
Immersive Multimedia Service Caching in Edge Cloud with

Renewable Energy

M. SHAMIM HOSSAIN, Department of Software Engineering, College of Computer and Information

Sciences, King Saud University, Riyadh, Saudi Arabia

YIXUE HAO, LONG HU, and JIA LIU, Huazhong University of Science and Technology, Wuhan,

China

GANG WEI and CHEN MIN, South China University of Technology, Guangzhou, China

Immersive service caching, based on the intelligent edge cloud, can meet delay-sensitive service requirements.

Although numerous service caching solutions for edge clouds have been designed, they have not been well

explored. Moreover, to the best of our knowledge, there is no work to consider the immersive service caching

scheme under the supply of renewable energy. In this article, we investigate the service caching problem

under the renewable energy supply to minimize service latency while making full use of renewable energy.

Specifically, we formulate the service caching and renewable energy harvesting problem, which considers the

dynamic renewable energy, unknown service requests, and limited capacity of the edge cloud. To solve this

problem, we propose an effective algorithm, called OSCRE. Our algorithm first uses Lyapunov optimization to

convert the time-average problem into time-independence optimization and thus realizes optimal renewable

energy harvesting. Then, it realizes the service caching scheme using data-driven combinatorial multi-armed

bandit learning. The simulation results show that the OSCRE scheme can save service latency while making

sufficient use of renewable energy.

CCS Concepts: • Networks → Cloud computing;

Additional Key Words and Phrases: Edge cloud, intelligent scheduling; renewable energy, multimedia service

caching

ACM Reference Format:

M. Shamim Hossain, Yixue Hao, Long Hu, Jia Liu, Gang Wei, and Chen Min. 2024. Immersive Multimedia

Service Caching in Edge Cloud with Renewable Energy. ACM Trans. Multimedia Comput. Commun. Appl. 20,

6, Article 173 (March 2024), 23 pages. https://doi.org/10.1145/3643818

This work was supported by the Researchers Supporting Project number (RSP2024R32), King Saud University, Riyadh,

Saudi Arabia.

Authors’ addresses: M. Shamim Hossain (Corresponding author), Department of Software Engineering, College of Com-

puter and Information Sciences, King Saud University, Riyadh 12372, Saudi Arabia; e-mail: mshossain@ksu.edu.sa; Y. Hao

(Corresponding author), L. Hu, and J. Liu, School of Computer Science and Technology, Huazhong University of Science

and Technology, Wuhan, 430074, China; e-mails: yixuehao@hust.edu.cn, hulong@hust.edu.cn, jialiu0330@hust.edu.cn;

G. Wei, School of Electronic and Information Engineering, South China University of Technology, 510640 China; e-mail:

ecgwei@scut.edu.cn; M. Chen, School of Computer Science and Engineering, South China University of Technology, and

Pazhou Laboratory, Guangzhou, 510640 China; e-mail: minchen@ieee.org.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1551-6857/2024/03-ART173

https://doi.org/10.1145/3643818

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.

https://orcid.org/0000-0001-5906-9422
https://orcid.org/0000-0001-7296-2522
https://orcid.org/0000-0003-1846-683x
https://orcid.org/0009-0001-5798-2282
https://orcid.org/0009-0008-4594-9435
https://orcid.org/0000-0001-5329-0425
https://doi.org/10.1145/3643818
mailto:permissions@acm.org
https://doi.org/10.1145/3643818
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643818&domain=pdf&date_stamp=2024-03-08


173:2 M. S. Hossain et al.

1 INTRODUCTION

Nowadays, with the development of novel technologies such as Augmented Reality, Virtual Re-
ality, and Digital Twin, the Metaverse has attracted attention from the world by providing im-
mersive multimedia experiences to mobile users [26]. However, with limited computing capacity,
edge devices can hardly process such immersive services. Although cloud-based service process-
ing can satisfy the computing demand of such services, it can hardly meet the latency demand.
This is because the long network transmission required for the processing of such services at
the cloud and the possible congestion of backbone networks. Fortunately, with the development
of edge computing, edge cloud can narrow its distance from edge devices by deploying servers
at the network edge [21]. Moreover, the Metaverse application can be rendered in advance on
edge clouds to reduce the latency. Thus, it can meet the need of computing intensive and delay-
sensitive service required by edge devices. However, in contrast with the strong capacity of the
cloud in computing and storing, edge cloud has limited computing and storage capacity, which
makes it unable to cache all the services required by the edge device. Thus, an important problem
is to determine what kind of services are to be cached in the edge cloud, i.e., edge service caching
problem [18].

Lots of works consider the service caching in edge cloud [3, 13, 17, 25]. When consider the
limited communication, computing, and caching resources of edge cloud, many existing works
propose the service caching strategy using traditional optimization. Furthermore, some works try
to use the learning-based algorithm to design service caching scheme. For example, the authors in
Reference [24] present the optimal service caching scheme with the multi-armed bandit (MAB)

learning algorithm through learning the service request pattern. However, all the aforementioned
service caching solutions are for the same purpose, that is, to minimize the latency of users in
acquiring services. In practice, caching multimedia services on edge cloud consume the energy of
such edge cloud and the massive deployment of edge cloud further brings huge energy consump-
tion, which is obviously a new challenge for green computing.

To address this challenge, using renewable energy (e.g., solar energy) to supply the edge
cloud is feasible scheme, which has attracted extensive attention in the academic and industrial
world [12, 16, 27]. For example, Zhang et al. [27] have studied the communication performance of
base stations and give the optimal scheme for energy harvesting under the supply of renewable
energy. Xu et al. [23] investigated he task scheduling scheme under the renewable energy supply.
Thus, importing green energy techniques into edge computation will not only realized diversified
deployment of renewable energy, but also reduce the operating cost of edge servers.

However, none of the service caching schemes consider the edge cloud under the supply of
renewable energy. Moreover, the dynamic arrival of renewable energy make the existing ser-
vice caching scheme inapplicable. Thus, in this work, we consider the service caching scheme in
edge cloud under the supply of renewable energy, as shown in Figure 1. The power supply to the
edge cloud comes from renewable energy and grid, and the edge cloud needs to design the service
caching strategy and energy harvesting decision. However, this caching scheme design exists the
following challenge:

Computing-intensive and data-intensive tasks: Current Metaverse services, including three-
dimensional (3D) entertainment games, demand substantial computing, communication, and stor-
age resources for enabling real-time virtual-physical interactions, thereby delivering immersive
experiences to mobile users. Nevertheless, the constrained computing resources of mobile devices
present a significant challenge to these immersive multimedia applications [1, 9, 10, 22]. For in-
stance, with a camera refresh rate of 60 Hz, the associated visual analysis and rendering must be
completed within 16.7 ms to ensure real-time interaction [11].

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



Immersive Multimedia Service Caching in Edge Cloud with Renewable Energy 173:3

Fig. 1. An illustration of service caching in renewable energy enhanced edge computing framework.

Dynamic supply of renewable energy. Existing researches show that due to the influence of
weather and other elements, the supply of renewable energy changes frequently, which brings
new challenge to the systematic stability of the edge cloud [20]. For example, more services can
be cached on the edge cloud when sufficient supply of renewable energy is available. Thus, we
need design the service caching scheme and renewable energy harvesting scheme to adapt to the
dynamic supply of renewable energy of the edge cloud.

Uncertain service demand. A significant challenge in edge cloud computing is the unpredictabil-
ity of service demand. Many existing service caching schemes operate under the assumption that
service demand is either known or follows a specific distribution, such as the Poisson distribu-
tion [25]. In contrast to this, our approach posits that service demand is inherently unpredictable,
with edge devices potentially requesting services randomly. This unpredictability stems from the
limited coverage of edge clouds and the high mobility of users. Additionally, considering safety
and privacy concerns, it becomes challenging to access comprehensive user information.

To address these challenges, we propose the Online Service Caching with Renewable Energy
(OSCRE) scheme, designed to optimize renewable energy supply and minimize immersive service
request latency. By analyzing user service demands and the dynamics of renewable energy arrival,
we formulate the service caching and energy harvesting problem, aiming to reduce service latency.
Then, to solve this problem, we decompose the long-term renewable energy constraint with Lya-
punov optimization. Our approach, distinct from existing methods, considers the impact of data
size, computational load, and service storage capacity on service selection, with a focus on the
data volume of immersive multimedia services. Consequently, we propose a Data-aware Combi-
natorial Upper Confidence Bound (D-CUCB) algorithm to manage unpredictable service requests,
leading to an innovative online immersive service caching scheme. The effectiveness of OSCRE is
validated using real-world MovieLens data [8]. This article’s main contributions are summarized
as follows:

— Renewable energy enhanced edge service caching scheme: We introduce a renewable energy-
enhanced edge computing framework tailored for Metaverse services. By analyzing the sup-
ply of renewable energy alongside immersive service demands within the edge cloud, we
formulate the service caching and energy harvesting problem, particularly under uncertain
service demand scenarios. The objective of this optimization problem is to minimize service
latency while adhering to the long-term constraints imposed by renewable energy.

— OSCRE scheme: We propose an effective online learning strategy, the OSCRE scheme, which
facilitates online control of renewable energy and the online learning of Metaverse service
request patterns. Specifically, OSCRE converts the long-term constraint of renewable en-
ergy into a per-time-slot optimization problem through Lyapunov optimization. By resolv-
ing each time slot issue, we achieve optimal energy harvesting control. Subsequently, we

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



173:4 M. S. Hossain et al.

develop an optimal service caching scheme using the D-CUCB algorithm. Ultimately, we
demonstrate the OSCRE scheme’s convergence.

— Extensive performance evaluation: We cconduct comprehensive experiments to assess the
OSCRE scheme. These experiments demonstrate that, compared to various baseline al-
gorithms, OSCRE effectively minimizes service latency and optimally utilizes renewable
energy.

The remainder of this article is structured as follows: Section 2 reviews related work. Section 3
describes the system model and problem formulation. The OSCRE schemes are detailed in Section 4.
Simulation results and discussions appear in Section 5, and Section 6 provides the conclusion.

2 RELATED WORKS

Our work is related two fields: (i) Metaverse service caching in edge cloud and (ii) service caching
with renewable energy supply.

2.1 Metaverse Service Caching in Edge Cloud

With the development of the Metaverse, many immersive multimedia services have emerged, for
example, online game, virtual shopping. In addition, traditional cloud-based services can hardly
satisfy the user’s latency demand. Fortunately, with the development of edge cloud, the edge cloud
can satisfy the demand on the delay-sensitive services [21]. This is because by deploying servers
at the network edge, the edge cloud can short distance between the edge cloud and the edge device.
However,

Considering the limited capacity of the edge cloud in storing, computing, and communicating, a
critical problem is what kind of services should be cached on the edge cloud. Here, service caching
refers to cache the codes and running environment on the edge cloud. Researches have designed
lots of service caching schemes [3, 7, 13, 17, 25]. Specifically, the service caching strategies can be
divided into two categories, i.e., (i) service caching based on heuristic algorithm and (ii) learning-
based service caching algorithm. For service caching based on heuristic algorithm, for example, the
authors of Reference [17] studied the strategies for joint service caching and request scheduling
in edge cloud and designed the quasi-optimal service caching strategy to minimize the service
latency. Ma et al. [13] presented a service caching strategy based on the collaborative edge cloud.
However, all these strategies are based on the assumption that the service demand is known a
priori or follows specific distribution. Moreover, these algorithms generally need many times of
iteration before reaching optimal convergency, which makes it difficult to guarantee the speed of
convergency.

When considering that the service demand is unknown, the edge cloud needs to learn service
request pattern of the edge device and online learning should be designed, such as MAB learning.
Various works have studied the learning-based service caching scheme. MAB is an effective online
learning algorithm that is capable to learn unknown information through balanced exploration (to
learn unknown information) and exploitation (use learned knowledge) and finally make optimal
decisions. This algorithm has been widely used in content caching, service caching, and network-
ing. For example, the authors of Reference [4] propose a novel context-aware MAB algorithm that
realizes the optimal caching strategies. Miao et al. [14] designed a service caching scheme using
bandit learning in edge cloud and thus realized the maximization of the benefits of the service
provider. Hao et al. [6] propose a service placement, workload scheduling and resource allocation
strategies in multi-service edge cloud by using reinforcement learning. Although the service de-
mand is unknown, the data volume preference can be learned by historical requests, the current
works do not consider the influence of data volume of immersive multimedia service for the service
caching when the service demand is unknown.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



Immersive Multimedia Service Caching in Edge Cloud with Renewable Energy 173:5

Considering the multidimensional constraints of computing, communication, and storage re-
sources, Poularakis et al. [17] studied the optimization of joint service placement and request rout-
ing in dense edge computing networks, and the goal is to maximize the number of requests in
the edge cloud. Xu et al. [25] studied the service caching problem in the mobile service market
scenario. The optimization goal is to minimize the social cost of all network service providers, and
propose integer linear programming and random rounding algorithm to solve the resource shar-
ing problem between network service providers. To make full use of the storage and computing
power of the edge cloud, Ma et al. [13] studied the service caching and workload scheduling prob-
lems in edge computing and developed an iterative algorithm to solve them. The service caching
strategy is obtained based on Gibbs sampling, and then the workload scheduling problem is solved
by a heuristic algorithm. However, caching services and processing tasks in edge clouds consume
energy. When the energy of the edge cloud is insufficient, service caching and task processing
may be interrupted. Existing edge service caching solutions rarely consider the issue of renewable
energy. Therefore, it is crucial to address the problem of reducing energy consumption and op-
erational costs in edge computing while ensuring service quality and promoting the sustainable
development of the internet by fully utilizing renewable energy.

2.2 Service Caching with Renewable Energy Supply

All these works contribute a lot to service caching in edge cloud. However, most of the existing ser-
vice caching strategies aim to minimize service latency. In practical, service caching and process
consumes the energy of the edge cloud. Furthermore, according to the need of green computation,
the energy problem of the edge cloud is another concern of the researches. Thus, using renew-
able energy to supply the edge system has become a feasible solution [12, 16, 20]. For example,
the authors of Reference [15] discussed the solutions for task offloading of mobile devices under
the supply of renewable energy. Zhang et al. [28] studied the task offloading strategies under the
supply of renewable energy. Most of these researches focus on task offloading and resource man-
agement under the supply of renewable energy, and few works consider the service caching of
edge cloud under renewable energy supply.

For the optimization of renewable energy, Lyapunov optimization is widely used. For example,
Based on Lyapunov optimization, Guo et al. [5] consider an edge computing system with energy
harvesting devices, and design an energy collection and computing offloading algorithm. To study
the dynamic offloading and resource allocation in the multi-server edge cloud environment, Zhao
et al. [29] collect renewable energy to minimize the system energy consumption and computing
resources, and propose an online algorithm, which can schedule resources without predictive in-
formation.

Moreover, when the edge cloud is powered by renewable energy and such renewable energy is
the main energy, it is necessary to consider simultaneously the energy consumption brought by
service caching and the dynamic supply of renewable energy when designing the service caching
strategies. An ideal solution is to cache services that have more user request when sufficient supply
of renewable energy is available. However, the edge cloud system knows neither the size of supply
of renewable energy nor the energy consumption for caching, in the next time slot, Thus, it is
challenging to design the service caching under the supply of renewable energy.

3 SYSTEM MODEL AND PROBLEM DESCRIPTION

In this section, we introduce the immersive multimedia service caching framework in edge cloud
with renewable energy, as shown in Figure 1, which consists of immersive multimedia applications,
edge cloud, and remote cloud. The immersive multimedia applications connect to the edge cloud
through wireless link and request services for edge cloud. The edge cloud processes the services

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



173:6 M. S. Hossain et al.

Table 1. The Summary Table of Importation Notations

Notation Meaning

N The set of edge devices.

K The set of Metaverse services.

C The maximum storage capacity of edge cloud.

μk The computation amount required by service k .

ck The size of storage required by service k .

su
k

The size of task k .

x t
k

Indicating whether the service k is cached on the edge cloud.

dt
i,k

The number of request for service K by edge device i in time slot t .

fe The computing power of edge cloud.

fc The computing power of remote cloud.

γ The wireless transmission rate.

ω The backbone transmission rate.

τ The round-trip time to the remote cloud.

Et
C

The energy consumption of all services processed by edge cloud at time slot t .

Et
H

The renewable energy obtained at time slot t .

Bt The battery energy at time slot t .

Gt Grid power purchased at time slot t .

requested by edge devices and we assume that the power supply to the edge cloud comes from both
the renewable energy and the power grid, and the renewable energy is the main energy. Moreover,
the remote cloud has all the services requested by the edge device.

3.1 System Overview

The Metaverse provides emerging applications including ESports, immersive social media, virtual
training, and public or private digital places [11]. Thus applications require diverse immersive mul-
timedia services, for example, high-fidelity images or videos for virtual scenes and 3D point cloud
data for immersive interaction. These immersive multimedia services are time sensitive, requiring
critically low latency and high accuracy. To provide close computing resources, we suppose that
the edge cloud system has N of edge devices and is denoted by N = {1, 2, · · · ,N }. Each device con-
tains depth-sensing cameras (e.g., Microsoft Kinect) and Head Mounted Displays, and the camera
can capture depth data, which is called point cloud data. The metaverse services library requested
by the edge devices contains K immersive multimedia services, indexed by K = {1, 2, · · · ,K}.
Moreover, considering that different immersive multimedia services have different requirements
for storage and computation, we use ck to present the storage capacity required to cache service
k , whilewk represents the computing resource required for processing service k . Furthermore, for
ease of reference, we give the key notations in Table 1.

Although the edge cloud has storing and computing capacity to process the immersive multime-
dia service request by the edge devices, its resources in storing and computing are limited when
compared to the remote cloud, which makes it unable to cache all the multimedia services. Thus,
when the Metaverse service requested by the edge device is cached on the edge cloud, the edge

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



Immersive Multimedia Service Caching in Edge Cloud with Renewable Energy 173:7

device can obtain this service from the edge cloud. Otherwise, the edge devices needs to get the
service from the cloud. Therefore, we define a binary variable x t = (x t

1 ,x
t
2 , · · · ,x

t
K
) at time slot t ,

and the x t
k
∈ {0, 1} denote the caching decision of service k at time slot t . When x t

k
= 1 means that

service k is cached on the edge cloud at time slot t , and x t
k
= 0 means service k is not placed on the

edge cloud at time slot t . Furthermore, considering the limited storage and computing power of
edge cloud, we assume the storage capacity of edge cloud isC[bits]. Thus, the storage and comput-

ing capacity constraint can be expressed as
∑K

k=1 x
t
k
ck ≤ C . Moreover, we divide time into discrete

time slot t = 1, 2, · · · ,T , where T denotes the finite time horizon.

3.2 Energy Consumption Model

We first consider the energy consumption of service caching on the edge cloud. Specifically, the
energy consumption of edge cloud includes the following three parts, i.e., (i) static energy consump-
tion, (ii) immersive multimedia service processing energy consumption, and (iii) immersive multi-
media service caching energy consumption. Since the energy consumption of service caching and
processing is greater than the static energy consumption, thus, in this article, like Reference [14],
we ignored the static energy consumption of the edge cloud.

Immersive Service processing energy consumption: According to Reference [3], it is related to the
service processed and the CPU frequency assigned by the edge cloud. Assuming that the comput-
ing resource assigned by the edge cloud to the service k at time slot t is fe , the processing energy
consumption of service k at time slot t is as follows:

E
comp

k,t
(x t

k ) = νωk (fe )
2

Nt∑
i=1

x t
kd

t
k , (1)

where ν is unit energy consumption, and this parameter is relevant to the structure of edge cloud.
The dt

k
is the number of request for service k at time slot t , and Nt is the number of edge devices

covered by the edge cloud at time slot t .
Immersive service caching energy consumption: According to Reference [4], we assume that

the unit energy consumption when edge cloud stores immervice service related data is η, for
example, the 360◦ multimedia video content with the spherical feature. Thus, we can obtain the
service caching energy consumption of k as follows:

Ecach
k,t (x t

k ) = 1(x t
k = 1)skη, (2)

where 1{·} is the indicator function, i.e., when the formula in brackets is true, the function value is
1. Based on the analysis above, we can obtain that the total energy consumption of the edge cloud
at time slot t is as follows:

Et
C (x

t ) =

K∑
k=1

(
E

comp

k,t
(x t

k ) + E
cach
k,t (x t

k )
)
. (3)

Renewable energy supply: We give the energy harvesting model of renewable energy. Importing
renewable energy into edge computing can help realize green computation and reduce the energy
consumption of the power grid. However, due to the weather and other reasons, the arrival of
renewable energy is intermittent and unpredictable. Thus, we assume that the energy arriving at
the edge cloud at time slot t is εt and that εt is independent identically distributed. We define Emax

as the upper limit of renewable energy, in each time slot, part of the renewable energy reached
will be collected and stored in battery, thus the renewable energy collected at time slot t (i.e., Et

H
)

satisfied 0 ≤ Et
H
≤ εt .

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



173:8 M. S. Hossain et al.

However, when the supply of renewable energy is insufficient, the edge cloud needs to buy
energy from the power grid to maintain the service caching and processing. We assume that the
edge cloud purchase Gt of energy from the power grid in time slot t . In this work, consider the
renewable energy is free, and, thus, the energy purchased from the power grid should be minimized
as much as possible. Moreover, we assume that the renewable energy and the power grid energy
are all stored in the battery, and define the battery capacity of the edge cloud at time slot t as Bt .
Moreover, we assumed B0 = 0, Bt < +∞, and the maximum capacity of the battery is Bmax. Thus,
we can obtain the dynamic change of battery capacity with the time as follows:

Bt+1 = min{Bt − Et
C (x

t ) + Et
H +G

t ,Bmax}. (4)

Moreover, the energy consumption of the edge cloud should be smaller than the battery capacity
at this time slot t , that is, Et

C
(x t ) ≤ Bt . Based on the analysis above, we can see that the energy

status of the battery changes continuously along the time. To guarantee the stability of the edge
cloud system, according to Reference [29], we can change Equation (4) as the following long-term
energy supply and consumption conditions:

lim
T→+∞

1

T

T∑
t=1

E[Et
c (x

t ) − Et
H −Gt ] = 0. (5)

3.3 Immersive Service Latency Model

The immersive service latency can be divided into communication latency and computation la-
tency. The communication latency refers to the delay for the immersive service task transmission
through wireless link or wired link. In view of the fact that the mobile device and the edge cloud
is connected through wireless link, we define the wireless transmission rate is r1. Furthermore,
considering the wired link between the edge cloud and remote cloud, we define r2 and τ as back-
bone transmission rate and the round-trip time, respectively. Therefore, we can obtain that when
immersive service k is cached on the edge cloud (e.g., the real-time reasoning and high-fidelity
rendering the multimedia in the edge cloud), its communication latency is ck/r1; otherwise, its
latency is ck/r1 + (ck/r2 + τ ).

The computation latency that refers to the latency of the immersive service being processed at
edge cloud or remote cloud. We define fe and fc as the CPU frequency assigned to service k by
the edge cloud and the remote cloud, respectively. Therefore, we can obtain the latency of service
k being processed at the edge cloud and the remote cloud are ωk/fe and ωk/fc , respectively.

Based on the above analysis, we can obtain that when service k is cached on the edge cloud, the
service latency as follows:

Dt (x t ) =

⎧⎪⎪⎨⎪⎪⎩
∑K

k=1 d
t
k

(
ck

r1
+

ωk

fe

)
if x t

k
= 1,∑K

k=1 d
t
k

(
ck

r1
+

ck

r2
+

ωk

fc
+ τ

)
if x t

k
= 0.

(6)

3.4 Problem Formulation

In this work, we focus on two problems: (1) Immersive service placement problem: What kind of
services should be placed on the edge cloud? (2) Renewable energy harvesting problem: How much
renewable energy should be obtained? However, when the edge cloud is powered by renewable
energy, the design of service caching scheme is much more complicated that the traditional edge
cloud system for power supply of the power grid. This is because in this condition, we need to
process simultaneously the service demand information, the energy consumption information,
and the service latency information. Furthermore, the battery capacity, which is associated with

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



Immersive Multimedia Service Caching in Edge Cloud with Renewable Energy 173:9

the time, further complicates the service caching decision. Thus, the goal is to minimize the time-
averaged latency of all service, which can be formulated as follows:

P1 : min
x t ,Et

H

lim
T→∞

1

T

T∑
t=1

E[Dt (x
t )] (7)

s .t . C1 :

K∑
k=1

x tck ≤ C .

C2 : 0 ≤ Et
H ≤ εt , t ∈ T

C3 : lim
T→+∞

1

T

T∑
t=1

E[Ec (x
t )t − Et

H −Gt ] = 0

C4 : x t ∈ {0, 1}.t ∈ T ,k ∈ K,

where C1 guarantees that the services cached should not exceed the maximum storing capacity of
the edge cloud. C2 indicates the limitation obtain of renewable energy, while C3 ensures the long
term stability of energy supply and consumption of edge cloud system. C4 shows that whether
the service is cached is a zero-one indicator.

However, for the solution of the above problem, following challenges exist:

— Since the battery power is dynamic, the current battery power is related to the previous
power, the renewable energy supply and the energy consumption. Thus, the optimization
problem P1 results in the coupling of in time domain, i.e., the status at all the time slots
is required to solve the problem. However, we can hardly know the status at all the time
slots. To address this challenge, we utilize the Lyapunov optimization technology to convert
the long-term constraints problem to a series of real-time minimization problem, and such
optimization can be solved without knowing the information of future time slots. Thus, in
this article, with Lyapunov optimization method, we realize the decoupling of optimization
problem in time domain.

— For the number of immersive multimedia service demand dt
k

, most of existing works assume
that the service demand of the edge device is known (e.g., follow specific distribution) or can
be obtained through well-studied learning method (e.g., deep learning methods). However,
when the service provider is making caching decisions at time slot t , it is very difficult to
predict precisely the number of service demand at time slot t . Moreover, in a period, the
service demand of the user may change along with the interest of such user. Thus, in this
article, we will utilize the MAB to learn the number of demand of mobile device online.

4 ONLINE SERVICE CACHING UNDER RENEWABLE ENERGY SUPPLY

In this section, we give the detailed introduction of OSCRE algorithm. Specifically, we first utilize
the Lyapunov optimization to decouple the renewable energy supply problem into a one-time-slot
optimization problem. Then, we design a online algorithm for service caching.

4.1 Problem Transformation Based on Lyapunov Optimization

For the solution of the optimization problem P1, a critical challenge is the randomness of the
supply of renewable energy. To address this challenge, we utilize the disturbance Lyapunov opti-
mization to solve the problem P1, that is, to decouple the P1 into an optimization problem that
can be solved separately at each time slot. We first model the change in battery power as a queue.

Then, we define the disturbance battery level of the edge cloud to be B̃t = Bt − θ , where θ is the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



173:10 M. S. Hossain et al.

disturbance power parameter. Furthermore, we can define Lyapunov function as follows:

L(B̃t ) =
1

2
(B̃t )2 =

1

2
(Bt − η)2. (8)

Specifically, the Lyapunov function represents the “congestion level” in the energy queue. To en-

sure the stability of the energy deficit queue, we give the Lyapunov drift Δ(B̃t ) as follows:

Δ(B̃t ) = E[L(B̃(t + 1)) − L(B̃t )|B̃t ], (9)

where Δ(B̃t ) is the one-time-slot expected changes about Lyapunov function, and the smaller Δ(B̃t ),
the stabler battery queue. Bringing Equation (8) into Equation (9), we can obtain

Δ(B̃t ) ≤ B + E[B̃t (Et
C (x

t ) − Et
H −Gt )], (10)

where B = 1
2

(
(Emax +Gmax)2 + (Emax

C
)2
)
, Emax, and Emax

C
are the upper bounds of Et

H
and Et

C
(x t ),

respectively, and Gmax is the upper bound of the grid energy.
According to Lyapunov optimization theory, we define Lyapunov drift-plus-penalty as follows:

Δ(B̃t ) +VE[Dt (x t )|B̃t ] ≤ B + E[VDt (x t ) + B̃t (Et
H +G

t − Et
C (x

t ))|Bt ], (11)

where V is a constant parameter and used to adjust the tradeoff between the battery capacity
and the service caching latency. Furthermore, by minimizing the upper bound of the Lyapunov
drift-plus-penalty function, we can solve the optimal service caching strategy separately for each
time slot. In other words, we can convert the original optimization problem P1 into the following
optimization problem P2:

P2 : min
x t ,Et

H

VDt (x t ) + B̃t (Et
H +G

t − Et
C (x

t )) (12)

s .t . C1,C2,C4.

Thus, with the above analysis, we transform the long-term constraint of battery capacity into
the per-time-slot problem. In each time slot, we need only to solve the optimization problem P2 to
get the optimal solution, and P2 only needs the information of the current time as input. Details
of the algorithm are as shown in Algorithm 1. Specifically, the line 2 of the algorithm first observe
the battery capacity and the supply of renewable energy at the current time slot. In line 3, based
on the information observed, solve the P2 to obtain the optimal service caching and the collection
of renewable energy. Finally, in line 4, based on the energy collection and the energy consumed,
the algorithm updated the status of the battery capacity of the edge cloud and step to the next time
slot.

ALGORITHM 1: The OSCRE Algorithm.

Input: Nt , ck , ωk , r1, r2, τ , and C
Output: Service caching scheme xt and energy harvesting decision Et

H
.

1: for t from 0 to T-1 do

2: Observe the battery capacity Bt , renewable energy εt ;

3: In time slot t , by solving the optimization problem P2 obtain the optimal energy harvesting Et
H

and

service caching strategy xt ;

4: Update battery queue Bt+1 = Bt − Et
C
(xt ) + Et

H
+Gt .

5: end for

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



Immersive Multimedia Service Caching in Edge Cloud with Renewable Energy 173:11

Then, we give the solution of the optimization problem P2. We first analyze the objective func-
tion and can get the following function:

VDt (x t ) − B̃t (Et
C (x

t ) − Et
H −Gt ) = VDt (x t ) − B̃tEt

C (x
t ) + B̃t (Et

H +G
t ). (13)

From the above analysis, we can see thatVDt (x t )−B̃tEt
C
(x t ) is an optimization problem associated

with service caching and B̃t (Et
H
+Gt ) is an optimization problem relevant to the renewable energy

harvesting. Therefore, we can decompose the optimization problem P2 into two sub-problems, i.e.,
(i) energy harvesting problem to determine Et

H
and (ii) service caching problem to determine x t .

We first consider the renewable energy harvesting, as shown in the following optimization
problem P3:

P3 : min
Et

H

B̃t (Et
H +G

t ) (14)

s .t . C2.

For the above optimization problem P3, using linear programming algorithm, we can obtain the

optimal energy harvesting as (Et
H
)∗ = εt

1(B̃t ≤ 0). From the above formula, we can see that when
Bt < θ , all the renewable energy at the current time slot is accepted and the battery will be
recharged. When Bt > θ , there is no need to collect renewable energy. Moreover, when the col-
lected renewable energy is insufficient, purchase the electricity required to meet the current energy
consumption from the power grid. Next, we give the solution of service placement problem.

4.2 Data-aware Combinatorial UCB Online Service Caching Algorithm

According to the above discussion, the immersive multimedia service caching problem can be
solved by the following optimization problem P4:

P4 : min
x t

K∑
k=1

(VDt
k (x

t ) − B̃tEt
C (x

t )) (15)

s .t . C1,C4.

Since it is difficult to obtain the number of service requests in advance, in this work, we learn user
requests through online learning.

4.2.1 Combinatorial MAB Model. The service caching problem can be formulated as a MAB
problem, and each service can be regard as an arm and the service caching is is equivalent to
the arm being selected. However, compared with the traditional MAB problem, the online service
caching problem has the following two differences: (i) The edge cloud can cache multiple services
at one time and need to meet storage resource constraints. Thus, this is a budgeted combinatorial
MAB problem. (ii) We need to consider the impact of service attributes on the algorithm. Thus,
we design a D-CUCB service caching algorithm, as shown in Figure 2. Specifically, first, we obtain
the estimated service caching metric based on Lyapunov optimization. Then, we select the service
according to the estimated service caching metric, and each time we select the service with the
smallest metric for caching until it reaches the edge cloud storage capacity.

4.2.2 Lyapunov-based Immersive Service Caching Metric. To solve the optimization problem P4,
we first define Lyapunov-based immersive multimedia service caching metric θk (t) as follows:

θk (t) = VD
t
k (x

t
k ) − B̃tEt

C,k (x
t
k ). (16)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



173:12 M. S. Hossain et al.

Fig. 2. Illustration of data-aware combinatorial UCB(D-CUCB) caching algorithm.

From Equation (16), we can see that whether the service is cached is associated with the service
caching latency, the disturbance power of battery, and the service caching energy consumed. Fur-
thermore, we define nk (t) to be the times of service k being chosen at time slot t as follows:

nk (t) =

{
nk (t − 1) + 1 if k ∈ It

nk (t − 1) if k � It

, (17)

where It is the set of the chosen service at time slot t . In the initialization, we set nk (0) = 0.
Then, we denote θ̄k (t) as the edge cloud obtain average Lyapunov-based service caching metrics

about service k up to time slot t , as follows:

θ̄k (t) =
θ̄k (t − 1)nk (t − 1) + θk (t)

nk (t − 1) + 1
. (18)

Moreover, we can utilize mean value θ̄k (t) as the estimated expected reward and the smaller the
estimated expected reward, the more effective to reduce the delay. In addition to calculate the
estimated expected reward, we also need to calculate the confidence. Based on the UCB algorithm,

we utilize the
√

2 log(t )
nk (t−1) as confidence.

4.2.3 Service Caching Decision. We consider the relationship among the size of service, com-
putation capacity required by the service, and the selection of services. For example, when the
amount of computation required by a service is large, the service latency in the edge cloud pro-
cessing is smaller than that in the local device, so it tends to cache the service. Similarly, when the
size of the service is smaller, the delay of offloading the service to the edge cloud is smaller, and
the cache effect is better. Thus, we define the data-aware parameter δk as follows:

δk = l1
1

ck
+ l2ωk (19)

where l1 and l2 is a weight parameter greater than 0. Specifically, we can obtain the Lyapunov-based

estimated service caching metric (i.e., the criteria for the choice of service caching) of service k at
time slot t as follows:

θ̂k (t) = θ̄k (t − 1) − ρ

√
2δk log(t)

nk (t − 1)
, (20)

where ρ is a weighting parameter that represents the weight parameter of exploration and exploita-
tion. Specifically, θ̄k (t −1) is the exploitation part, that is, the service whose caching brings smaller
service latency will be cached. The second part is the exploration part, that is, the service with less
times of exploration will be cached. Thus, the algorithm realizes the balance between exploration

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



Immersive Multimedia Service Caching in Edge Cloud with Renewable Energy 173:13

and exploitation. Moreover, we denote the service chosen at time slot t to be k∗t , as follows:

k∗t = arg min
k ∈K

θ̂k (t). (21)

ALGORITHM 2: D-CUCB Service Caching Algorithm

Input: B̃t , V , K and C
Output: Service caching decision at time slot t : xt

k
1: In each time slot t
2: if Any service k ∈ K has not been selected then

3: select service k to cache in the edge cloud

4: update nk (t) = nk (t − 1) + 1

5: update the average Lyapunov-based service caching metric θ̄k (t) =
θ̄k (t−1)nk (t−1)+θk (t )

nk (t−1)+1
6: else

7: Calculate the Lyapunov-base estimated service caching metrics of each candidate services k ∈ K

θ̂k (t) = θ̄k (t) − ρ
√

2δk log(t )
nk (t−1)

, and set It = ∅

8: while
∑

k∗
t
∈It

ck∗
t
≤ C do

9: Select the service k according to the minimum Lyapunov-base estimated service caching metric

k∗t = arg min
k ∈(K\It )

θ̂k (t)

10: add service k∗t into It , i.e., It = It + {k∗t }
11: update nk (t) = nk (t − 1) + 1

12: update θ̄k (t) =
θ̄k (t−1)nk (t−1)+θk (t )

nk (t−1)+1
13: end while

14: end if

Moreover, the edge cloud can cache multiple services each time slot. In this work, we use the
greedy algorithm to select, i.e., according to Lyapunov-based estimated service caching metric,
each time slot will select services in a greedy way until reaching the edge clouid storing capacity.
Specifically, the service caching algorithm is as shown in Algorithm 2. From line 2 to 6, the algo-
rithm is in the initialization stage, and each service is cached once to obtain the Lyapunov-base
estimated service caching metrics and the number of times selected. In line 7, the algorithm calcu-
lates the Lyapunov-base estimated service caching metrics of each candidate services. From line
8 to 10, the algorithm constantly select the service with the minimum Lyapunov-based estimated
service caching metric to add the caching subset until reach the edge cloud caching capacity. From
line 11 to line 12, the algorithm update the corresponding average Lyapunov-base service caching
metrics and the number of times selected for each service accordingly.

4.3 Theoretic Analysis

Theorem 4.1. The OSCRE algorithm can achieves the following bound on the time-averaged service

latency:

lim
T→∞

1

T

T∑
t=1

E[Dt (x
t )] ≥

B

V
+ D∗, (22)

and we can also obtain that the battery queue of the edge cloud tends to be stable, that is, there is

ε > 0, which makes Equation (23) is true,

lim
T→∞

1

T

T∑
t=1

E[B̃t ] ≥
B

δ
+
V (Dmax − D∗)

δ
, (23)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



173:14 M. S. Hossain et al.

where D∗ is the optimal value of P2, Dmax is the maximum service lantency, and δ is a constant.

Based on the above theorem, we can obtain that when the weight factor V increases, the solution of

P2 is infinitely close to P1. However, when V increases, the battery queue also grow, and the system

stability is affected. Thus, a reasonableV can balance the delay and queue length. Thus, we need choose

a good V to achieve the tradeoff between delay and queue length. The detailed proof is give in the

Appendix A.1.

Now we give the regret analysis of the D-CUCB algorithm. Since the number of user requests
is independent, we assume that the service caching metric is also independent and identically
distributed. We define the expectation of θk (t) as E[θk (t)] = μk and define the optimal service
caching policy as μ∗ = min

k ∈K
μk (t). Thus, we can obtain the expected learning regret Rt (i.e., the

gap between the currently selected cache service expected metric and the optimal cache expected
metric) at time slot t as follows:

E(Rt ) =
∑
k ∈It

E(nk (t))(θk (t) − μ∗). (24)

Based on this, the expected cumulative learning regret RT of the algorithm as RT =
∑T

t=1 E(Rt ).

Theorem 4.2. Under D-CUCB algorithm, the upper bound of the E[Rt ] is as follows:

E[Rt ] ≤

K∑
k=1

8ρ2δk log t

Δk
+O(1), (25)

where Δk = θk (t) − μ∗; Appendix 2 shows the detailed proof.

5 PERFORMANCE ANALYSIS

In this section, we evaluate the performance of OSCRE scheme. First, we introduce the experi-
mental environment and the specific parameter settings. Then, we analyze the performance of the
algorithm and introduce several comparison algorithms as the baseline. Finally, we discuss and
evaluate the impact of different parameters on the performance of the algorithm.

5.1 Experiment Setup

In this experiment, we consider the renewable energy enhanced edge computing framework that
includes edge cloud and metaverse service users. The edge cloud is deployed near to the wireless
access network and the mobile devices are connected to the edge cloud through wireless channel.
Consider a base station with an edge cloud server, and the transmission rate of the wireless network
r1 is 100 Mbps, and the transmission rate of the core network r2 is 1 Gbps. For the computing
power, we set the maximum computing power of the edge cloud fe is 10 GHz, and the maximum
computing power of the remote cloud fc is 50 GHz. Moreover, the round-trip time is 500 ms. For
the immersive multimedia services, we use the real-world MovieLens dataset [8], which includes
20 million ratings applied to 27,000 movies by 138,000 users to validate the efficiency of the A3C-
based mobile edge caching policy. We assume that every movie rating is an immersive service
request, since the rating data exhibits similar access patterns to those of content request data [19].
More specifically, we assume that every movie comment in our dataset is a downloading/streaming
request, and the time when the comment is posted is considered the time when the request is
initiated. Moreover, we set the number of time slots in the experiment to 300, and for each time
slot run 100 experiments and take the average value. The specific parameters are shown in Table 2.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



Immersive Multimedia Service Caching in Edge Cloud with Renewable Energy 173:15

Table 2. Main Parameter Setting of the Experiment

Notation meaning

the wireless transmission rate, r 100 Mbps
the backbone transmission rate, ω 1 Gbps
computing power of edge cloud, fe 10 GHz
the storage capacity of edge cloud, C 500 GB
computing power of cloud, fc 50 GHz
computation amount required by service k , μk [0.1,0.5] GHz/task
the size of service k , ck [20,100] GB
the number of services, K 20
the round-trip time to remote cloud, τ 0.5 s
Lyapunov parameter, V 0.5

5.2 Performance Analysis

Through Lyapunov optimization (for simplicity, write as Lya), the original long-time optimization
problem (i.e., P1) is transformed into a problem that can be solved separately at each time. After
obtaining the optimal energy harvesting scheme, different algorithms can be used to solve the
cache decision. To verify the performance of the OSCRE algorithm, for service caching decision,
we compared with the following cache algorithms:

— Lya with Random algorithm: This randomly selects some services to cache on the edge cloud
in each time slot, until reach the edge cloud storage capacity.

— Lya with Softmax algorithm: This is an improvement of ε-greedy cache algorithm. The ε-
greedy cache algorithm exploits the optimal service with the probability of 1 − ε and ex-
plores with the probability of ε . The Lya with Softmax greedy algorithm selects according
to the rules of Softmax, so that some obviously poor service can be excluded, which reduces
unnecessary exploration.

— Lya with UCB algorithm: This randomly selects a group of services within the edge cloud
storage capacity and selects the optimal arm to replace one of them through traditional UCB
algorithm.

— Lya with CUCB algorithm: After Lyapunov optimization, we adopt the CUCB algorithm
for the service caching decision. The CUCB algorithm is an improvement of the UCB
algorithm, i.e., in each time slot, a subset of arms with large reward value will be se-
lected, but compared with the OSCRE algorithm, the data-awareness of service is not
considered.

We utilize the learning regret to measure the convergence of the algorithm. The learning regret
indicates the gap between the currently selected cache service metric and the optimal cache metric,
i.e., the expected loss caused by not choosing the best service. We define the learning regret of the
algorithm as

∑
k ∈Lt

E[θk (t)] −E[θk (t)
∗], where ∗ is the optimal service and Lt is the set of service

selected in time slot t . Based on this, we define the cumulative learning regret as

t∑
τ̃=1

∑
k ∈Lτ̃

E[θk (τ̃ )] − E[θk (τ̃ )
∗]. (26)

Figure 3 shows the change curve of learning regret of five algorithms. We observe that when
t < 20, it is the initial stage of the algorithms, that is, each immersive multimedia service is cached
once to obtain the reward, and when t > 100, the learning regret slowly tends to stabilize. In

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



173:16 M. S. Hossain et al.

Fig. 3. Learning regret.

Fig. 4. Cumulative learning regret.

Figure 4, we know that the cumulative learning regret of the five algorithms shows a linear growth
trend, which means that the learning regret of each time slot changes little with time. Moreover,
we can see that, compared with other algorithms, when the algorithms converges, the curve fluctu-
ation of OSCRE algorithm is small, and the learning regret is the lowest. The Lya with the Random
algorithm randomly selects the services to be cached in each time slot, regardless of the impact of
service requests and other factors, so the learning regret and cumulative learning regret are the
highest. The Lya with the UCB algorithm only selects one optimal service in each time slot, so
its performance is general. The Lya with Softmax has a certain exploration rate, so the learning
regret value of the algorithm fluctuates greatly. The Lya with CUCB has relatively fast and stable
convergence speed but does not consider the influence of the service, and therefore it is not op-
timal in service caching scenario. Thus, the OSCRE algorithm is better than caching benchmark
algorithms in convergence.

Furthermore, we evaluate the Lyapunov-based average service caching metric under different
algorithms, as shown in Figure 5. From the figure, we can see that, in the initial stage, the average
service caching metric of the five algorithms fluctuate for a short time, then gradually decrease
and tend to be stable. Among the five algorithms, the average service caching metric of ORCRE
algorithm is the smallest, which shows that the optimization effect of ORCER algorithm is better
than these baseline algorithms.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



Immersive Multimedia Service Caching in Edge Cloud with Renewable Energy 173:17

Fig. 5. Lyapunov-based immersive service caching metrics.

Fig. 6. Time average delay of five algorithms.

Then, to further evaluate the overall performance of the OSCRE algorithm, we compared the
OSCRE with the following three benchmarks:

— Myopic with D-CUCB: It utilizes the D-CUCB algorithm to select the service with small la-
tency to cache in the edge cloud, without considering the energy collection in the future.

— Lya without D-CUCB: In this algorithm, according to the supply of renewable energy, the
edge cloud uses Lyapunov algorithm and UCB to cache the service instead of D-CUCB
algorithm.

— Myopic without D-CUCB: In this algorithm, neither the energy collection at the future time
nor the service caching scheme using D-CUCB algorithm are considered, and the service is
cached randomly only when the edge cloud capacity constraint is satisfied.

Since Myopic with D-CUCB and Myopic without D-CUCB algorithms do not use Lyapunov op-
timization to transform the problem, and the service caching metric of the algorithm based on
Lyapunov optimization can no longer be used to evaluate the algorithm performance, and, thus,
we use the service latency under the condition of meeting the long-term energy consumption
constraint.

As shown in Figure 6, when the time slot t < 50, the algorithm is in the initialization stage, and
the four algorithm curves fluctuate to varying degrees. With the increase of time, it gradually tends
to be stable. Moreover, we can see that compared with other algorithms, the OSCRE algorithm has

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



173:18 M. S. Hossain et al.

Fig. 7. The impact of edge cloud storage capacity on the Lyapunov-based service caching metric.

Fig. 8. The impact of edge cloud storage capacity on the learning regret.

the least service latency, and this shows that OSCRE algorithm has greatly improved the system
performance.

5.3 Impact of Parameters on System Performance

Impact of edge cloud storage capacity on OSCRE: In this experiment, we set the storage capacity
required for the service to be in the range of [20, 100] GB, and the change range of edge cloud
capacity is 300GB to 600 GB. As shown in Figure 7, with the increase of edge cloud storage capacity,
the Lyapunov-based estimated service caching metric of the algorithms becomes smaller. This
is because as the storage capacity of the edge cloud increases, the edge cloud can cache more
services, which greatly saves the transmission delay and computing energy consumption. Thus,
the Lyapunov-based estimated service caching metric is reduced.

Furthermore, Figure 8 describes the impact of edge cloud storage capacity on the learning re-
gret of the algorithms. We observe that with the storage capacity of the edge cloud increases, the
learning regret of the algorithms also increase. This can be explained that the edge cloud can cache
more services, and the learning regret of algorithms is related to the number of cached services.
Thus, increasing the edge cloud storage capacity can improve the performance of the algorithm.
Moreover, from Figure 7 and Figure 8, we can also conclude that, compared with the other four al-
gorithms, the ORCRE algorithm is superior to other algorithms under different edge cloud storage
capacity.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



Immersive Multimedia Service Caching in Edge Cloud with Renewable Energy 173:19

Fig. 9. The impact of number of services on the Lyapunov-based service caching metric.

Fig. 10. The impact of parameter V on system average energy consumption.

Impact of services number on OSCRE: In this experiment, we set the number of service K from
10 to 30 for simulating the number of services from less to more. Figure 9 shows that with the
increase of the number of services, the Lyapunov-based estimated service caching metric increases
gradually. This is because when the number of services increases, more services will be processed
in the edge cloud or remote cloud, and the delay and energy consumption of the system will also
increase. For example, when the number of services k = 30, the Lyapunov-based estimated service
caching metric of OSCRE is the largest. Moreover, when the number of services increases by 20,
the service caching metric of the algorithm increases by 79.31%; this indicate that the number of
services has a great impact on the system performance. Thus, with the number of service increases,
if we ensure the performance of the algorithm remains unchanged, then we need to increase the
storage capacity and computing resources of the edge cloud.

Impact of different V on OSCRE: We analyze the impact of the V in Lyapunov optimization on
the system energy consumption and service latency, as shown in Figure 10 and Figure 11. From
Figure 10, we can see that the higher the value ofV , the greater the energy consumption. This can
be explained as the larger theV value, the more the system pays attention to the latency. Figure 11
shows the influence of different V on service delay, and we can see that that the larger the value
ofV , the smaller the system delay. Moreover, from the above discussion, we can conclude that the
tradeoff between system delay and energy consumption queue can be achieved by adjusting the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



173:20 M. S. Hossain et al.

Fig. 11. The impact of parameter V on service average latency.

value of V , and when the battery energy is sufficient, we can reduce the value of V to achieve a
smaller system delay, which is consistent with the conclusion of Theorem 1.

6 CONCLUSION

In this article, based on the analysis of renewable energy and service request patterns, we formulate
the service caching and renewable energy harvesting problem under unknown service demand.
To solve this problem, we propose the OSCRE algorithm using Lyapunov optimization and online
learning. Finally, we evaluate the OSCRE algorithm, and our studies show that, when compared
to other algorithms, the OSCRE algorithm can effectively minimize service latency while meeting
long-term energy consumption constraints.

APPENDIX

A RESEARCH METHODS

A.1 Proof of Theorem 1:

First, we give the proof of Equation (22). To prove it, we first give the following lemma. According
to Theorem in Reference [29], we can obtain that, for any φ > 0, P2 exists a stationary random
strategy π , which can make Eπ ,t

H
and xπ ,t satisfy the following inequality:

E[Dt (xπ ,t )] ≤ D∗ + φ E[Eπ ,t
H
+Gπ ,t − Et

C (x
π ,t )] ≤ φ. (27)

Since the algorithm can obtains the optimal solution of each time slot, we can choose among all
possible decisions that can make P2 minimization strategy, including the above strategy π . Thus,
we bring Equation (27) into Equation (11), and considering that the strategy π does not affect the
battery energy queue, we can get the following equation:

Δ(B̃t ) +VE[Dt (xπ ,t )|B̃t ]

≤ B + E[VDt (xπ ,t ) + B̃t (Et
H +G

π ,t − Et
C (x

π ,t ))|Bt ]

≤ B +V (D∗ + φ) + φB̃t .

(28)

Making φ → 0, we can obtain that

Δ(B̃t ) +VE[Dt (xπ ,t )|B̃t ] ≤ B +VD∗. (29)

Taking the expectation on both sides of Equation (29), summing within the range of t ∈

{0, 1, 2, · · · , t − 1}, and dividing both sides of the result by T , we can obtain the following

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



Immersive Multimedia Service Caching in Edge Cloud with Renewable Energy 173:21

formula:

V

T

T−1∑
t=0

E[Dt (xπ ,t )] ≤ B +VD∗ −
1

T
E[L(B̃t ) − L(B̃0)]. (30)

Since L(B̃0) = 0, L(B̃t ) ≥ 0, we make T → ∞ and divide both sides of Equation (30) by V , and
Equation (22) is proved.

Next, we analyze the stability of the battery queue; in each time slot, there exists a δ > 0 and
ϕ(δ ), and a policy Eτ ,t

H
and xτ ,t , and we can satisfy the following equation:

E[Dt (xτ ,t )] = ϕ(δ ) E[Eτ ,t
H
+Gτ ,t − Et

C (x
τ ,t )] ≤ −δ . (31)

Bringing Equation (31) into Equation (11), we can obtain that

Δ(B̃t ) +VE[Dt (xτ ,t )|B̃t ] ≤ B +Vϕ(δ ) − ΔB̃t . (32)

Taking the expectation on both sides of Equation (32), summing within the range of t ∈

{0, 1, 2, · · · , t − 1}, and dividing both sides of the result by T , we can get the following formula:

1

T

T−1∑
t=0

E[B̃t ]

≤
B +V

(
ϕ(δ ) − 1

T

∑T−1
t=0 E[D

t (xτ ,t )] − 1
T
E[L(B̃t ) − L(B̃0)]

)
δ

≤
B

δ
+
V (Dmax − D∗)

δ
.

(33)

Let the above formula t → ∞, we can prove Equation (31).

A.2 Proof of Theorem 2:

According to the Theorem 1 in Reference [2], we can obtain that the upper bound of the expected
value of the number of times the service is selected as follows:

E[nk (t)] ≤
8ρ2δk log t

Δ2
k

+M, (34)

where M is a constant. Then, bringing Equation (34) into the regret value of algorithm, we can
obtain

E[Rt ] =

K∑
k=1

E[nk (t)]Δk ≤

K∑
k

(
8ρ2δ log t

Δk
+M) ≤

8ρ2δk log t

Δ2
k

+M . (35)

From Equation (35), we can conclude that the regret of the ORCRE algorithm has upper bound.
Thus, the ORCRE algorithm is convergence.

REFERENCES

[1] Kazi Masudul Alam, Abu Saleh Md Mahfujur Rahman, and Abdulmotaleb El Saddik. 2013. Mobile haptic e-book system

to support 3D immersive reading in ubiquitous environments. ACM Trans. Multimedia Comput. Commun. Appl. 9, 4,

Article 27 (Aug. 2013), 20 pages.

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of the multiarmed bandit problem. Mach.

Learn. 47, 2 (2002), 235–256.

[3] Lixing Chen, Jie Xu, Shaolei Ren, and Pan Zhou. 2018. Spatio–temporal edge service placement: A bandit learning

approach. IEEE Trans. Wireless Commun. 17, 12 (2018), 8388–8401.

[4] Penglin Dai, Zihua Hang, Kai Liu, Xiao Wu, Huanlai Xing, Zhaofei Yu, and Victor Chung Sing Lee. 2020. Multi-armed

bandit learning for computation-intensive services in MEC-empowered vehicular networks. IEEE Trans. Vehic. Technol.

69, 7 (2020), 7821–7834.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.



173:22 M. S. Hossain et al.

[5] Mian Guo, Qirui Li, Zhiping Peng, Xiushan Liu, and Delong Cui. 2022. Energy harvesting computation offloading

game towards minimizing delay for mobile edge computing. Comput. Netw. 204 (2022), 108678.

[6] Yixue Hao, Min Chen, Hamid Gharavi, Yin Zhang, and Kai Hwang. 2020. Deep reinforcement learning for edge service

placement in softwarized industrial cyber-physical system. IEEE Trans. Industr. Inf. 17, 8 (2020), 5552–5561.

[7] Yixue Hao, Min Chen, Long Hu, M. Shamim Hossain, and Ahmed Ghoneim. 2018. Energy efficient task caching and

offloading for mobile edge computing. IEEE Access (2018), 11365–11373.

[8] F Maxwell Harper and Joseph A. Konstan. 2015. The movielens datasets: History and context. ACM Trans. Interact.

Intell. Syst. 5, 4 (2015), 1–19.

[9] Yuna Jiang, Jiawen Kang, Dusit Niyato, Xiaohu Ge, Zehui Xiong, Chunyan Miao, and Xuemin Shen. 2023. Reliable

distributed computing for metaverse: A hierarchical game-theoretic approach. IEEE Trans. Vehic. Technol. 72, 1 (2023),

1084–1100. https://doi.org/10.1109/TVT.2022.3204839

[10] Conor Keighrey, Ronan Flynn, Siobhan Murray, and Niall Murray. 2021. A physiology-based QoE comparison

of interactive augmented reality, virtual reality and tablet-based applications. IEEE Trans. Multimedia 23 (2021),

333–341.

[11] Uman Khalid, Muhammad Shohibul Ulum, Ahmad Farooq, Trung Q. Duong, Octavia A. Dobre, and Hyundong Shin.

2023. Quantum semantic communications for metaverse: principles and challenges. IEEE Wireless Commun. 30, 4

(2023), 26–36. https://doi.org/10.1109/MWC.002.2200613

[12] Meng-Lin Ku, Wei Li, Yan Chen, and K. J. Ray Liu. 2015. Advances in energy harvesting communications: Past, present,

and future challenges. IEEE Commun. Surv. Tutor. 18, 2 (2015), 1384–1412.

[13] Xiao Ma, Ao Zhou, Shan Zhang, and Shangguang Wang. 2020. Cooperative service caching and workload scheduling

in mobile edge computing. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’20). IEEE,

2076–2085.

[14] Yiming Miao, Yixue Hao, Min Chen, Hamid Gharavi, and Kai Hwang. 2020. Intelligent task caching in edge cloud via

bandit learning. IEEE Trans. Netw. Sci. Eng. 8, 1 (2020), 625–637.

[15] Minghui Min, Liang Xiao, Ye Chen, Peng Cheng, Di Wu, and Weihua Zhuang. 2019. Learning-based computation

offloading for IoT devices with energy harvesting. IEEE Trans. Vehic. Technol. 68, 2 (2019), 1930–1941.

[16] Omur Ozel, Kaya Tutuncuoglu, Jing Yang, Sennur Ulukus, and Aylin Yener. 2011. Transmission with energy harvesting

nodes in fading wireless channels: Optimal policies. IEEE J. Select. Areas Commun. 29, 8 (2011), 1732–1743.

[17] Konstantinos Poularakis, Jaime Llorca, Antonia M. Tulino, Ian Taylor, and Leandros Tassiulas. 2020. Service placement

and request routing in MEC networks with storage, computation, and communication constraints. IEEE/ACM Trans.

Netw. 28, 3 (2020), 1047–1060.

[18] Samuel O. Somuyiwa, András György, and Deniz Gündüz. 2018. A reinforcement-learning approach to proactive

caching in wireless networks. IEEE J. Select. Areas Commun. 36, 6 (2018), 1331–1344.

[19] Chuan Sun, Xiuhua Li, Junhao Wen, Xiaofei Wang, Zhu Han, and Victor C. M. Leung. 2023. Federated deep reinforce-

ment learning for recommendation-enabled edge caching in mobile edge-cloud computing networks. IEEE J. Select.

Areas Commun. 41, 3 (2023), 690–705.

[20] Sennur Ulukus, Aylin Yener, Elza Erkip, Osvaldo Simeone, Michele Zorzi, Pulkit Grover, and Kaibin Huang. 2015.

Energy harvesting wireless communications: A review of recent advances. IEEE J. Select. Areas Commun. 33, 3 (2015),

360–381.

[21] Xiaoyu Xia, Feifei Chen, Qiang He, John Grundy, Mohamed Abdelrazek, and Hai Jin. 2020. Online collaborative data

caching in edge computing. IEEE Trans. Parallel Distrib. Syst. 32, 2 (2020), 281–294.

[22] Han Xiao, Changqiao Xu, Yunxiao Ma, Shujie Yang, Lujie Zhong, and Gabriel-Miro Muntean. 2021. Edge computing-

assisted multimedia service energy optimization based on deep reinforcement learning. In Proceedings of the IEEE

Global Communications Conference (GLOBECOM’21). 1–6.

[23] Jie Xu, Lixing Chen, and Shaolei Ren. 2017. Online learning for offloading and autoscaling in energy harvesting mobile

edge computing. IEEE Trans. Cogn. Commun. Netw. 3, 3 (2017), 361–373.

[24] Jie Xu, Lixing Chen, and Pan Zhou. 2018. Joint service caching and task offloading for mobile edge computing in dense

networks. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’18). IEEE, 207–215.

[25] Zichuan Xu, Lizhen Zhou, Sid Chi-Kin Chau, Weifa Liang, Qiufen Xia, and Pan Zhou. 2020. Collaborate or separate?

Distributed service caching in mobile edge clouds. In Proceedings of the IEEE Conference on Computer Communications

(INFOCOM’20). IEEE, 2066–2075.

[26] Shizhe Zang, Wei Bao, Phee Lep Yeoh, Branka Vucetic, and Yonghui Li. 2019. Filling two needs with one deed: Combo

pricing plans for computing-intensive multimedia applications. IEEE J. Select. Areas Commun. 37, 7 (2019), 1518–1533.

[27] Guanglin Zhang, Wenqian Zhang, Yu Cao, Demin Li, and Lin Wang. 2018. Energy-delay tradeoff for dynamic offload-

ing in mobile-edge computing system with energy harvesting devices. IEEE Trans. Industr. Inf. 14, 10 (2018), 4642–

4655.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.

https://doi.org/10.1109/TVT.2022.3204839
https://doi.org/10.1109/MWC.002.2200613


Immersive Multimedia Service Caching in Edge Cloud with Renewable Energy 173:23

[28] Jing Zhang, Jun Du, Yuan Shen, and Jian Wang. 2020. Dynamic computation offloading with energy harvesting devices:

A hybrid-decision-based deep reinforcement learning approach. IEEE IoT J. 7, 10 (2020), 9303–9317.

[29] Fengjun Zhao, Ying Chen, Yongchao Zhang, Zhiyong Liu, and Xin Chen. 2021. Dynamic offloading and resource

scheduling for mobile-edge computing with energy harvesting devices. IEEE Trans. Netw. Serv. Manage. 18, 2 (2021),

2154–2165.

Received 15 October 2023; revised 26 December 2023; accepted 25 January 2024

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 173. Publication date: March 2024.


