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Abstract—The rapid progress in edge computing (EC) and
5G wireless communication technology has opened up novel
opportunities for intelligent applications driven by deep neural
networks (DNNs). In particular, machine vision tasks are widely
used in mobile/edge computing scenarios. However, the real-
time and dense data transmission involved in vision inference
services impose significant communication burdens on wireless
networks. Thus, this paper investigates the general vision services
strategy with cognitive computing network and proposes a
communication-efficient edge inference deployment architecture
for vision analysis tasks. In this framework, users dynamically
perceive the inference data in local, and then compress and
offload them to edge servers to perform inference. Specifically,
we present a collaborative optimization model of compression
ratio and network bandwidth to generate the reliable compression
offloading and resource allocation scheme. For this model, the
offloading scheme carefully considers the constraints imposed
by delay and resources and maximizes the success probability
of vision inference tasks. To improve the vision inference
performance in the edge network, we further propose a flexible
data compression algorithm for images or video frames, which
can preserve the more important visual information under a fixed
compression rate to reduce the inference accuracy loss from com-
pression. This algorithm first perceives the importance of visual
information at different pixel positions, and then compresses
different visual regions to varying degrees according to their
importance, enabling content-aware adaptive vision data coding.
Experimental results show that our proposed offloading model
and compression strategy outperform other algorithms, achiev-
ing significant communication improvements and performance
gains.
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I. INTRODUCTION

IN RECENT times, deep learning has demonstrated
remarkable performance in various computer vision tasks,

enabling machine equipment such as unmanned aerial vehi-
cles [1] and autonomous driving systems to analyze visual
data in real-time and achieve environment understanding at
the pixel level [2]. However, due to limited computational
power and storage space, running deep learning applications
on Internet of Thing (IoT) devices remains challenging.
With the deployment of 5G networks featuring mobile edge
computing, a promising solution is offloading DNN inference
tasks to edge servers near users. In this paradigm, IoT devices
transmit captured video frames or images for computation
processing at executable edge servers. Once the inference
is completed, the results are seamlessly delivered back to
the users. However, with the rapid growth of sensors and
service requests, bandwidth limitations have become one of the
most pressing challenges hindering the development of edge
vision computing [3], [4]. Especially for vision applications,
the transmission of numerous high-resolution image/video
frames imposes a significant communication burden on wire-
less networks. The compression offloading schemes are to
compress the original data before vision task offloading and
then transmit the compressed data to the edge server, thus
effectively alleviating the communication cost [5], [6]. While
task offloading with a high compression rate can minimize
channel resource demands, it often leads to noticeable accu-
racy losses of inference services. Conversely, offloading at
a low compression rate requires more network resources,
and may even cause transmission failures due to excessive
latency. Thus, exploring a suitable compression offloading
and resource allocation scheme is crucial for balancing the
communication efficiency and inference performance in the
edge vision computing network.

Moreover, extensive researches in computer vision have
proved that visual features at different positions have different
contributions to the final model accuracy. However, current
data compression strategies usually encode different pixel
regions of an image/video frame with the same compression
level. Such compression strategies lack discriminative insight
into the importance of different visual regions, which limits
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the optimization space for trade-offs between compression
ratio and inference performance. In general, the existing
data compression-driven EC systems encounter two primary
problems: (1) How to jointly optimize compression offload-
ing and network resources while considering network delay
requirements and computing resource constraints to ensure the
quality of inference service? (2) How to retain key visual
information as much as possible during data compression, so
as to effectively alleviate the decline of inference accuracy
while reliably compressing visual data?

To tackle these problems, in this paper, we investigate
the general vision services strategy for edge computing and
propose a communication-efficient edge inference deployment
architecture with adaptive compression offloading. First, it is
important to consider the interaction between compression
ratio and resource allocation strategy in data compression-
based task offloading. This motivates us to propose a
collaborative optimization model of compression ratio and
network resource to generate reliable vision task offloading
schemes. Therefore, our offloading decision model will jointly
optimize the compression ratio and resource allocation scheme
of edge intelligent networks. Second, existing vision compres-
sion algorithms employ a uniform-level compression scheme,
neglecting the discriminative importance of visual features
across different pixel regions. To address this limitation,
we propose an adaptive image compression algorithm that
takes into account the differential impact of individual pixel
locations on inference accuracy. By incorporating this insight,
our algorithm enables varying degrees of compression for
different visual regions based on their respective importance
levels. In summary, the main contributions are as follows:

1) We propose a communication-efficient edge inference
framework for vision analytics tasks, which dynamically
compresses high-resolution data and then transmits com-
pressed data to the edge server for performing inference.

2) Considering the contradiction between limited resources
and numerous inference requests, we build a collab-
orative optimization model of compression rate and
resource allocation, where the goal is to maximize the
success probability of vision inference tasks on edge
computing in wireless networks.

3) This paper proposes a spatial-attention aware image
compression strategy, which utilizes the priors of the
deep model to perceive the importance of each visual
region in an image, enabling adaptive region-wise data
compression tailored to their importance.

4) Extensive experiments are conducted to verify the effec-
tiveness and superiority of our optimization algorithm
and compression strategy. Results demonstrate that them
can improve the success probability of inference tasks
by at least 15.1%, and save network bandwidth by about
10% with the fixed inference accuracy.

The remainder of the article is organized as follows:
Related works about video analytic and edge inference are
briefly reviewed in Section II. We introduce the compression
offloading framework for wireless EC networks in Section III.
Then, Section IV describes the collaborative optimization
model and problem solution. In Section V, we propose

the spatial-attention aware compression strategy. Section VI
evaluates the performance of the proposed architecture and
analyzes experimental results. Finally, Section VII concludes
the paper.

II. RELATED WORK

With the rapid growth of sensor devices and service
requests, bandwidth limitation has become one of the impor-
tant challenges for edge vision computing. As a result,
the concept of leveraging data compression technology in
edge computing has gained significant attention in recent
years [7], [8]. In the following, we summarize the related
literatures in two categories: (1) the emerging compression
offloading for edge computing, and (2) the data compression
strategy optimization.

The edge inference scheme driven by data compression first
compresses the original data using compression algorithms,
and then transmits compressed data to edge nodes to perform
inference tasks [9], [10]. Such image lossy compression meth-
ods are based on the sensitivity of different visual features
of human beings, and achieve a larger compression ratio
with a certain loss of information. For deep models, the
more complete the data information, the higher the accuracy
of inference. Therefore, some recent works aim to design
better compression algorithms. In the work presented in [11],
the authors established a quantitative relationship between
compression ratio and inference accuracy. This relationship
model is employed to make compression strategy decisions
that strike a balance between accuracy and compression ratio.
Another approach proposed in literature [12], [13] quantified
the performance change caused by each pixel during compres-
sion according to the loss gradient of DNNs. By considering
the maximum compression ratio that each pixel can tolerate,
an individualized compression strategy is formulated. In addi-
tion, several other works studied the DNN-driven semantic
compression for edge computing framework, which utilizes
encoder, decoder, and channel layers to build an end-to-
end semantic communication network. The encoder in local
encodes the data into the abstract semantic information. The
decoder in edge servers restores semantic information for
performing inference [5], [14].

While data compression techniques can reduce com-
munication latency, different compression levels result in
varying energy consumption in edge systems. It is unwise
to adopt a fixed compression ratio scheme in an EC
systems. Thus, in order to improve resource efficiency while
maintaining inference quality, optimizing the compression
offloading and making resource allocation decisions are cru-
cial. Ren et al. [15] investigated video compression offloading
in mobile EC systems and made optimal decisions to execute
tasks on local, remote, or mixed-mode servers with the goal
of minimizing overall latency. However, their work lacked
the optimization of the compression ratio since the task
itself involved data compression. In literature [16], the actual
limitations of maximum transmission power, wireless access
bandwidth, backhaul capacity and computing resources were
considered. They jointly optimized compression ratio and

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 07,2025 at 06:32:29 UTC from IEEE Xplore.  Restrictions apply. 



XIAO et al.: ADAPTIVE COMPRESSION OFFLOADING AND RESOURCE ALLOCATION 2359

Mobile
device
Mobile
device

UAV
device

data data

compression
algorithm

attention 
information

compression 
ratio choice

resource
allocation choice

D
eep vision 
netw

ork

Result

compression
algorithm

data streaming original data
compressed datainference result processing steps & operations

controller

Fig. 1. Architecture of data compression-driven edge computing vision
inference system.

task offloading, and formulated them as a Mixed-Integer
Nonlinear Programming optimization problem [17] to solve.
Furthermore, Wang et al. [18] proposed a data compression-
driven multi-user mobile edge computing system to minimize
the total energy consumption of the system by optimizing the
transmission bandwidth and data compression ratio strategies.

Overall, ensuring the connectivity of edge intelligence is
crucial for future communication systems. Existing researches
have addressed the challenges of high-traffic network envi-
ronments through edge inference strategies based on data
compression. However, these approaches lack the ability to dif-
ferentiate between important and unimportant area information
of vision data. Moreover, different compression ratio settings
can impact network communication performance and model
inference accuracy. Therefore, there is a need to jointly
optimize the data compression ratio and network resource
allocation scheme in order to establish an efficient edge
vision inference architecture. This architecture should consider
factors such as edge service quality, model inference accuracy,
and communication status while exploring content-aware data
compression strategies.

III. SYSTEM ARCHITECTURE

In edge inference architecture for DNN vision services,
numerous high-resolution data are uploaded to edge servers
and then return prediction results with negligible size. In
this case, the uplink is often overloaded with necessity to
optimize its transmission process. Thus, we investigate the data
compression-driven edge vision system, as shown in Fig. 1.

Specifically, users collect vision data through local sensor
devices and send inference task requests to the controller.
This controller is responsible for dynamically determining
the appropriate compression rate and resource allocation
scheme according to current network status and inference
requests. These decisions are then broadcasted to each user.
Subsequently, each user follows the compression offloading
decision to compress the original vision data and uploads
the compressed data to edge servers for inference. Our

system mainly includes the collaborative optimization model
of compression rate and resource allocation (Co-CRRA), and
the spatial attention-aware image compression strategy (SpaT-
IMCO):

(1) Co-CRRA optimization model: Due to resource lim-
itations in wireless networks, low compression rates for
inference offloading still require large channel resources,
potentially leading to the transmission failures caused by
excessive service delays. Conversely, while high compression
rates can meet resource requirements, they may result in
excessive loss of image information so as to seriously affect
inference performance. Hence, this paper presents a trade-
off between the offloading compression rate and resource
allocation scheme with the goal of maximizing the suc-
cess probability of vision inference tasks to ensure high
accuracy of reasoning services. To solve this non-convex
optimization model, we jointly optimize the offloading com-
pression rate and resource allocation, which decomposes the
original problem into two convex sub-problems for two-stage
iterative computation.

(2) SpaT-IMCO compression strategy: Each image/video
frame has key visual features, which are more important for
its recognition performance. Inspired by the literature [19],
we can use the prior knowledge of DNN models to obtain
the importance of visual features in different regions. To
adapt to the terminal device, a lightweight network module
is designed to get the importance of different pixel positions
in a image. At a specific compression rate, our compression
algorithm executes non-uniform compression across different
regions, prioritizing high-resolution preservation in critical
image regions and blurring less important features.

IV. COLLABORATIVE OPTIMIZATION MODEL

In this section, we introduce the network framework
and user requests of the edge inference system driven by
compression offloading, and model the optimization model
of compression offloading and resource allocation. When
solving this optimization model, the compression offloading
and channel allocation problems will be decoupled into two
sub-problems. Therefore, the controller of edge networks
determines the optimal data compression rate and wireless
resources allocation scheme under satisfying inference require-
ments of the users and resource constraints of the system. Tab.
I shows the main symbols and their meanings of the system.

A. Edge Inference Network

Our system considers a wireless edge computing network
consisting of an edge server E and multiple users Us =
{ui |i = 1, 2, . . . , I }. All local users connect to edge servers
through shared wireless mediums, where the frequency spec-
trum is divided into non-overlapping bandwidth channels to
avoid mutual interference between different devices. On com-
munication links between the user transmitter (U-TX) and the
edge server receiver (E-RX), following Shannon information
theory, the data transfer rate of ui can be calculated as follows:

Vi = bi log2

(
1 +

hipi
N0bi

)
(1)
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TABLE I
MAIN SYMBOLS AND THEIR MEANINGS OF THE SYSTEM

where bi and pi denote the bandwidth and transmit power
of user ui respectively, hi is the channel gain between user
ui and the edge server, and N0 represents the noise power
spectral density. Additionally, let D0

i denote the amount of
original data obtained from the sensor device of user ui , and
oi represents the corresponding data compression rate.

Therefore, the actual amount of data transmitted by ui can
be expressed as Di = D0

i × (1 − oi ), and the transmission
delay of ui is ti =

Di
Vi

. In practical scenarios such as vehicular
networks, the requested inference tasks are delay-sensitive
with strict transmission delay constraints. Let t0 denote the
maximum allowable delay for successful inference. The suc-
cess probability of ui transmitting tasks can be expressed as
P(ti ≤ t0). The calculation of P(ti ≤ t0) is as follows:

P(ti ≤ t0) = P

(
Di

Vi
≤ t0

)
= P

(
(1− oi )D

0
i

bi log2(1 +
hipi
N0bi

)
≤ t0

)

= P

(
2αi (1−oi ) − 1

βi
≤ hi

)

= 2G

(
2ai (1−oi ) − 1

βiδ

)
(2)

where ti represents the actual transmission delay, αi =
D0

i
bi t0

,
βi = pi

N0bi
. Moreover, hi obeys the normal distribution

N (0, δ2), where δ represents the variance of the channel gain.
The G function in eq. (2) is the tail distribution of the standard
normal distribution function [20].

Thus, in order to formulate the influence of data com-
pression and resource allocation on the quality of inference
services, we define a metric: the success probability of infer-
ence tasks Φi , and its formula is calculated as follows:

Φi = η(oi )× P(ti ≤ t0) (3)

where η(oi ) is the success probability of inference tasks in
the case of successful transmission, and this value is related
to the compression rate oi .

Consequently, the overall system’s success probability of
inference tasks is expressed as Φ =

∑U
i=1 Φi . As indicated by

eq. (3), this success probability is a trade-off decision between
communication efficiency and inference quality.

B. Problem Formulation and Solution

According to eq. (2) and eq. (3), Φ is influenced by the
transmit power, network bandwidth and data compression rate.
Our model aims to optimize these three variables with the
goal of maximizing the success probability of inference tasks.
Let Bmin and Pmin represent the minimum bandwidth and
minimum transmit power allocated to each user respectively.
Bmax and Pmax denote the maximum total bandwidth and
maximum total transmit power of the system respectively.
Mathematically, the problem P* is expressed as follows:

P∗ : max
o,b,p

U∑
i=1

Φi (4)

subject to C1 :

U∑
i=1

bi ≤ Bmax (5)

C2 :

U∑
i=1

xiPi ≤ Pmax (6)

C3 : bi ≥ Bmin, ∀i ∈ U (7)

C4 : Pi ≥ Pmin, ∀i ∈ U (8)

C5 : 0 < oi < 1, ∀i ∈ U . (9)

where constraint C1 means that the total bandwidth does
not exceed a given threshold. Constraint C2 means that the
total transmit power of all users cannot exceed a given Pmax

to ensure the total energy supply of the system is limited.
Constraints C3 and C4 denote the minimum bandwidth and
minimum transmit power constraints respectively, while con-
straint C5 is to control the range of compression ratio.

However, since the objective function is not a concave func-
tion, its optimal solution cannot be obtained directly [21], [22].
To solve the problem P*, we decouple it into two sub-
problems for iterative solution. Firstly, we compute the optimal
compression ratio for each user with fixed resource allocation
variables. Then, we solve the resource allocation variable
according to the obtained compression ratio. The first and
second steps are performed iteratively until a convergence
criterion is met.

1) Solve Compression Ratios: For the solution of the data
compression rate, it is necessary to first determine the rela-
tionship between the success probability of the inference task
and different compress ratios, that is η(oi ) function. However,
because of the inexplicability of deep neural networks, it
is difficult to derive the close-form expression of η(oi ). In
this article, we leverage both statistical data and function
approximation models to find this functional relationship.
Specially, we first generate compressed images under different
compression ratios based on ImageNet data [23]. Then, we
take these images as inputs of the DNN model and compute
their corresponding inference performance. Here, multiple
groups of experimental data regarding image and model
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performance under compression rates have been obtained.
Inspired by [24], we empirically find that the relationship of
η(oi ) can be fitted as a compound exponential function by
observing above these statistical data, expressed as ζ1e

ζ2oi +
ζ3e

ζ4oi . Next, we use the numerical method to learn the
parameter weights, and the optimal fitting parameter solution
is computed as [0.6, −0.3, 0.8, −0.4], which is adopted in
this paper. Besides, following the approximation suggested

in [25], we specify the G function as G(x ) ≈ 1/2e
−x2

2 in our
optimization model. So far, assuming that the bandwidth and
transmit power allocation scheme has been determined, the
b = {bi} and p = {pi} variables in eq. (2) become constants.
Therefore, the original problem P* can be transformed into
a simplified problem P1, only focusing on optimizing the
compression ratio oi without constraints related to resource
allocation:

P1 : max
o

U∑
i=1

Φi =

U∑
i=1

γi × η(oi )

subject to C5. (10)

where γ(oi |bi , pi ) is equal to exp{−1
2 [

2αi (1−oi )−1
βiδ

]2}, that
is P(ti ≤ t0). From problem P1, it can be seen that when
the bandwidth and transmit power have been determined, the
compression rates between different users are independent.
Therefore, maximizing the sum of Φi for all users in problem
P1 can be simplified to maximize the individual Φi for each
user. In this case, we can use the enumeration method to
explore the solution of oi ∈ (0, 1), to find the optimal image
compression rate for each user under fixed resource schemes.

2) Solve Bandwidth and Transmit Power: Given the known
image compression rate, we can solve the optimal allocation
scheme of bandwidth and transmit power for each user. Since
oi has been determined, the η(oi ) can be regarded as a
constant, denoted as ϕi . Consequently, the original problem
P* can be transformed into problem P2, which aims to allocate
bandwidth and transmit power in edge network resources:

P2 : min
b,p

U∑
i=1

−ϕi × γ(bi , pi |oi )

subject to C1 ∼ C4. (11)

To address problem P2, the non-convex constraints C4 in
eq. (11) are transformed into convex constraints by introducing
slack variables. We define the following slack variables: f =
[f1, f2, . . . , fU ], l = [l1, l2, . . . , lU ], y = [y1, y2, . . . , yU ],
m = [m1,m2, . . . ,mU ] and q = [q1, q2, . . . , qU ]. To this
end, problem P2 can be reformulated as problem P2.1:

P2.1 : min
b,p,f ,l ,y ,m ,q

U∑
i=1

−ϕi × fi (12)

subject to C1 ∼ C3 (13)

C6 : fi ≤ e li , ∀i ∈ U (14)

C7 : li ≤ −1

2
y2i , ∀i ∈ U (15)

C8 : yi ≥ N0bimi

δpi
, ∀i ∈ U (16)

C9 : mi ≥ 2qi − 1, ∀i ∈ U (17)

C10 : qi ≥
D0
i (1− σ)

bi ti
, ∀i ∈ U . (18)

Based on the above formula, except for constraint C6
and constraint C8, other constraints have become convex
constraints. Next we transform them.

For constraint C6, Successive Convex Approximation
(SCA) algorithm [26] is utilized to convert it into a convex
constraint. Specially, we perform a first-order Taylor expansion
on the function e li at the point e l

j
i , which is fi ≤ e l

j
i +

(li − l ji )e
l ji , where the superscript j denotes the variable value

computed after the j-th iteration.
For constraint C8, we introduce a slack variable z =

[z1, z2, . . . , zU ]. This allows us to reformulate constraint C8
into two separate constraints: zi ≥ bimi and yipi ≥ N0zi

δi
.

Moreover, simplifying this expression, bimi is expanded as
1
4 ((bi + mi )

2 − (bi − mi )
2). Then, we perform a first-order

Taylor expansion of (bi −mi )
2 at (bji ,m

j
i ), and transform it

into a new constraint form using SCA algorithm:

zi ≥ 1

4

(
(bi +mi )

2 + (b
j
i −m

j
i )

2
)

− 1

2
(bi −mi )

(
bji −mj

i

)
(19)

Similarly, yipi is rewritten as 1
4 ((yi + pi )

2 − (yi − pi )
2),

and let (yi + pi )
2 and (yi − pi )

2 be imposed the first-order
Taylor expansion at the point (y ji , p

j
i ), calculated as follows:

4N0zi
δi

≤ 2(yi + pi ) ∗
(
y ji + pji

)
−
(
y ji + pji

)2

− 2(yi − pi ) ∗
(
y
j
i − p

j
i

)
+
(
y
j
i + p

j
i

)2
(20)

To this end, P2.1 is further expressed as follows:

P2.2 : min
b,p,f ,l ,y ,m ,q

U∑
i=1

−ϕi × fi (21)

subject to C1 ∼ C3,C7,C9,C10 (22)

C11 : fi ≤ e l
j
i +

(
li − l

j
i

)
e l

j
i , ∀i ∈ U

(23)

C12 : eq. (19) (24)

C13 : eq. (20) (25)

So far, all constraints of problem P2 have been transformed
into convex constraints in problem P2.2, which can be solved
by the dual method [27]. Specifically, we initialize l

j
i , b

j
i ,

mj
i , x ji and pji , and then iteratively solve until the objective

function converges. In this way, the optimal compression rate
and resource allocation scheme of our edge inference system
can be obtained, and the pseudo code for the solution of our
Co-CRRA algorithm is presented in Algorithm 1.

3) Algorithm Complexity Analysis: The iteration number
of outer-layer of Algorithm 1 denote as L1, and that of
compression rates and resource allocation subproblem are L2

and L3. Under fixed resource allocation, the complexity of
using the enumeration method is O(L2

U ) for solving the
compression ratios subproblem (P1). With fixed compression
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Algorithm 1 Collaborative Optimization Algorithm for
Offloading Compression Rate and Resource Allocation

Require: Amount of image data to offload {Di}Ii=1, Channel
gain between users and edge servers {hi}Ii=1, Noise
power spectral density N0, Transmission delay con-
straints t0; Parameters of compression rate and accuracy
ζ1, ζ2, ζ3, ζ4.

Ensure: Compression rate {oi}Ii=1 of ui , Wireless transmis-
sion bandwidth {bi}Ii=1, Transmit power pi Ii=1

1: Initialize the convergence threshold ε1, ε2 and the total
iterations n = 1.

2: Repeat1
3: Initialize compression rate iteration interval ι = 0.01.
4: for ui ∈ U then
5: Fix user bandwidth bi and transmit power pi
6: Initialize the optimal objective function value T cp

i ,opt as
0 and the optimal compression rate oi ,opt

7: for ok = 1ι, 2ι, · · · ,nι to 1 do
8: Calculate the maximum success probability of

inference tasks of user ui : T
cp
i ,tmp ←− eq. (10)

9: if T cp
i ,tmp ≥ T cp

i ,opt do
10: T cp

i ,opt = T cp
i ,tmp ,oi ,opt = ok

11: Fix compression ratio of each user oopt = {oi ,opt}Ii=1
12: Initialize the iteration number of the resource scheduling

solution k = 1
13: Initialize slack variables b0,p0, f 0, l0,y0,m0 and q0
14: Repeat2
15: Solving problem P2.2 using the dual method
16: According to bk ,pk , f k , lk ,yk ,mk and qk , calculate

its objective function T ra
k

17: Until |T ra
k − T ra

k−1| ≤ ε2
18: According to the solved parameter oopt , bk ,pk , f k , lk ,

yk ,mk , qk , calculate the overall objective function T all
n

←− eq. (4)
19: Until |T all

n − T all
n−1| ≤ ε1

ratios, the complexity of solving resource allocation subprob-
lem (P2) is O(L33.5U ), where dual decomposition are used
for solving [16]. With the above analysis, the total complexity
of Co-CRRA is O(L1L2U + L1L23.5U ).

V. SPATIAL ATTENTION-AWARE COMPRESSION STRATEGY

To alleviate the loss of inference accuracy in image
compression scenarios, we present a novel compression
approach called SpaT-IMCO (Spatial Attention-aware Image
Compression). The core idea of SpaT-IMCO is to use the deep
vision model to evaluate the importance of visual features
at different regions in an image, so as to retain the content
of key areas as much as possible and compress less impor-
tant information. To be specific, this compression strategy
consists of two main components. Firstly, a spatial feature
importance evaluation network is introduced, which employs
a lightweight network structure to evaluate the importance
of each region within the image. Subsequently, based on the
spatial importance evaluation results, the image is compressed

non-uniformly across different regions. The details will be
introduced next.

A. Spatial Feature Importance Evaluation Network

In a DNN with loss function L, the input consists of a
N-pixel feature map represented by the pixel vector x =
{x1, x2, . . . , xN }. The gradient of an individual input pixel
xi is denoted as ρi = 
xiL = ∂L

∂xi
. By the definition of

above gradient, when a small perturbation �x is added to
the input image, the DNN loss changes as �L = ρi �
x . In fact, the essence of the image compression process is
essentially similar to adding noise �xi to the original image.
Specifically, for each pixel xi , let ei represent the compression
noise (which is equivalent to �xi ) applied to the pixel xi , and
the corresponding loss change is �L(xi ) = ρi � x = ρiei .
To this end, the total loss change caused by the entire image
compression is �Lx =

∑N
i=1 ρiei . This means that if the

gradient value ρi of pixel xi is large, even if ei is small,
it also will cause a significant increase in loss and decrease
in inference accuracy. It can be seen that the value size of
ρi reflects the importance of the corresponding pixel. If ρ is
known in advance, we can preserve more detail of the image
region with large ρ and impose a high compression rate on
that with small ρ during data compression.

Here, this paper builds a spatial feature attention evaluation
network to dynamically estimate the importance of image
pixels. The evaluation network takes the original image as
the input, and generates an attention weight matrix as the
output which reflects the importance of each pixel. Let Q =
{q1, q2, . . . , qN } denote the attention weight matrix, where qi
represents the importance of pixel xi at its spatial location. A
higher attention weight value indicates that the image feature
at that location has a stronger impact on the performance
of model inference. The qi corresponds one-to-one with
the above-mentioned ρi . However, due to the absence of
a dedicated dataset for training the evaluation network, we
leverage vision DNN models trained on other tasks to create
such datasets. The primary challenge lies in obtaining the Q
matrix of each image, which serves as the label for the dataset.

Therefore, we employ the discriminative localization
matrices of the gradient-weighted class activation mapping
(Grad-CAM) [28] to generate the Q matrix. Specifically, let
c represent the true category of the image, Ak denote the
feature map of layer k, and Fk represent the global pooling
output of Ak . As shown in Fig. 2, the first step is to calculate
the gradient value ∂Yc

∂Ak
of category c in the probability

score Yc for the corresponding feature map Ak . Then, we
perform global average pooling on these feature gradients
at the corresponding spatial locations to obtain the neuron
importance weight wc

k . During the calculation of wc
k , the back-

propagation of activation gradients is a continuous product
between the weight matrix and the gradient of the activation
function. This calculation process continues until the gradient
is propagated to the final feature layer. In fact, wc

k represents a
partial linearization of Ak that captures the importance of the
k-th feature map in the target category. In this way, this wc

k can
be used as the attention weight matrix Q, that is the label of
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Fig. 2. The calculation process of attention weight matrixes for the spatial
feature importance evaluation network.

the image. Based on the image datasets and constructed labels,
we can efficiently train the spatial feature attention evaluation
network. The training of this network is performed beforehand
on a cloud server, and the well-trained network is subsequently
deployed onto local devices for actual usage. Each input image
to the evaluation network produces a corresponding spatial
attention weight matrix as output.

Ideally, within a reasonable range, the deeper the evaluation
network is, the more reliable the evaluation results become.
However, it can be seen that if this model is large, this entire
evaluation process will cause user devices to generate intensive
computing at the same level as edge inference services. This
computation cost cannot be supported by local devices. To
adapt to the local computing environment, this paper designs
a terminal-computable lightweight spatial feature importance
evaluation network. We use depthwise separable convolutions
and pointwise convolutions [29] to replace the traditional
convolutions. The depthwise convolution operation applies a
single convolution filter to each input channel to achieve
lightweight filtering. The pointwise convolution operation
calculates a linear combination of input channels to construct
new features. In comparison, the computation cost of standard
convolution is hl ·wl ·Dl ·(dj ·k2), whereas it reduces to hl ·wl ·
Dl ·(dj +k2) when adopting the depthwise separable convolu-
tion operation. In addition, since the usage of ReLU activation
transformation in low-dimensional space may filter out some
valuable information, we insert a linear bottleneck module [29]
after the convolution module to mitigate the loss of crucial
features. Let θQ denote this evaluation network, and the spatial
attention weight matrix of the input image x be represented
as Q = {qi , qi = θQ (xi )}Ni=1. The lightweight network only
incurs very small additional computational overhead, which
is suitable for efficient execution on mobile devices in edge
network.

B. Spatial Attention Aware Image Compression Strategy

Based on the spatial attention matrix Q and the given
compression ratio oimg , our image compression strategy could

same importance

Inconsistent spatial
importance

Importance from low to high

Fig. 3. Comparison of traditional unified image compression and spatial
attention aware region-wise image compression.

adaptively select an appropriate compression rate for different
regions of the input image. Fig. 3 shows the comparison of
traditional unified image compression strategy and our region-
wise compression strategy. The existing compression strategy
uses the same compression rate to consistently compress each
region of the image, which clearly lacks attention to regions
with important content. And SpaT-IMCO strategy enables
imposing different compression degrees for different visual
regions based on their respective importance levels.

Accordingly, this paper establishes L different compression
levels, and each level corresponds to a unique compression rate
{sl}Ll=1. For image regions with low importance, it is preferred
to compress them with a higher compression rate. Conversely,
for some regions with high importance, we select the low
compression rate to preserve key feature information as much
as possible. The image or video frame is divided into multiple
sub regions, each having the same size and number of pixels.
Let {Rr}|R|

r=1 denote the set of all sub regions, where |R| is
the number of regions. When encoding images, we use each
image region rather than the entire image as the compression
basic unit, each with individual compression rate.

The specific compression steps for our strategy are as
follows: First, we calculate the average importance of each
region based on the Q matrix, expressed as qRr

= 1
M

∑
qi .

Among that, M is the number of pixel points in each region,
and qi is the attention weight of pixel xi in the Rr region.
Correspondingly, QR = {qRr

}|R|
r=1 represents the weight

matrices of image sub-regions. Under the requirements of
the overall image compression rate oimg , each region Rr

selects a compression level sRr
according to its corresponding

attention weight qRr
. The decision-making goal of image

region compression rate is to make the average compression
level star of all sub-regions closest to the compression level
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simg of the entire image. This target compression level simg

is determined by the given oimg .
Here we take L = 3 as an example to illustrate our approach.

There are three compression levels, denoted as s1, s2, s3,
which correspond to three compression ratios o1, o2, o3, where
s1 > s2 > s3. The larger si , the greater oi , and the more visual
information loss. Assume that the number of regions selected
compression levels s1, s2, s3 are z1, z2, z3, respectively, where
z1+ z2+ z3 = |R|. Thus, the overall compression level of the
image is formulated as star = 1

|R|
∑L

l=1(sl ·zl ), where L = 3.
To solve the selection of {z1, . . . , zL}, we define the objective
function of region-wise compression using the square loss as
follows:

P3 : min
z

(
simg − 1

|R|
L∑

l=1

sl · zl
)2

(26)

subject to z1 + z2 + z3 = |R|, zl ∈ R. (27)

It is evident that P3 is a typical integer programming
problem. To determine the values of z = {z1, . . . , zL}, we
employ the branch and bound algorithm for solving. In detail,
we sort the importance weight sequence QR in ascending
order to obtain Q̂R , and subsequently use the corresponding
region indices in the z sequence to calculate the compression
levels and ratios for each sub-region. In a word, the spatial
attention aware image compression strategy is summarized
in Algorithm 2. Firstly, the attention weight matrix Q is
calculated through the evaluation network θQ , and these image
regions are compressed with different compression ratios.

Major complexity of SpaT-IMCO algorithm lies in solving
optimal zopt , which is O(3.5L log(1/τz )). Besides, relaxing
the integer constraints and calculating optimization function
require 2L computation iterations. The total computational
complexity is O(3.5L log(1/τz )+2L). In summary, Co-CRRA
obtain optimal data compression rates and resource allocation
schemes with the goal of maximizing the success probability
of inference tasks, according to user request and network state;
Then, under the given compression rate, SpaT-IMCO preserves
key visual features as much as possible to reduce the accuracy
drop caused by data compression.

VI. EXPERIMENT AND RESULTS

In this section, extensive experiments are designed to verify
the effectiveness of the proposed architecture. First, we intro-
duce the setting of simulation experiment platforms and vision
inference tasks. Then, we compare the success probability
of inference tasks under different algorithms to evaluate the
performance of the Co-CRRA offloading algorithm. Finally,
we analyze the effects of SpaT-IMCO compression strategy in
different deep learning models.

A. Experiment Setup

1) Simulation Parameter Settings: In the simulation exper-
iment, multiple users in the base station area are randomly
distributed, and the parameters are mainly set according to
the research [7], [30]. The inference delay constraint t0 ranges
from 50 to 100ms, while the noise power spectral density

Algorithm 2 Spatial-Attention Aware Compression Strategy

Require: Image region compression level of L layer: {sl}Ll=1,
Spatial feature importance evaluation network θQ , Input
images to offload x, Given overall picture compression
ratio simg , Number of pixels per region M

Ensure: Compression level set for |R| image regions
{sRr
}|R|
r=1

1: The image data x is input to θQ to get the spatial attention
matrix Q = {qi}Ni=1

2: for each image region r = 1 to |R| then
3: Calculate the average attention weight of each region

qRr
according to each image region has M pixels:

qRr
= 1

M

∑M
i=1 qi , qi = θQ (xi )

4: Obtain the attention weights of all regions QR =

{qRr
}|R|
r=1

5: Under relaxing the integer constraints of zl , Computing
the optimal solution ẑl to the linear programming problem
of P3

6: Let the relaxed solution of ẑUl be the upper bound solution
ẑl , and the rounded solution of ẑDl be the lower bound
solution ẑl

7: Select the largest variable in the fraction to branch, and
calculate all feasible integer solution sets τz

8: Initialize Popt = +∞ and zopt = 0
9: for z∗ ∈ τz then

10: According to z∗, calculate the optimization function
P∗ = (simg − 1

|R|
∑L

l=1 sl · z∗l )2 ←− eq. (26)
11: if P∗ < Popt do

zopt = z∗, Popt = P∗
12: Obtain the optimal set of solution zopt
13: Calculate the ascending sequence Q̃R of QR
14: Match the index of Q̃R according to zopt , and determine

sRr
of each Rr

N0 varies from −174dBm/Hz to -204dBW/Hz. The maximum
network bandwidth Bmax ranges from 15Mbps to 30Mbps,
with a minimum bandwidth Bmin of 5Mbps. The maximum
transmit power Pmax is set between 100mW and 200mW,
and the minimum transmit power Pmin is 10mW. The data
compression ratio oi ranges from 0 to 1, and the data size
D0
i for inference services is between 10MB and 20MB. The

poisson process is used to simulate the task arrival model. At
each time slot, controller schedules these tasks in the request
pool, so different devices may be offloaded simultaneously.
Our edge inference mode is to directly transmit the compressed
data to the edge server, and then perform inference tasks at the
edge node. In the experiment, we take the image classification
inference task as an example of vision inference to evaluate
the effectiveness of the proposed Co-CRRA in improving the
quality of edge inference service. Additionally, we analyze the
adaptability of SpaT-IMCO to different deep learning models.

2) Spatial Feature Importance Evaluation Network
Settings: This paper uses the pytorch framework to
simulate the vision inference environment for achieving the
compression offloading and resource allocation strategy. To

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 07,2025 at 06:32:29 UTC from IEEE Xplore.  Restrictions apply. 



XIAO et al.: ADAPTIVE COMPRESSION OFFLOADING AND RESOURCE ALLOCATION 2365

TABLE II
THE SPATIAL FEATURE IMPORTANCE EVALUATION NETWORK

be able to run the spatial feature importance evaluation
network on local devices, we select MobileNet [29] to
build it. The specific backbone network structure is shown
in Tab. II. For the data compression process, we divide
each image into image region blocks with a size of 8 × 8
pixels, and then perform our compression strategy on the
image blocks with different compression ratios. This paper
mainly uses two key indicators, the success probability of
inference tasks and image classification accuracy to evaluate
different algorithms. Notably, the number of parameters and
computation complexity of this evaluation network are 3.5MB
and 318M MAdds, respectively. And we take NVIDIA Jetson
TX2 (JTX2) as mobile devices, the execution time of this
network ranges from 68ms to 73ms by several experimental
tests, which is used in Section VI-D. It can be seen that
this evaluation network is of low complexity and can support
the execution on mobile devices to obtain Q which guides
inconsistent compression of images.

B. Analysis of Compression Offloading Algorithm

A typical compression offloading algorithm encodes the
image through the compression algorithm and transmits it
to edge servers for inference. In the experiment, three base-
line algorithms are selected to compare with our offloading
algorithm: the maximizing the system velocity for resource
allocation (MSVRA), the fixed compression ratio for resource
allocation (FCRRA) and the fixed resource allocation for
compression ratio decision (FRACR).

1) Relationship Between the Success Probability and
Maximum Bandwidth: Following the above settings, Fig. 4(a)
and Fig. 4(b) respectively show the influence of the maximum
bandwidth value on the success probability of inference tasks
under Pmax=2 mW and Pmax=1 W. Experimental results
show that with the gradual increase of the maximum band-
width value, the success probability of DNN inference tasks
also gradually increases, and finally converges to a certain
threshold. Under Pmax = 2mW and Pmax = 1W, the
success probability can reach about 87% and 91%, respec-
tively. Compared with the three algorithms MSVRA, FCRRA
and FRACR, the average success probability increases by
25.1% when Pmax = 2mW, and by 32.1% when Pmax =
1W, respectively. Notably, above performance gain ratio

Fig. 4. The influence of the maximum network bandwidth on the average
success probability of inference tasks.

Fig. 5. The influence of the maximum transmit power on the average success
probability of inference tasks.

of the average success probability is the average value of
performance gain ratios of Co-CRRA compared with each of
the three benchmark algorithms. Without special notes, the
average performance gain afterward is calculated in the same
way. Since the limitation of the maximum bandwidth, it is
necessary to compress data with smaller compression rates
for improving the success probability of the vision model
inference and reducing the transmission delay of the edge
system. Especially when Bmax is relatively small and resource
competition is more intense, there are greater requirements for
the data compression ratio and resource allocation decision.
Co-CRRA algorithm in this paper has significant performance
gain, where MSVRA has the worst performance. This is
because MSVRA only focuses on the resource allocation
optimization and lacks the consideration for compression
decisions.

2) Relationship Between the Success Probability and
Maximum Transmit Power: In addition, we analyze the impact
of the maximum transmit power. Fig. 5(a) and Fig. 5(b)
show the changes in the success probability of inference
tasks with the change of the maximum transmit power under
Bmax = 15MHz and Bmax = 30MHz respectively. In the
transmit power change from 1mW to 10mW, the success
probability value can still be maintained between 80%-90%.
Higher signal transmission power means that the greater the
radiation energy, the farther the communication distance will
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Fig. 6. An example of spatial attention weight information.

be. To this end, the number of success inference tasks increases
as data transmission rate in communication increases. The
highest inference success probabilities for Bmax = 15Mbps
and Bmax = 30Mbps can reach about 88.5% and 92.0%,
respectively. Compared with the three baseline algorithms,
in the two cases of Bmax, the system performance can be
improved by 13.5%∼61.7% and 16.8%∼57.7% respectively,
both of which increase by an average of about 32%. It can be
observed that compared with the three baseline algorithms, our
algorithm has notable decision-making advantages. Compared
with the maximum bandwidth, the maximum transmit power
has a greater impact on the inference success probability.
Overall, the experimental results show that the Co-CRRA
algorithm is suitable for edge inference scenarios with limited
network resources.

C. Performance Analysis of Algorithm Parameters

1) Image Spatial Attention Evaluation: In this experiment,
we select the well-trained vision Transformer model to gener-
ate the attention weight of the ImageNet dataset [23] according
to the strategy shown in Fig. 2. Specifically, we extract the
multi-head attention weight matrices for each block within the
vision network model, denoted as Jb ∈ Rm×N×N . Here,
b refers to the number of layers, m indicates the number
of attention heads, and N represents the number of Tokens.
These matrices are merged using a maximum value strategy,
resulting in max(Jb) ∈ RN×N . By successively multiplying
the feature maps of each block, we calculate the final spatial
attention matrix Q ′ for the original image.

Fig. 6 shows an illustration of the generated spatial attention
weight information. We utilize the image data and their
respective attention weights as the training dataset to train our
spatial feature importance evaluation network. Fig. 6(a) is the
original images. Fig. 6(b) displays the heat-map corresponding
to the attention matrix of the image shown in Fig. 6(a), and
Fig. 6(c) is the image with the heat-map of spatial attention
weights. Next, we compute upper and lower bounds for each
importance level in our compression strategy based on the
range of attention weight values. According to the pseudocode
of SpaT-IMCO algorithm (see Algorithm 2) to determine the
compression level of each sub-region of the image, that is
{sRr
}|R|
r=1. Finally, here we take L = 3 as an example to

calculate the importance level of each region of the original

image. Fig. 6(d) is a heat map of the corresponding importance
level after the image is divided into each region. Among
them, red indicates the greatest weight level, where the lowest
compression level will be set; blue has the least importance,
which will compress the area with a greater compression ratio.

2) Comparison of Different Compression Strategies: As a
basic image compression algorithm, JPEG first converts the
RGB color space into a brightness-color-difference model,
and then transforms the spatial domain information into the
frequency domain through the discrete cosine transform oper-
ation. JPEG is a lossy compression method, and the main loss
step is data quantization. It uses the quantization matrix KY ,
KCb and KCr to calculate the characteristics of the brightness
space and the color difference space respectively, formulated
as Ĩ = round( I

K ),K ∈ {KY ,KCb ,KCr}. This quantization
operation can distinguish important data and unimportant data,
where unimportant data will be converted to zero to achieve
compressed storage. During the actual compression process,
a coefficient μ is often multiplied on the quantization matrix,
that is K̃ = μ ∗ K . By adjusting the size of μ to make
more or less data become 0, so as to control the degree of
image compression. The flow of our compression algorithm
is basically the same as that of JPEG. The difference is that
JPEG sets a uniform μ for the entire image (termed as Unified-
IMCO), while the SpaT-IMCO algorithm sets an individual
μ for each image region. In the experiment, we construct a
dataset of compressed images in jpg format with μ ranging
from 1 to 10, and compare the inference accuracy of the
proposed SpaT-IMCO algorithm with the benchmark Unified
compression algorithm at multiple compression levels.

In order to evaluate the performance of SpaT-IMCO
strategy, this paper uses two deep learning models, the
EfficientNet network based on CNNs and the DeiT network
based on Transformer, to analyze the inference accuracy of
compressed images on ImageNet dataset. Fig. 7 shows the
comparison results of the compression algorithms under the
networks of EfficientNet-B0, EfficientNet-B1, EfficientNet-B2
and EfficientNet-B4, where the model sizes are 5.3 MB, 7.8
MB, 9.2 MB and 12 MB respectively. For EfficientNet-B0
and EfficientNet-B1, compared to the baseline algorithm, the
inference accuracy of the two models can be improved by
0.66%∼14.0% and 0.16%∼11.6% respectively. Our algorithm
reduces the accuracy loss by 14.0% and 11.6% under μ = 8,
respectively. Except for μ = 3 and 4, the accuracy improve-
ment under other quantization coefficient settings all exceeds
3.0%. In addition, the average performance of EfficientNet-B2
and EfficientNet-B4 under different compression levels can be
improved by 1.9% and 3.1% respectively.

Fig. 8 shows comparison results of the compression algo-
rithms under the networks of Transformer-based DeiT-Tiny
and DeiT-Small, whose model sizes are 5.7 MB and 22.1 MB,
respectively. At different compression levels, the inference
accuracy of these two models can be improved by 0.4∼9.6
points and 0.6∼14.8 points respectively. Under the same
compression quantization factor, our proposed compression
algorithm can mitigate the inference accuracy loss caused
by data compression. Especially on quantization coefficients
μ = 8 and μ = 10 with high compression rates, the
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Fig. 7. Comparison of SpaT-IMCO algorithms with traditional Unified
compression algorithms on EfficientNet Networks.

Fig. 8. Comparison of SpaT-IMCO algorithms with traditional Unified
compression algorithms on DeiT Networks.

compression algorithm can significantly improve inference
accuracy, where the accuracy gains are respectively 14.8% and
38.7% on DeiT-Tiny, and 35.0% and 25.6% on DeiT-Small.
Under all quantization coefficients, DeiT-Tiny model improves
the accuracy by an average of 4.6% and 9.6%, and DeiT-
Small model improves the accuracy by an average of 14.8%
and 10.3%, respectively. Overall, these results demonstrate
that the SpaT-IMCO algorithm can achieve higher inference
accuracy at the same compression level compared to the
Unified compression algorithm.

In the above experiments, we discuss the performance of
image compression algorithms on inference accuracy. Both
the Unified-IMCO algorithm and the SpaT-IMCO algorithm

Fig. 9. The relationship between the quantization coefficient μ and the
compression ratio, image size.

utilize the compression quantization coefficient μ to adjust
the compression rate. Therefore, this section further ana-
lyzes the relationship between the quantization coefficient μ
and the compression ratio, as well as the image size, as
illustrated in Fig. 9. The experimental results show that,
under the same quantization coefficient, our compression
algorithm can generate images with a higher compression ratio
and smaller storage capacity than Unified-IMCO algorithm.
Correspondingly, this also implies that less communication
resources are required in the compression offloading network.
Without considering other factors, when the compression
ratios are around 0.2 and 0.45, our compression algorithm
can save approximately 10% of bandwidth consumption. It
is worth noting that this performance improvement solely
comes from this novel compression strategy. In a word, these
extensive results demonstrate its effectiveness under different
compression levels.

D. Analysis of End-to-End Performance

Above experiments demonstrate the efficiency of Co-CRRA
and SpaT-IMCO algorithms, respectively. In this section, we
analyze the inference and delay performance of end-to-end
edge service architecture combining these two algorithms.
Specially, we use JTX2 as mobile device and laptops as edge
servers. We design the simulation system with reference to
real experimental data and network conditions.

1) Inference Performance Analysis: We adopt a new
weighted metric to comprehensively evaluate inference
performance of overall system, incorporating the two metrics
of the success probability of inference tasks and inference
accuracy, called as inference utility: α ∗ ∑

Φi + (1 −
α) ∗ Acc. In our case α = 0.5 and the inference model
takes EfficientNet-B1. Since FRACR algorithm is the most
competitive offloading algorithm comparing with ours (in
Section VI-B), combination of Unified-IMCO and FRACR
is used as baseline of this end-to-end experiment. As shown
in Fig. 10, our scheme (SpaT-IMCO + Co-CRRA) improves
the comprehensive inference performance by an average of
7.1% and 14.7% under Pmax = 1W and Bmax = 15MHz,
respectively. In fact, this result is predictable because our
image compression strategy and offloading algorithm have
proved to outperform both baseline algorithms in previous
experiments, respectively.
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Fig. 10. Comparison of end-to-end inference utility between our scheme and
the baseline.

Fig. 11. Comparison of end-to-end system delay between our scheme and
the baseline.

2) Inference Delay Analysis: Besides, we investigate end-
to-end latency under different deep learning models and
different compression levels. Latency of the overall system
mainly includes three parts here: i) local delay, executing the
evaluation network and the compression algorithm on mobile
devices to compress data; ii) transmission delay, uploading
compressed data from local to edge servers; iii) edge delay,
executing deep vision models on edge servers and obtaining
inference results. Among them, we compute the communica-
tion delay by dividing transferred data by the available data
rate, which sets as 15Mbps. Fig. 11 shows the breakdown of
the end-to-end latency. From this figure, our scheme has a
little higher local latency, while the transmission latency of
baseline gets a little higher. For the overall delay, ours is almost
comparable to the baseline. When the compression level is
small, ours is slightly lower. When the compression level is
larger, it is reversed. In general, our compressed offloading
scheme can achieve higher the success probability of inference
tasks and inference accuracy without increasing latency.

VII. CONCLUSION

This paper investigates the edge vision inference framework
driven by data compression. In this framework, vision data
is compressed on local device to become smaller, and then
is transmitted to edge sever for intelligent inference services.
Specifically, we establish the collaborative optimization model
of compression offloading and resource allocation. This model

maximizes the success probability of inference tasks of the
edge vision system, under the constraints of network band-
width and transmit power. By introducing slack variables
and Taylor expansion techniques, we decompose the non-
convex optimization model into two sub-problems to solve the
compression ratio and resource allocation scheme. In addition,
in order to improve the inference performance of compres-
sion offloading, we propose a spatial-attention aware image
compression strategy. Our compression strategy uses the well-
trained vision DNN model to train a lightweight spatial feature
importance evaluation network. Based on importance results
from this evaluation network, we enable varying degrees
of compression for different image regions to adaptively
compress vision data. The experimental results demonstrate
that our proposed offloading model and compression strategy
outperform other algorithms, achieving an average reduction
of 11.3% in total system energy consumption.
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