωn−1
k′ |(aP̂ [n] − aP̂ [n−1])

+
∑

i∈TUm\Ωn
k′

(aP̂ [n+1] −Ai)

≤ |Ωn−1
k′ |(aP̂ [n] − aP̂ [n−1])

+ |TUm − Ωn
k′ |
(
aP̂ [n+1] − aP̂ [n]

)
≤ |Φ|

(
aP̂ [n] − aP̂ [n−1] + aP̂ [n+1] − aP̂ [n]

)
(33)

≤ |Φ|(aP̂ [n+1] − aP̂ [n−1]), (34)

where formula (32) indicates the reduction in the total accuracy
overflow after a new branch is inserted, and inequality (33) holds
because of the property of Φ itself. Based on inequality (34), the
following inequality is derived,

OIK−1
k′ −OI1k′ =

K−1∑
n=2

(OInk′ −OIn−1
k′ )

≤ |Φ|(aP̂ [K] − aP̂ [1]). (35)

Next, by inequality (35), the upper bound on the accuracy
indicator OIK−1

k′ is given as follows:

OIK−1
k′ ≤ OI1k′ + |Φ|(aP̂ [K] − aP̂ [1])

≤ |Φ|(aP̂ [K] + aP̂ [2]). (36)

Thus, the approximation ratio of AppPruner is

Aoverflow

A∗
overflow

=
OA1

k′ +
∑K−1

n=1 OA
n
index

A∗
overflow

=
OI1k′ +

∑K−1
n=2 OA

n
index∑

i∈R oai,k′

≤ OIK−1
k′ +

∑K−1
n=2 OA

n
index∑

i∈R oai,k′
(37)

≤ OIK−1
k′ +

∑K−1
n=2 OA

n
index

|Φ| · δ ,

let δ =

∑
i∈R min

api,k
−Ai>0(k∈Pm)

(api,k
−Ai)

|R|
(38)

≤
|Φ|(aP̂ [K] + aP̂ [2] + aP̂ [K] − aP̂ [2])

|Φ| · δ

≤ 2 · ξ,where ξ =
aP̂ [K]

δ
(39)

Inequality (37) holds because the accuracy overflow decreases
with the increase in branch number (Lemma 1). Inequality (38)
indicates the ideal lowest bound of overflow accuracy is that
all services exit from the nearest exit point of an overdecorated
DNN m, and δ is the average of overflow accuracy in this case.
Inequality (39) holds based on inequality (36) and the same
principle in proof of Gapn,n−1

OI .
The time complexity of Algorithm 1 is analyzed as follows.

Initializing related variables and grouping users takes O(|R|)
time. For an optional branch, the calculation and selection of
the overflow indicators consume O(|R| · |Pm|) time. Branch
insertion, user assignment, and their updating process take
O(1) time. This process is performed for each branch and
each model, so the total time complexity of the algorithm is
O(|M | · |K|(|R| · |Pm|+ 1)). �

Lemma 2: The approximation ratio of the sub-algorithm for
the two-dimensional knapsack problem in Algorithm 4 is 2.

Proof: Recall that the profit per item Iu, namely the number
of blocks accepted, is pru = 1/K in Theorem 2 when a request
with K block and their backups. Assuming that the total profit
of loaded items LI calculated by the approximation algorithm
is tp and the theoretical optimal profit is tp∗. The sorted items
satisfy the following inequality,

1/K

C1 + E1
≥ . . . ≥ 1/K

Cu + Eu
≥ . . . ≥ 1/K

C∑
i∈R k′

i
+ E∑

i∈R k′
i

,

whereCu andEu represent resource demands on the computing
capacity and energy for an item, and k′i is an index of exit point
assigned to request γi. When the ũ-th item violates the server’s
energy and compute capacity simultaneously, the approximation
profit is tp = max{∑u∈LI pru, prũ}. Then,

tp∗

tp
≤
∑

u∈LI pru + prũ · Capj−
∑

u∈LI Cu+Egreen
j −∑

u∈LI Eu

C
ũ
+E

ũ

tp

<

∑
u∈LI pru + prũ · C

ũ
+E

ũ

C
ũ
+E

ũ

tp

=

∑
u∈LI pru + prũ

max{prũ,
∑

u∈LI pru}

≤
∑

u∈LI pru + prũ
1
2 · (∑u∈LI pru + prũ)

= 2.

Thus, the approximation ratio of the sub-algorithm for the two-
dimensional knapsack problem is 2. �

Theorem 4: Given a fabric metaverse network G = ({v0} ∪
V,E), the set R of DMS inference requests from different
users wearing intelligence fibers, and a collection of metaverse
services based on pruned DNN models M̂, we consider an
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approximation AppDeployer Algorithm 4 with a constant ap-
proximation ratio 3 in O(|R||K||V |2) and a heuristic HeuDe-
ployer Algorithm 5 in O(|R||K||V |) to deploy respectively
required blocks and their corresponding backups on selected
active servers for maximizing request throughput according to
whether to consider additional delay constraints.

Proof: The approximation ratio of GAP architecture is 1 +
α [30]. A sub-algorithm with an approximation ratio of 2 in
Algorithm 4, namelyα = 2, is designed for the two-dimensional
knapsack problem as shown in Lemma 2. Since the system
accepts a request when all blocks before pi,k′ in the request
are placed, the conversion function from block to request can
be viewed as a monotonically increasing piecewise function.
Therefore, the total number of accepted requests calculated
by AppDeployer is not more than 3 times the optimal result
after experiencing the conversion function due to the function
monotonicity and Lemma 2.

Then, the time complexity of AppDeployer and HeuDeployer
are analyzed respectively. In terms of AppDeployer, it incurs
the complexity of O(|R||K|) to calculate the backup scheme.
The GAP instance is constructed by consuming
O(|R||K||V |). The complexity is O(|∑i∈R k

′
i||V |+

|∑i∈R k
′
i| log |

∑
i∈R k

′
i|) to execute the two-dimensional

knapsack sub-algorithm. It also causes the complexity
of O(|V |(|∑i∈R k

′
i||V |+ |∑i∈R k

′
i| log |

∑
i∈R k

′
i|) +

|∑i∈R k
′
i||V |) to solve the GAP instance [30]. Thus, the total

time complexity of AppDeployer is O(|R||K||V |2). In terms
of HeuDeployer, it also incurs the complexity of O(|R||K|)
to calculate the backup scheme. The blocks required to deploy
separately for all requests consume O(2|K||R||V |). Thus, the
total time complexity of HeuDeployer is O(|K||R||V |).�

V. PERFORMANCE EVALUATION

In this section, we first introduce related experiment param-
eters and the comparison algorithms. Then, we demonstrate a
hardware prototype, and conduct analog simulations and exper-
iments. Finally, we evaluate the performance of the proposed
algorithms in the GCI system.

A. Experimental Environments

The below analog simulations are conducted in a fabric
metaverse network that consists of a remote cloud center and
the Abilene network [31] with 11 edge servers as an under-
lying topology, where the simulation network is deployed in
a 13 Megametre × 13 Megametre square area. Within this
network topology, the computing resources of each edge server
are randomly allocated from 128 to 256 thread [32], and the
floating-point calculation of each thread is 3.375 GFLOPS [33].
Transmission data sizes per block of a model fluctuate between
10 to 100 Mbit, while network bandwidth remains steadfast at
1000 Mbit/s [34]. Energy consumption during sleep, leakage,
and backup monitoring is 5, 5, and 1 J/slot respectively, while
servers collect green energy between 25 to 50 J/slot that is stored
in a battery with a capacity of 1000 J. To facilitate concept
testing and validation, we also design a hardware prototype as
a simplified and preliminary platform depicted in Fig 2, where

Fig. 2. The hardware prototype.

a laptop symbolizes the cloud server, interconnected Raspberry
Pi serves as the edge server, a cushion embedded with multiple
flexible pressure sensors embodies the intelligence fabric, a
mobile charging bank signifies the battery, and the solar panel
represents the green energy collector.

In a fabric metaverse, multiple DNNs based on metaverse
services are introduced to process data from embedded intel-
ligence fibers, whose parameters are shown in Table II. The
first model utilizes a 16x16 pressure dataset from an intel-
ligence fabric cushion to analyze sitting posture. It employs
a four-layer convolutional structure with four exit points to
accurately identify forward, backward, left, and right leaning
positions. The 1D_CNN_HAR service [35], based on the UCI-
HAR dataset [36], employs a 1D CNN model with four branches
to recognize human activity. Similarly, the sleep stage classifica-
tion model, based on the Sleep-EDF-78 dataset [37], also uses
a four-branch architecture to assess sleep quality. In addition
to model requirement for each user, the reliability demand falls
within the range of 0.8 and 1, the delay demand is extracted from
1.5 to 2.5 s, the confidence threshold affecting accuracy is set
between 0 and 1, and the thread resource demand is extracted
between 4 and 8. Note that each user randomly moves to any
location in the network at the beginning of each time slot and
makes a new request. Each slot includes 60 s. The above values
are default values for each trial unless otherwise specified.

B. Performance Evaluation of the Algorithms

To evaluate the performance of the proposed algorithms for
the GCI system, the following algorithms are introduced as
comparison benchmarks.

Random (Random + RAD [38]): It retains K branches ran-
domly for each model, and randomly selects one of the branches
that meets the accuracy requirement of each user. The RAD
scheme then is employed to determine necessary backups, and
services along with their backups are deployed randomly to
activated servers.

GCI: It begins by utilizing the AppPruner Algorithm 1 to
reduce excessive branches to K. It then selects a subset of edge
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TABLE II
MODEL PARAMETERS OF DNN-BASED METAVERSE SERVICES

TABLE III
PARAMETER SETTINGS

servers to activate using the LeaActivator Algorithm 3. It finally
adopts the AppDeployer Algorithm 4 to allocate services and
their backups on the servers.

GCI_D: In contrast to GCI that weighs users on reliability and
model requirements, and server constraints on computing and
energy, GCI_D takes an additional delay requirement. It makes
use of the HeuDeployer Algorithm 5 to deploy delay-sensitive
services and offers rewards for the LeaActivator Algorithm 3.

ILP [39]: It first relaxes the ILPs for DIA and SASD sub-
problems in Section IV into linear programming to reduce their
running time. It then adopts the cplex solver in Python for
the problems. In comparison experiments, the ILP algorithm
is considered to deliver an optimal solution to the problem with
the maximum total reward.

C. Impact of Parameters on the Performance of the Proposed
Algorithms

The impacts of key parameters on the performance of different
algorithms are examined, with detailed experimental configu-
rations given in Table III including confidence threshold, ad-
justment coefficient, block reliability, green energy, computing
capacity, delay demand, and request number.

1) Impact of accuracy demands on the performance of
different pruner algorithms: We adopt the parameter setting
Set 1 in Table III, wherein we widen the distribution of con-
fidence threshold σ from [0.8, 1] to [0, 1] to investigate its
impact on performance. From Fig. 3(a), RanPrunner exhibits
the highest overflow accuracy between accuracy demands and
reserved branches assigned to users as the accuracy distribution
interval widens, while the gap between AppPruner and ILP-
Pruner remains relatively stable. The reason for the stability in
overflow accuracy is hidden in Fig. 3(b), where some users can
choose earlier exit points as the accuracy distribution increases.
However, the random exit method causes the accuracy overflow
to continue to increase. The increase in running time of App-
Pruner is attributed to the increasing check times for early exit
points to which users belong due to a widening range of accuracy
demand in Fig. 3(c).

2) Impact of adjusting coefficient on the performance of
the LeaActivator algorithm: We employ the parameter setting
Set 2 in Table III, wherein we vary coefficient ψ from 0.25

Fig. 3. Performance of different pruners by varying the distributions of con-
fidence threshold σ form [0.8, 1] to [0, 1].

to 0.75, aiming to scrutinize its influence on the performance
of the proposed algorithm. We also train the policy and critic
neural networks of LeaActivator algorithm, using the Adam
Optimizer over 24,000 episodes with 10 time slots each. The
neural network architecture consists of 4 convolutional layers
(16, 32, 32, 4) and 3 fully connected layers (512, 256, 11), in
which the ReLU as activation functions after each layer. From
Fig. 4(c), the total reward experiences a gradual increase with
the increase on the value of coefficient. This is because requests
account for a relatively high proportion of the total reward, and
the acceptance of requests exhibits a gradual rise alongside the
increase of coefficient ψ as shown in Fig. 4(a). From Fig. 4(b),
with the increase of training episodes, the activation strategy
explores and learns enough unknown environments, resulting in
a steady trend in the number of activated servers.

3) Impact of block reliability on the performance of dif-
ferent algorithms: We make use of the parameter setting Set 3
in Table III, wherein we investigate the impact of the parameter
on the performance of the algorithms by increasing the average
reliability r of DNN block from 0.82 to 0.98. As depicted in
Fig. 5(a), ILP has the lowest number of activated servers, fol-
lowed by the GCI, and both tend to decrease due to the decrease
in the number of required backups caused by the increase in
reliability. The reason why the data in GCI_D remains stable is
due to increasing accepted requests, as shown in Fig. 5(c), and
the abnormal increase in runtime depicted in Fig. 5(d) is also due
to this trend. In addition, from Fig. 5(b), the energy consumption
of all algorithms tends to decline as backup number decreases.
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Fig. 4. The performance of the LeaActivator algorithm by varying the coeffi-
cient ψ from 0.25 to 0.75.

4) Impact of green energy on the performance of different
algorithms: We conduct the parameter configuration Set 4 out-
lined in Table III, where we elevate the range of green energy
from [18, 32] to [78, 92] to explore its influence on the algorithm
performance. As observed in Fig. 6(a), as the generated green
energy increases, activated servers with by both GCI and GCI_D
exhibit a slightly declining trend, whereas ILP demonstrates an
initial increase followed by a decline. This phenomenon occurs
because when the number of requests accepted by ILP stabilizes,
an increase in arrival energy reduces the demand for servers due
to the enhanced load capacity of edge servers. From Fig. 6(c),
Random has the lowest request acceptance number, followed by
GCI_D which accepts fewer requests than GCI, while ILP has
the highest acceptance number. The fairness of the GCI_D, that
is, locating each block of each request in turn rather than prior-
itizing all blocks in a single request, results in a lower number
of accepted requests than GCI when resources are insufficient, a
trend that can also be seen in Fig. 6(c). Furthermore, the primary
factor driving the rise in energy consumption in Fig. 6(b) and
running time in Fig. 6(d) across all methods is the increasing
number of accepted requests in Fig. 6(c).

5) Impact of computing resource on the performance of
different algorithms: We apply the parameter configuration Set
5 form Table III, and increase the range of computing capacity
from [32, 64] to [160, 192] to examine its effect on performance,
and set the thread demand of user is 8. Similar to simulation on
energy, the related performance of all algorithms increases with
the increase of computing resources, except for the decreasing
trend in the number of activated servers. It is worth noting that
at the start of Fig 7(c), there is a spike in the number of accepted
requests for GCI_D, which is due to its focus on fairness. Even
though the number of accepted requests by GCI_D exceeds ILP

in the final phase of Fig 7(c), their objective is to maximize the
reward, which is defined as the number of accepted requests
minus the number of activated servers. Therefore, ILP remains
optimal overall.

6) Impact of delay demands on performance of different
algorithms: We apply the parameter setting Set 6 form Table III,
where we increase the delay demand from 0.5 to 1.3 to assess
its impact on performance. As depicted in Fig 8(a), with the
increase in delay demand, GCI and ILP exhibit a downward
trend, GCI_D shows an upward trend, and Random fluctuates
irregularly. The rise in accepted requests by GCI_D contributes
to the observed increase; However, both ILP and GCI prioritize
requests with lower delay, leading to fluctuating total energy
consumption within a certain range in Fig 8(c), even though
the number of accepted requests also increases. As depicted
in Fig 8(d), the increase in delay demand relaxes the delay
constraints, consequently decreasing the running time of all
algorithms.

7) Impact of DMS request numbers on performances of
different algorithms: We conduct the parameter configuration
Set 7 outlined in Table III to explore its influence on the algorithm
performance in the hardware prototype, where we increase the
number of DMS requests from 10 to 30, set the user demand
of computing resources to 8, and let 5 edge servers with suf-
ficient energy always to be active. From Fig 9(a), the energy
consumption in the real scene of all algorithms increases with the
growth of the arrival number of DMS requests, where the energy
consumption of GCI is lower than that of Random and higher
than that of ILP. As observed in Fig. 9(b), the actual completion
time of GCI and ILP show an increasing trend, while that of
Random fluctuated within a certain region due to its randomness,
where the actual completion time is the sum of the execution time
of the algorithm and the time from sending all user requests to
receiving the expected results.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied continuous service provisioning in
a fabric metaverse, by developing a GCI system to enhance
immersion, reliability, and energy sustainability. The GCI sys-
tem included a performance-guaranteed approximate pruner to
compress model branches to a specified number of K. We also
devised a scheduler with two components: a learning-based
activator and a deployment library, which can be tailored to meet
various demands by different users. We finally evaluated the
performance of the proposed GCI system. Theoretical analysis,
empirical simulation, and practical experiment demonstrate that
the proposed GCI system and associated algorithms are promis-
ing, outperforming the comparison baselines.

As a new frontier in human-centered networking, the fabric
metaverse lays the groundwork for extensive real-time hyper-
modal data collection to support continuous metaverse services.
The work in this paper takes an initial step towards this direction.
Built upon the work in this paper, several potential topics in
fabric metaverse are worthwhile to explore, including privacy-
protected data collection and analysis for intelligence fabric,
high-accuracy large language model training and inference
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Fig. 5. The performance of different algorithms by varying the average reliability r of DNN block from 0.82 to 0.98.

Fig. 6. The performance of different algorithms by varying the average value of green energy Egreen
j from 25 to 85.

Fig. 7. The performance of different algorithms by varying the average value of computing capacity Capj from 48 to 176.

Fig. 8. The performance of different algorithms by varying the delay demand Di from 0.5 to 1.3.
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Fig. 9. The performance of different algorithms by varying the DMS request
R from 10 to 30.

by fusing massive fabric state (hypermodal) data, low-energy
round-the-clock monitoring of mental and physical health infor-
mation processed by models, and real-time data synchronization
of related human digital twins, etc.
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