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Abstract—Urban sensing encourages the incredibly quick
advancement of digitalization, intelligence, and ubiquitous
perception, accelerating the construction of the metaverse.
Various sensors construct the sensing network to capture
human activities for the human-centered metaverse. How-
ever, effective management of ubiquitous urban sensing with
various attributes is a challenge. In this article, we pro-
pose a virtual Internet of Things (VIoT) enabled by digital
twin (DT) for building the metaverse. Specifically, we intro-
duce an architecture of the VIoT, including a policy sensing
layer, a 6G edge-cloud collaboration layer, a DT layer, and
a user-friendly terminal layer. Furthermore, to address the
sensing scheduling issue in the VIoT, we formulate a sens-
ing profit maximization problem by considering the sensing
coverage, data utility, and energy cost attributes of visual
sensors and fabric sensors. To tackle this problem effi-
ciently, we design a sensing scheduling policy based on the
soft actor–critic (SSP-SAC) algorithm. The simulation results
demonstrate that compared to the baseline schemes, the
SSP-SAC scheme can significantly improve the sensing profit
in diverse situations, indicating that the VIoT can provide an
effective urban sensing policy.

Index Terms— Digital twin (DT), metaverse, soft actor–critic, urban sensing.

I. INTRODUCTION

URBAN sensing, powered by a variety of sensors and
ubiquitous intelligence interconnects, is a collection of

technologies for multidimensional and multilevel monitoring
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of the physical environment and social activities [1]. Urban
sensors collect static and dynamic attributes used for urban
analysis [2], for example, land cover and use, buildings,
crowds [3], air qualities [4], or individuals of the city.
Metaverse is a virtual digital world that includes simu-
lated real-world environments and artificially created virtual
spaces [5]. In the metaverse, participants engage in diverse
activities and interact with others just like in the real world.
Thus, the metaverse requires sensing the large-scale urban
environment for the fidelity virtual simulation of the virtual
worlds and real-time human activities sensing for immersive
interaction [6].

Fortunately, urban sensing is a key enabler for the construc-
tion of metaverse, which supports the real-time and dynamic
perception of urban activities [5]. The development of urban
sensing technology promotes the extremely rapid develop-
ment of digitalization, intelligence, and ubiquitous perception,
which also accelerates the data-driven metaverse of the smart
city [7]. With distinctive features of the immersive experience
and sociality, modeling human-centered spaces is vital in the
metaverse, including human activities and the human-around
environment [8].
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Human-centered urban sensing can be achieved by ambient
intelligence and fabric computing [9]. First, as a part of urban
sensing, ambient intelligence is a physical space that is sensi-
tive and responsive to the presence of humans, which is driven
by advances in machine learning and contactless sensors [10],
such as visual sensors to perceive the human-centered envi-
ronment and activities. However, the mild movement and
lively signals are difficult to recognize, for example, occluded
movements and pulse. On the contrary, fabric computing [11],
based on micro and flexible sensors, creates a new paradigm
of human-centered perception. It enables seamless human
activity modeling in living spaces by deploying ubiquitous and
ultradense fiber sensors to capture human physiological infor-
mation [12], behavioral states, and interaction commands [13].
Nevertheless, it is difficult to accomplish wide capture like the
visual sensors. Thus, various types of urban sensors are used
for sensing the environment and human activities to construct
the urban metaverse. For example, the visual sensors are
responsible for monitoring the crowd flow situation and human
surrounding changes [14], while the fabric and wearable
sensors monitor the human-closed physiological signals and
precise movements. Besides, other types of sensors such as
gas sensors [15] and voice sensors [16] are utilized to realize
the entire city modeling.

Therefore, the increasing of various types of urban sensors
deployed in the city raises concerns about the reasonable
sensing policy of large-scale deployment. Moreover, for fabric
sensors, using machine learning and deep learning for pattern
monitoring and recognition requires powerful computing
capability [17]. Due to their convenient, micro, and flexible
attributes, wearable devices are limited in terms of computing
resources. The Internet of Things (IoT) promotes the devel-
opment of human–computer interaction and smart cities [18].
However, the explosive growth of urban sensor types and
densities poses a challenge for the classical IoT architecture
to achieve large-scale sensing scheduling and management.
Efficiency, self-adaption, and error tolerance are the urgent
requirements for the advanced IoT [19]. Furthermore, the
metaverse envisions the utilization of physical IoT devices
to enable human interaction within the metaverse, thereby
demanding the comprehensive digitization of the physical
world [20]. Thus, the urban sensing network requires digital
technology to fully digitize the physical urban sensing net-
work, promoting large-scale sensing scheduling, and building
a bridge between the physical world and the digital world.

Digital twin (DT) promotes the development of digital
interaction and management [21], which integrates models,
data, and intelligence for real-time, efficient, and intelligently
controlled services [22]. If provided sufficient sensing cover-
age, data availability, and computational processing capacity,
DTs can model sensing networks and make predictions about
their behavior over time and under different conditions and
constraints [23]. DT offers an entire life cycle evolution of
the sensing network, which is advantageous for developers
of deployment plan optimization, remote monitoring, and

maintenance [24]. It facilitates predictive maintenance, service
improvements, and fault diagnosis for operators [25]. Mean-
while, it offers intelligent, tailored, and immersive service
experiences to users. Powered by various types of urban
sensors and DT, the urban metaverse can create a new
generation of hyperreality services and transform all ways
of life [26]. Considering the different attributes of various
types of sensors such as energy-saving or high-consumption,
an effective cooperation sensing strategy assisted by DT is
required for efficient urban sensing. It is urgent to develop
an architecture and a sensing scheduling scheme to realize
precise human-centered modeling and effective urban sensing
management.

In this article, we propose a virtual IoT (VIoT) enabled by
DT to construct the urban metaverse, in which the sensing
nodes are mapped in the digital world. Specifically, we intro-
duce the architecture of VIoT, including a policy sensing
layer, a 6G edge-cloud collaboration layer, a DT layer, and
a user-friendly terminal layer. Furthermore, to address the
issue of sensing scheduling with various types of urban
sensors, we formulate a sensing profit maximization problem
by considering the sensors’ attributes, which consist of sensing
coverage, data utility, and energy cost. Moreover, to tackle this
problem, we propose a sensing scheduling policy based on the
soft actor–critic (SSP-SAC) algorithm deployed in VIoT for
effective sensing management. Finally, we construct extensive
experiments to evaluate the performance of the proposed
scheme.

In summary, the contributions of this article include the
following.

1) We propose a VIoT enabled by DT and urban sensors for
constructing the urban metaverse. Moreover, we intro-
duce an architecture of the VIoT, including a policy
sensing layer, a 6G edge-cloud collaboration layer, a DT
layer, and a user-centric terminal layer.

2) Considering the various attributes of urban sensors in the
VIoT, we formulate a sensing profit maximization prob-
lem to address the effective sensing scheduling issue.
To tackle this problem, we design a novel SSP-SAC
algorithm deployed in the VIoT, which can adapt to
dynamic environments.

3) To evaluate the performance of SSP-SAC over diverse
situations, we conduct extensive experiments consider-
ing the sensing coverage, data utility, and energy cost
of visual sensors and fabric sensors. The experimental
results demonstrate that the SSP-SAC can significantly
improve the sensing profit compared to the other
schemes.

The rest of this article is organized in the following.
Section II introduces the VIoT and its architecture. Section III
formulates a sensing scheduling problem on maximizing
sensing profit considering the various attributes of sen-
sors. Section IV describes the proposed SSP-SAC algorithm.
The comparison experiments are presented in Section V.
Section VI concludes the whole article.
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Fig. 1. Attributes of visual sensors and fabric sensors.

II. ARCHITECTURE OF VIOT
In this section, we analyze the attributes of urban sensors.

Then, we introduce the VIoT based on DT and the architecture
of VIoT, including a policy sensing layer, a 6G edge-cloud
collaboration layer, a DT layer, and a user-friendly terminal
layer.

A. Urban Sensors
Various types of urban sensors are deployed in the city.

The fabric sensors are realized by conductive active materials
that can be stretched, pulled, bent, and folded [27]. On the
one hand, fabric sensors convert various physiological signals
into electrical signals through flexible sensors, such as blood
pressure, respiration [28], pulse, and heartbeat. The fabric
sensors can be used for continuous, noninvasive, real-time,
and comfortable monitoring that provides important clinically
relevant information for disease diagnosis, preventive care,
and rehabilitation care. On the other hand, fabric sensors
convert human behavior information into digital signals, such
as gestures, and human motion, which provides imperative
support for multimodal senseless interactions [29]. Otherwise,
as fundamental physical signal collectors, fabric sensors can
be used to reprogram for additional goals and scopes based on
the same types of fibers. For example, the intelligent gloves
can be used to replicate the gesture in the metaverse or correct
the gesture in the gesture-based education [30], [31]. Visual
sensors [32] are the fundamental sensors in the city, which can
capture abundant information about the environment and peo-
ple. It can be used to assist in traffic management, pedestrian
safety, public security, and urban environment monitoring.
We compare the attributes of the visual and fabric sensors,
as shown in Fig. 1.

1) Energy Cost: The visual sensors collect images and
videos, which cost massive transmission energy and
computing energy. Meanwhile, lightweight data gen-
erated by the fabric sensor costs less on computing,
storage, and communication energy [33]. Therefore, the
fabric sensors are low-cost [34] but the visual sensors
are high-cost relatively.

2) Invisible Sensing: The fabric sensors can inadvertently
and ubiquitously gather data on human behavior and
physiological data [27], including temperature, blood

pressure, pulse, and other measurements. The visual
sensors can capture the environment in a noncontact
way. They both perform well in invisible sensing, but
the visual sensors are good at wide sensing and the
fabric sensors are excellent at capturing subtle body
movements and physiological signals in individuals.

3) Sensing Coverage: Sensing coverage represents the
scope or capability of sensor nodes within the monitor-
ing area in the sensing network. It measures the ability
of sensor nodes to effectively monitor and perceive
the target area. The arrangement and density of sensor
nodes directly affect the network’s perceptual coverage
range. The visual sensors usually have a wide vision
but the fabric sensors usually serve a certain user.
Thus, the visual sensors perform in wide sensing cover-
age but the fabric only covers a person [35], [36], [37].

4) Data Utility: The visual sensors can capture more
abundant information including human movement and
the environmental changes. Moreover, the sensing data
collected by visual sensors can be used for multiple
tasks. For example, an image can be used for object
recognition, pose recognition, and facial recognition.
However, the fabric sensors are usually designed for
specific tasks [38], for example, respiration monitoring
and human movement monitoring.

In conclusion, due to different types of sensors having various
attributes, reasonable and effective management can signifi-
cantly maximize their value and improve the performance of
the sensing network.

B. Definition of VIoT
VIoT is a digital mapping of the urban sensing network

enabled by DT, as shown in Fig. 2. The physical city with
various sensor nodes monitors the urban environment and
human activities. Thus, if the sensor nodes are digitalized by
modeling, visualization, and machine learning, not only are
the sensing status synchronized in DT, but also the sensing
data can be utilized to simulate the real city. As a result, the
physical sensing nodes have virtual nodes in the virtual city,
which is the virtual connotation of the VIoT. Physical sensing
nodes are mapped one-to-one in a virtual city, and then spatial
states, human behavior, and information communication are
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Fig. 2. Virtual IoT.

transformed into multidimensional models in the digital city.
The physical city and the digital city will combine and
exchange multimodal data.

The difference between VIoT and IoT [39] is that the VIoT
has the mapping of the IoT enabled by DT. The DT can
monitor, control, and improve physical IoT operations, includ-
ing developing models for assessing energy consumption,
rationalizing resource allocation [40], and enhancing sensing
scheduling. When used in particular contexts, VIoT performs
intelligent analysis, future behavior prediction, and decision-
making optimization, while also enabling the extension and
enhancement of the real environment following effective sim-
ulation, description, and construction of the desired scenario,
combining the composability and programmability of its con-
struction process to iteratively optimize problem solutions and
better solve real-world. The vast amount of historical data, the
findings of the analysis, and user feedback can aid in the twin’s
development [41].

C. Architecture of VIoT
The architecture of VIoT is illustrated in Fig. 3, which

includes a policy sensing layer for multiattribute sensors, a 6G
edge-cloud collaboration layer for artificial intelligence (AI)
services, a DT layer for surrealistic space, and a user-friendly
terminal layer for immersive interaction.

1) Policy Sensing Layer: The policy sensing layer consists
of all the sensing units and the auxiliary equipment to support
data acquisition. Various types of urban sensors are deployed
in the city to collect and monitor data related to urban
operations and human activities, including weather sensors, air
quality sensors, visual sensors, and fabric sensors. All types of
sensors in the urban area are connected together and managed
by the DT layer. Meanwhile, the sensing network follows the
sensing schedule policy provided by the DT layer to realize
effective data collection.

Fabric sensors collect multidimensional information [9]
about the environment on a fine-grained scale using functional

fibers that respond to sound, light, and electricity at the
mechanistic level. To enable wide-area low-energy sensing and
high-quality human behavior data gathering, fabric sensors are
made by combining flexible sensors with fibers, which can
record changes in physical quantities, such as pressure [42],
elasticity, and electromagnetic interaction forces. Otherwise,
the visual sensors collect visual information about the environ-
ment around them. According to the signal feature, the sensing
distribution follows certain rules, such as the distribution of
the focal region, the dot matrix, the warp, and weft cross.
Finally, a large-scale, high-density sensing network is con-
structed using multiple types of sensors to capture multimodal
fine-grained sensing properties to create a geographically
scoped sensing field. A huge number of sensing nodes that
produce a variety of physical signals make up the resulting
sensing network. A compact, highly precise, and compatible
peripheral sampling network is needed to accurately gather
and interpret sensing data. The microcontroller unit is used as
the control core to deploy the data decoding module and data
cleaning module to filter noise and redundant data to reduce
the cost of subsequent transmission.

2) 6G Edge-Cloud Collaboration Layer: The urban metaverse
is enabled by ubiquitous sensing and intelligence, the edge
and cloud are the primary fundamental construction of the
city. The high-performance 6G edge-cloud collaboration layer
with intelligent services is beneficial to realize the vision
of a seamless, shardless, and interoperable metaverse [43].
The fundamental services include machine learning and AI
technologies for adaptive data collection, model construction,
and AI perception. First, to improve the high-value time series
segments of the gathered data and finish higher order services
like noise reduction and semantic extraction, a lightweight
deep perception algorithm model is implemented, enabling
high-performance and intelligent perception. Second, owing to
low-latency transmission and powerful computing capabilities,
the intelligent services for VIoT are deployed and executed in
the edge or cloud servers. Moreover, as the inherent sociality
of the metaverse, the information is exchanged in a wide area,
requiring low-latency cloud computing.

3) DT Layer: The management of a large-scale sensing
network in the urban area is a challenge. DT can monitor,
manage, and optimize the physical sensing operations, aiming
to achieve optimal management of the urban sensing network
by modeling high-fidelity urban environment and optimizing
decisions utilizing intelligent algorithms such as deep learning
and reinforcement learning. The holistic network virtualiza-
tion incorporates service-centric and user-centered networking
from service provision and service demand, respectively.
The pervasive network intelligence integrates AI into future
networks from the perspectives of networking for AI and
AI for networking, respectively [44]. The DT layer is also
deployed in the edge server or cloud. The operating condition,
ambient information, and all available sensing data in the
VIoT physical world are mapped to digital counterparts. The
logical objects accurately represent all the significant traits
and qualities of the original objects in a specific application
context. In the digital world, the VIoT nodes communicate and
cooperate with others to complete challenging tasks. Assisted
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Fig. 3. Architecture of VIoT.

by DT, the VIoT can provide an immersive experience, multi-
tier software-defined services, sensing schedule optimization,
and resource management [45].

4) User-Friendly Terminal Layer: A service terminal ulti-
mately offers service interfaces and direct interaction ways for
users, including intelligent fabric devices like smart beds and
clothes, and electronic devices like smartphones, virtual reality
glasses, and personal computers. The two types of intelligent
terminals cooperate to provide users with an engaging experi-
ence. The fabric devices are close to users with interaction and
feedback, while the electronic devices display the visualization
of virtual scenes. Being a connection of reality to the virtual
world, both the digital scene reproduction and immersive
interaction are provided in the user-friendly terminal layer.

In summary, VIoT employs ubiquitous sensing nodes to
gather a variety of behavioral and spatial data in a particular
scene, which is then individually mapped in the digital space.
Based on the virtual-realistic symbiotic network with ubiqui-
tous senseless interaction, it creates an immersive interaction
space for users to improve their experience and comfort.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we formulate a DT-assisted sensing schedul-
ing problem to optimize sensing profit considering sensing

coverage, data utility, and energy cost of visual sensors and
fabric sensors.

A. System Overview
The system model contains a physical sensing layer and

a DT layer, as shown in Fig. 4. In the physical layer, the
sensing nodes collect and transmit data to the nearest edge
cloud by wireless or wired ways. On the edge cloud, the DT
makes the optimal decision by observing the status of the
physical sensing network and managing the sensing schedule.
The physical sensing network and DT exchange the data and
decisions timely.

The various types of urban sensors are deployed in the
city. The sensing region is discretized into N cells, denoted
as N = {1, 2, . . . , N }. The cells can be arbitrary shapes,
but we assume that they have the same size for simplicity.
To prioritize human-centered urban sensing, we divide the
sensors into visual sensors and fabric sensors to collect data
on human surroundings and activities. We denote the set of M
visual sensors as Xv . Wearable devices are usually constructed
by some sensors, thereby we define x f

k as a representation
of all of the fabric sensors on a wearable device. Thus, X f

represents the K wearable devices. The sets of the sensors can
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Fig. 4. System framework for sensing scheduling policy.

be denoted as {
Xv
=

{
xv

1 , xv
2 , . . . , xv

M
}

X f
=

{
x f

1 , x f
2 , . . . , x f

K

}
.

(1)

The visual sensors are usually fixed but the wearable devices
can be moved or fixed. Due to the visual sensors usually
covering an area, we suppose a cell n has a visual sensor
xv

m , thereby we can get N = M . We define Xv and X f as the
sensors’ on–off status, that if xv

m = 1 or x f
k = 1 means the

mth and kth sensors are activated and collecting data, else are
closed.

The sensing profit of the sensing scheduling can be defined
by sensing benefit and cost. Each type of sensor has unique
attributes, resulting in different benefits and costs. We evaluate
the sensing benefit from two perspectives: sensing coverage
and data utility [46]. The sensing coverage indicates the
capability of a sensor for data collection, and the data util-
ity indicates how useful or redundant the collected data is.
We define qv and q f as the data utility indicators for the visual
sensors and fabric sensors. Otherwise, we evaluate the sensing
cost through the energy consumption caused by the sensors
and the sensing data, which contains the sensors working
consumption and data transmission consumption. We define
the ev and e f as energy cost indicators for visual sensors and
fabric sensors.

B. DT Model
The DT layer is deployed on the edge cloud which repli-

cates the sensing nodes and the edge cloud, and updates the
time-variant state information, historical data, and scheduling
strategy. By synchronizing the overall situation, such as the
users’ position and the sensors’ state, the DT makes the
optimal sensing scheduling strategies for the physical sensing
layer. The DT layer consists of the city cells DTN and the
status of visual sensors DTv and fabric sensors DT f , which
can be expressed as

DT =
(

DTN , DTv, DT f
)

. (2)

The DT duplicate of city cells DTN is denoted as

DTN
= {u1, u2, . . . , uN } (3)

where un is the number of the users in the nth cell of city.
The mth visual sensor duplicate DTv

m can be expressed as

DTv
m = 8

(
cv, qv, ev, xv

m
)

(4)

where cv , qv , and ev are the sensing coverage, data utility, and
energy cost, respectively. Similarly, the kth wearable device
duplicate DT f

k can be expressed as

DT f
k = 8

(
c f , q f , e f , x f

k

)
(5)

where c f , q f , and e f are the sensing coverage, data utility, and
energy cost, respectively. For a human-centered urban sensing
network, we define the sensing coverage as the number of
covered users by a sensor. Due to the number of cells N is
the same as the number of visual sensors M , namely M = N ,
the number of users un in the nth cells can also be expressed
as um in the mth cell. Therefore, the total sensing coverage
Gc, data utility Gq , and energy cost Ge can be expressed as

Gc =

M∑
m=1

xv
mum +

K∑
k=1

x f
k

Gq =

M∑
m=1

qvxv
mum +

K∑
k=1

q f x f
k

Ge =

M∑
m=1

evxv
m +

K∑
k=1

e f x f
k

(6)

where xv
mum means the visual sensor can cover and collect

all of the users in the mth cell.

C. Problem Formulation
With the aforementioned assumptions and terms, we formu-

late the sensing scheduling problem as follows.
In the city which is divided into N cells, given the number

of users of each cell DTN , determine the on–off status of visual
sensors Xv and fabric sensors X f that optimizes the sensing
profit G, which is defined as the benefit minus cost, subject to
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the sensors configuration and users activate space constraints.
Formally, this is stated as

P1 : G = max
Xv,X f

Gc + Gq − Ge (7)

s.t. C1 : xv
m, x f

k ∈ {0, 1} (8)

C2 :
N∑

n=0

un = K . (9)

The optimization goal is to maximize the sensing profit by
a sensing scheduling scheme. Constraint C1 means that the
sensors activated status. Constraint C2 means that the number
of users is equal to the number of wearable devices. This
formulation of the sensing scheduling problem is a typical
integer programming problem known as NP-hard.

IV. SENSING SCHEDULING POLICY BASED ON SOFT
ACTOR–CRITIC NETWORK

In this section, we propose an SSP-SAC algorithm. Specif-
ically, we formalize the optimization problem as a Markov
decision process (MDP) and display the algorithm analysis
and details.

A. Formalization of MDP
It is generally believed that the variation of the sensing

environments follows Markovian properties. The three key
elements of the learning environment system, i.e., the set of
states S, the set of actions A, and the set of reward functions R.

State: At each time slot t , the state of the urban sensing
network can be represented as

st =

{
DTN

t ,

M∑
m=1

xv
m,t ,

K∑
k=1

x f
k,t ,Gc,t ,Gq,t ,Ge,t

}
(10)

where
∑M

m=1 xv
m,t and

∑K
k=1 x f

k,t mean the number of activated
sensors at time slot t . Gc,t , Gq,t , and Ge,t denote the total
sensing coverage, data utility, and energy cost at time slot t .

Action: Based on the current state st , the agent chooses the
action at , which can be expressed as

at =
{

Xv
t , X f

t

}
(11)

where Xv
t in [1, M] dimension and X f

t in [1, K ] dimension
denote the sensors activated state at time slot t .

Reward: The reward function R presents the system sensing
profit obtained by the sensing scheduling policy. According to
the current system state st and the chosen action at at time
slot t , the reward can be expressed as

rt = Gc,t + Gq,t − Ge,t . (12)

The set of reward functions R = {rt |t ∈ [1, T ]} is the system
rewards in all time slots t ∈ [1, T ]. Our goal is to maximize
the cumulative reward.

B. Soft Actor–Critic for Sensing Scheduling Policy
Since the action space is composed of 0 or 1 in total

N+K dimensions, lots of final actions are possible to achieve
optimal rewards. The agent is expected to explore sufficiently

for the wider possibilities to avoid local optimum. SAC [47]
attempts to find a policy that maximizes the maximum entropy
objective. It has powerful exploration, robustness, and general-
ization abilities by exploring multimodal rewards and optimal
possibilities in different ways. SAC can effectively solve the
sensing scheduling problem because it can explore all possible
actions by random policy.

The maximum entropy objective of SAC can be expressed
as

π∗ = argmax
π

T∑
t=0

E(st ,at )∼τπ

[
γ t (r (st , at )+ αH (π (. | st ))]

(13)

where π is a policy, π∗ is the optimal policy, T is the
number of timesteps, r : S × A → R is the reward function,
γ ∈ [0, 1] is the discount rate, st ∈ S is the state at timestep
t , at ∈ A is the action at timestep t, τπ is the distribution
of trajectories induced by policy π, α determines the relative
importance of the entropy term versus the reward and is called
the temperature parameter, and H(π(. | st ) is the entropy of
the policy π at state st and is calculated as H(π(. | st )) =

− log π(. | st ).
Since the action in this article is discrete, we use the output

policy by SAC as the probability of the discrete action

at,i∗ ∈ {0, 1} ∼ πi∗,t ∀i ∈ {1, 2, . . . , N + K } . (14)

The SAC algorithm consists of three types of networks, i.e.,
target value network, Q-function network, and policy network.
First, to maximize the objective, SAC uses soft policy iteration
which is a method of alternating between policy evaluation and
policy improvement within the maximum entropy framework.
The soft state value function can be expressed as

V (st ) = Eat∼π

[
Q (st , at )− α log (π (at | st ))

]
. (15)

We can obtain the soft q-function by parameterizing the soft
q-function Qφ(st , at ) using a neural network with parameters
φ. Then, we train the soft Q-function to minimize the soft
Bellman residual

JQ (φ) = r + γ
(
Qφ

(
s′, a′

)
− α log πθ

(
a′|s′

))
, a′ ∼ π

(
·|s′

)
(16)

where a′ and s′ give the next state and action sample from
the experience pool. Then, we can update the Q-network
parameters by

∇φ EB

B∑
i=1

(
Qφ (s, a)− JQ (φ)

)2 (17)

where E means the expectation of the sampled experience
transition.

The policy network is used to predict the optimal policy
and action πt , at by the state st . It updates the policy for
maximizing the rewards r . The SAC utilizes the soft Q-
function calculated in the policy evaluation step to guide
the policy changes. Specifically, it updates the policy toward
the exponential of the new soft Q-function and restricts the
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Algorithm 1 Soft Actor–Critic for Sensing Scheduling Policy
Require: The number of city cells N , visual sensors M and

fabric sensors K , EPISODES, the batchsize B, maxstep
1: Initialize policy parameters θ , Q-function parameters

φ1, φ2, set target parameters equal to main parameters
φtar, j ← φ j , j = 1, 2

2: for episode in range(EPISODES) do
3: Random DT N

= {u1, . . . , uN } where
∑

DT N
= K

4: Random Xv
= {xv

1 , . . . , xv
M , xv

m ∈ {0, 1}} and X f
=

{x f
1 , . . . , x f

K , x f
k ∈ {0, 1}}

5: Get the state st =

{DT N
0 ,

∑
X f

0 ,
∑

Xv
0 ,Gc,0,Gq,0,Ge,0}

6: for i in range(maxstep) do
7: Use policy network to output the probability of action

by π(at |st ) = 8π (φ)(X t )

8: Get the action by at = 0 if at ≤ 0.5 else 0
9: Get X f

t and Xv
t according at = {X

f
t , Xv

t }

10: Get the benefits Gc,t , Gq,t , cost Ge,t and reward rt by
st and at using Equation (6) and (14)

11: Get the next state st+1
12: Store transition tuple (st , πt , at , rt , st+1) in B
13: if len(B) ≥ B then
14: Sample B transition (s, π, a, r, s′) from B
15: Compute targets for the Q function a′ ∼ π(·|s′):

y j = r j + γ (min j=1,2 Qφ(s′, a′)−α log πθ (a′|s′))

16: Update Q-functions for:

∇φ

1
B

B∑
i=1

(
Qφ (s, a)− y2

j

)
, j = 1, 2

17: Update policy network parameter:

∇φ

1
B

B∑
i=1

(
min
j=1,2

Qφ (s, ãθ (s)−α log πθ (ãθ (s) |s))
)

where ãθ (s) is a sample from π(·|s′).
18: Update target networks with

φtar, j ← ρφtar, j + (1− ρ)φtar, j
19: else
20: Continue
21: end if
22: end for
23: end for

possible policies to a Gaussian distribution. The overall policy
improvement step is given by

∇φ EB
(
Qφ (s, ãθ (s)− γ log πθ (ãθ (s) |s))

)
. (18)

The pseudocode of the SSP-SAC algorithm for the DT-
assisted sensing network is given in Algorithm 1. First, input
the required settings and initialize the network parameters.
Randomly generate the number of users in each cell DTN and
initial action with seed. Second, use the policy network to
output the probability of the action and put the action, policy,
state, next state, and reward into the experience pool. Third,
randomly sample the experience transition and update the Q-

value network according to (17), the value network according
to (15), and the policy value network according to (18),
respectively. After training, we can use the policy network
to predict the optimal policy for the sensing scheduling.

V. EXPERIMENTAL RESULTS

In this section, we conduct comparison experiments to
verify the characteristics of the VIoT and evaluate the perfor-
mance of the proposed SSP-SAC algorithm. First, we perform
the convergence of SSP-SAC to find the optimistic network
parameter. Then, we show the comparison experiments over
the varying cells and users to evaluate the generalization of
SSP-SAC algorithm. Finally, we analyze the sensing profit
over the varying utility and energy cost indicators to evaluate
if the SSP-SAC can adapt the various attribute sensors.

A. Experimental Setting
We consider a DT-assisted urban sensing network with

two types of sensors, fabric sensors and visual sensors. The
attributes of sensors are different. The visual sensors can not
only capture the activity of humans but also observe the
environment around the users, thus the collected data may
be used for multiple tasks. Moreover, one visual sensor can
monitor more than one person. On the contrary, a wearable
device or fabric sensing device constructed by fabric sensors
is usually designed for a user, hence it has lower data utility.
In terms of cost, fabric sensors collect a small size of data
compared to visual sensors, thus the transmission energy
consumption is lower than the visual sensors. In summary,
the visual sensors perform the higher sensing coverage and
data utility, but the fabric sensors perform the lower energy
cost. Therefore, we use the indicators to reflect the difference
in attributions of different sensors. We assume that the data
utility and energy cost indicators of visual sensors are in the
range of qv, ev ∈ [1, 3] and one of the fabric sensors is
q f , e f ∈ [0.4, 1.2], in which the utility indicator and cost of
visual sensors are both always higher than the fabric sensors.
We assume that the city is divided into N cells and K users
are in the city, and N and K are in the range of [100, 300],
respectively.

B. Experimental Performance
To evaluate the performance of the algorithm, we use the

system accumulated reward R and average profit G of 50 times
as the metrics. Then, we compare the proposed scheme to the
other three schemes.

1) Random: Randomly generate the activated status for the
sensing network.

2) Visual: All of the visual sensors are activated but fabric
sensors are closed.

3) Fabric: All of the fabric sensors are activated but visual
sensors are closed.

1) SSP-SAC Algorithm Convergence Analysis: The number
of hidden nodes is the primary coefficient of the SAC network.
We test the convergence with various coefficient sets to find
the optimistic configuration. Fig. 5 illustrates the convergence
trend of the training process, in which the longitudinal axis
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Fig. 5. Convergence curve of the sensing scheduling policy
algorithm. (a) Reward convergence curve over the varying hidden sizes.
(b) Reward convergence curve over the varying learning rates.

indicates the accumulated reward R of a training round, which
can be calculated by

R =
T∑

t=0

rt . (19)

Since the reward increases with fluctuation, we smooth the
accumulated reward R which can be calculated by

R′i = 0.9R′i−1 + 0.1Ri (20)

where the R′i−1 means the weight accumulated reward of the
last episode. For the fixed learning rate and N = 100, K =
100, it can be seen from Fig. 5(a) that the algorithm has
converged after 100 epochs, and the higher hidden size results
in a lower reward. But the converged speeds of all curves tend
to be similar.

For the fixed hidden size h = 512, we adjust the learning
rate of policy network ηp, value network ηv , and Q-function
network ηq to find the optimistic parameters of the algorithm.
We set the other parameters as N = 100, K = 300. It can
be seen from Fig. 5(b) that the final convergence reward is
lower than others obviously when ηq = 3×10−5, while others
perform approximates closely. We can find that the configure
ηp = 3× 10−5, ηv = 3× 10−4, and ηq = 3× 10−4 is the best
choice, which tends to 23 500 at epoch 400.

2) Impact on the Number of Cells and Users: Fig. 6 com-
pares the profits G of SSP-SAC and the benchmark scheme
over the varying number of users K and cells N . It can
be seen that the SSP-SAC has more obvious optimization
results. We set the same indicators that qv = 1, q f = 0.5,
ev = 1.5, and e f = 0.5. For the fixed number of cells
N = 100, as shown in Fig. 6(a), the profits of all of the
schemes increase. This is because as the number of users
increases, more fabric sensors and visual sensors create more
sensing coverage. Meanwhile, the difference between fabric
and visual becomes smaller, but the difference between the
SSP-SAC and others becomes larger. The profits of SSP-SAC
are always higher than others, the random is between the
visual and fabric scheme, and the fabric is always higher
than the visual scheme. When the number of users is the
same as the number of cells N = K = 100, the profit of
SSP-SAC is close to the fabric profit. Therefore, it can be
concluded that with a higher number of users, the optimal
performance becomes better. Otherwise, for the fixed number
of users K = 300, it can be seen from Fig. 6(b) that the profits
of the schemes decrease, as the number of cells increases, but

Fig. 6. Impact on the number of cells and users. (a) Sensing profit
over the varying numbers of users. (b) Sensing profit over the varying
numbers of city cells.

the fabric profit is constant. Meanwhile, the difference between
fabric and visual becomes larger, but the difference between
the SSP-SAC and others becomes smaller. This is because
the increase of cells does not change the number of fabric
sensors, but increases the number of visual sensors. Thus,
the benefit and cost of the fabric sensors remain constant.
The profits of SSP-SAC are always higher than others, the
random is between the visual and fabric schemes, and the
fabric scheme is always higher than the visual scheme. When
the number of users is the same as the number of cells
K = N = 300, the profit of SSP-SAC is close to the fabric
profit. Overall, we can conclude that the proposed SSP-SAC
algorithm can improve the sensing profit when various types
of sensors with different attributes are in the sensing network.
The optimization performance becomes obvious when the
difference between cells and users increases.

3) Impact on the Data Utility Indicators: Fig. 7 compares the
profit G of the proposed algorithm and the benchmark scheme
over the varying data utility indicators qv and q f . The varying
data utility indicators mean the different data values of the
collected sensing data, namely, the higher utility indicators
mean the sensors can capture more useful and high-quality
data. It can be seen that the profits increase as the indicators
increase, which is because the higher data utility indicators
lead to higher benefits. Moreover, the profits of SSP-SAC are
higher than the other schemes in both Fig. 7(a) and (b); thus,
it can be concluded that the proposed SSP-SAC can signifi-
cantly improve the sensing profit over the varying attribution
sensors. For the fixed data utility indicators of fabric sensors
q f = 0.5, as shown in Fig. 7(a), the fabric profit is constant
and lower than the visual profit except for qv = 1.0. For
the fixed data utility indicators of visual sensors qv = 1.5,
as shown in Fig. 7(b), the fabric profit is constant and higher
than the visual profit except for q f = 0.4 and 0.6.

4) Impact on the Energy Cost Indicators: Fig. 8 compares
the profits G of the proposed algorithm and the benchmark
scheme over the varying energy cost indicators ev and e f .
The varying energy cost indicators mean the different energy
consumption performance of the sensors and the collected
sensing data, namely, the higher energy indicators mean the
sensors consume more energy consumption to complete the
sensing tasks and the data transmission tasks. It can be seen
that the profits decrease as the energy cost indicators increase,
which is because the higher energy cost indicators lead to
higher costs. Moreover, the profits of SSP-SAC are higher
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Fig. 7. Impact on data utility indicators. (a) Sensing profit over the
varying utility indicators of visual sensors. (b) Sensing profit over the
varying utility indicators of fabric sensors.

Fig. 8. Impact of energy cost indicators. (a) Sensing profit over the
varying energy cost indicators of visual sensors. (b) Sensing profit over
the varying energy cost indicators of fabric sensors.

than other schemes in both Fig. 8(a) and (b); thus, it can
be concluded that the proposed SSP-SAC can significantly
improve the sensing profit over the varying attribution sensors.
For the fixed energy indicators of fabric sensors e f = 0.5,
as shown in Fig. 8(a), the fabric profit is constant and higher
than the visual profit. The visual profit when ev = 3.0 is lower
than 0 because of the high energy cost consumption. As we can
see, the optimal performance is better when ev is small, and
it is best when ev = 1.0. For the fixed energy cost indicator
of visual sensors ev = 1.5, as shown in Fig. 8(b), the visual
profit is constant and lower than the fabric scheme except for
e f = 1.0 and 1.2.

VI. CONCLUSION

In this article, we proposed the VIoT based on the DT
for building the urban metaverse. The multiple types of
urban sensing nodes were mapped in the digital world in
VIoT. Then, we introduced an architecture for building the
VIoT, consisting of a policy sensing layer for multiattribute
sensors, a 6G edge-cloud collaboration layer for AI services,
a DT layer for surrealistic space, and a user-friendly terminal
layer for human–machine interaction. Besides, we designed
a sensing scheduling policy algorithm using the SAC called
SSP-SAC, which considered the various attributes of sensors
for human-centered sensing policy. Finally, we conducted
extensive experiments to evaluate the proposed scheme. The
experimental results demonstrate that the SSP-SAC can sig-
nificantly improve the sensing profit compared to the other
schemes. In summary, the various types of urban sensors in the
VIoT are beneficial for capturing the multimode signals and
creating a connection from the physical world to the urban
metaverse. The VIoT can build the human-centered urban
metaverse and the SSP-SAC can be used in the sensing policy

optimization in the city to promote the development of urban
sensing.
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