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Abstract—Volumetric video is fully three-dimensional and
immersive, which shows great potential in various application
scenarios. However, the naive delivery of volumetric video over
the Internet requires a huge amount of bandwidth and com-
pute resources. A volumetric video should be compressed by a
specific codec before transmission. In spite of the existence of a
few pioneering efforts on prototype design, there is very limited
work to investigate the efficiency and practicality of existing vol-
umetric video codecs. In this paper, we conduct a comparative
measurement study on five representative point cloud-based volu-
metric video codecs, including 3 conventional codecs (e.g., Draco,
G-PCC, V-PCC) and 2 neural-based codecs (e.g., PU-GCN+,
MPU+), on six real volumetric video datasets. We investigate the
applicability of the above codecs in different application scenar-
ios, and examine how the features of point cloud (e.g., quality,
texture, geometric and scene complexity) affect the quality of
compressed volumetric video from multiple perspectives. In addi-
tion, we also study the impact of users’ viewing behaviors on the
coding and delivery efficiency with Quality of Experience (QoE)
metrics. Our results shed a number of important insights, which
provide useful guidelines for optimizing the design of future
volumetric video streaming systems.

Index Terms—Volumetric video, point cloud compression,
super-resolution.

I. INTRODUCTION

D IFFERENT from 2D video and traditional 360-degree
video, volumetric video enables users to watch a video

with six-degrees-of-freedom (6DoF). Such feature of vol-
umetric video has attracted tremendous attention from a
number of fields, such as education, entertainment, and so
on [1], [2], [3], [4]. Generally, a volumetric video can be rep-
resented by either point cloud [5], [6] or polygon mesh [7].
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Fig. 1. Illustration of a typical volumetric video streaming system.

Due to the advantages of easy acquisition and high flexibil-
ity, point cloud has been adopted as the primary format of
volumetric video. However, the transmission of point clouds
is extremely challenging in today’s Internet. For example, a
point cloud for entertainment typically contains over one mil-
lion points per frame. If not compressed, a total bandwidth
of 3.6 Gbps is required to achieve a playback at 30 frames
per second (FPS) [8]. Therefore, it is a must to perform deep
compression over point clouds before transmission.

Commonly, a typical volumetric video streaming system can
be illustrated by Fig. 1, in which the codec is responsible for
compression and decompression of volumetric video content
(e.g., point cloud). The codecs in the existing point cloud-
based volumetric video streaming systems (e.g., ViVo [9],
Groot [10], Yuzu [11]) can be divided into two main
categories, namely, conventional codecs (e.g., V-PCC [8],
G-PCC [8], Draco [12]) and neural-based codecs (e.g.,
MPU [13], PU-GCN [14]).

Conventional codecs use the data projection technique to
represent a point cloud with a 2D projection structure or a 3D-
tree structure. For example, V-PCC projects 3D models into
a 2D space and compresses them with 2D video compression
methods. Draco and G-PCC use 3D-tree structures, such as
octree [15] and kd-tree [16], to compress point clouds. Instead,
neural-based codecs employ the point cloud super-resolution
method to compress a point cloud. With the rapid progress
of deep learning techniques, especially deep learning-based
super-resolution (SR) [13], [14], [17], neural-based codecs
have also attracted tremendous attention in recent years.
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Although quite a few volumetric streaming systems have
been built, there is very limited work to study the efficiency
and practicality of different volumetric video codecs. A few
important questions need to be further investigated: First, it
is desirable to clearly understand the application scenarios of
different codecs. For example, if the encoding and decoding
operation of a codec takes too much time, such a codec is not
suitable for the scenario of live volumetric video streaming.
Thus, we need to comprehensively measure the performance
of these codecs in terms of compression ratio, speed, and video
quality. Second, it is unclear how the features (e.g., video
quality, texture and geometric complexity) of a volumetric
video content affect the codec performance and delivery effi-
ciency. Third, user viewing behaviors will dramatically change
the Quality of Experience (QoE) of volumetric videos. It is
expected to investigate the performance of volumetric video
codecs with real user viewing traces and understand how user
viewing behaviors affect the performance of volumetric video
codecs.

In this paper, we are among the first to systematically
measure 5 representative point cloud-based volumetric video
codecs from multiple perspectives (e.g., compression ratio,
encoding/decoding time, geometric distance, color-PSNR,
QoE, etc). We use 6 real volumetric video datasets with differ-
ent characteristics and examine the applicability of the above
codecs in different application scenarios. We also study how
the features of volumetric videos and user viewing behaviors
affect the performance of different codecs.

Overall, our main observations and their implications can
be summarized as below:

• A simple implementation of all existing codecs can hardly
meet the latency requirement of live volumetric video
streaming. It is required to conduct more performance-
oriented optimization for codecs. For on-demand volu-
metric video streaming, G-PCC is more suitable for the
delivery of high-quality point clouds, while Draco outper-
forms other codecs if the size of a point cloud is small
or there is sufficient bandwidth.

• The texture and scene complexity as well as the noise
level of point clouds have significant effects on the
compression performance of codecs. On the contrary,
the geometric complexity has little impact. We also
observe that different codecs show diverse sensitivity
to different features, revealing the necessity to con-
figure codecs according to the attributes of a point
cloud.

• A user’s viewing behavior greatly affects the delivery
performance of volumetric videos. Especially for videos
with complex scenes (e.g., multiplayer scenes), it is hard
to maintain high QoE during viewing. For videos with
simple scenes (e.g., single-person scenes), G-PCC and
Draco outperform others. And for videos with com-
plex scenes, the neural-based codecs are more robust
to different user viewing behaviors than conventional
codecs.

The remainder of this paper is organized as follows.
Section II surveys related work. In Section III, we describe the
methodology of our measurements. The measurement results

are described and analyzed in Section IV. Section V concludes
this paper and points out our future work.

II. RELATED WORK

In this section, we briefly survey related work in the fields of
virtual reality video, point cloud compression and the design
of volumetric video streaming systems.

Virtual reality video: There are different 3D data representa-
tions to deliver 3DoF (or 6DoF) virtual reality (VR) experience
to users. A 360-degree video formatted in an equirectangular
projection is currently the most popular VR video format. A
360-degree video [18], [19] allows users to control the viewing
direction in three dimensions (e.g., yaw, pitch and roll) pro-
viding a 3DoF viewing experience. However, the immersive
experience brought by the 3DoF interactive mode is limited, so
how to allow users to freely explore the VR world with 6DoF
interactive mode has become a research hotspot. To achieve
6DoF interactive mode, one way is to synthesize target views
by providing multiple source views (e.g., depth and texture)
according to the user’s viewpoint [20], and the other way is
to model the target scene with volumetric data (e.g., point
cloud or polygon mesh) [21], [22]. The video generated by
the second method is composed of a series of 3D models,
which is called volumetric video. Point cloud-based volumetric
video has the advantages of high flexibility and easy acquisi-
tion [9], [10], so it has become the primary research object of
6DoF VR video.

Point cloud compression: Conventional codec approaches
for point cloud compression represent video data based on
either 2D projection structure or 3D-tree structure. By adopting
the representation of 2D projection structure, V-PCC (Video-
based Point Cloud Compression) [8] projects the original 3D
point cloud into the 2D space, and compresses them with 2D
video compression methods. While for 3D-tree-based com-
pression approaches, 3D data structures (e.g., kd-tree [16],
octree [15] or trisoup [8]) are used in representative algo-
rithms including Draco [12] and G-PCC (Geometry-based
Point Cloud Compression) [8]. Draco is based on the kd-tree
data structure to compress grid data and point clouds. Draco
first encodes a rough representation of the full point cloud and
then builds multiple refinement layers for efficient compres-
sion. While for G-PCC, it represents the point cloud using
octree or trisoup data structures and performs arithmetical
encoding on different attributes.

Recently, the neural-based techniques have been proved
to be able to enhance the codec performance, which
can be divided into two categories: the optimization-
based approach [23], [24], [25] and the deep learning-
based approach [13], [14], [17], [26]. Optimization-based
approaches treat upsampling point clouds as an optimization
problem while deep learning-based methods focus on feature
extraction and expansion of point clouds. For deep learning-
based methods, features are extracted from patches on the
point cloud surface, and can be finally converted to the output
3D coordinates.

There existed a few works that analyzed point cloud com-
pression methods [22], [27], [28], [29], but their objective was
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Fig. 2. Rendered samples from 6 datasets.

TABLE I
VOLUMETRIC VIDEO DATASET

to measure the overall performance of compression methods,
without considering specific application scenarios for volu-
metric videos. Moreover, SR-based point cloud compression
methods [11] have seldom been measured in the literature.

Volumetric video system design: A number of volumetric
video streaming systems have been built, which have proven
the possibility of volumetric video transmission [9], [10], [21],
[30], [31], [32], [33]. Both ViVo [9] and Groot [10] con-
structed a transmission system with the parallel acceleration
of conventional compression and optimization methods based
on visual characteristics. However, they all suffered from a
small compression ratio (e.g., less than 8) and required high
bandwidth for video transmission. AITransfer [31] proposed
a neural adaptive transmission scheme to extract and transfer
features of each frame in a video. Unfortunately, AITransfer
cannot handle color attributes of a point cloud. Yuzu [11]
was the first to employ point cloud super-resolution meth-
ods to improve user experience based on the PU-GAN [17]
and MPU [13] models. However, Yuzu only conducted exper-
iments on small datasets(e.g., 100K points per frame) and has
not compared its performance with conventional point cloud
codecs.

The detailed comparison of different volumetric video
codecs is still missing in the literature, which is the focus
of our work in this paper.

III. MEASUREMENT SETUP

In this section, we will briefly introduce our measure-
ment settings, including datasets, metrics, video codecs, and
measurement methodology.

A. Datasets

In our measurement, we use 6 volumetric video datasets
as listed in Table I and the rendered samples are shown in
Fig. 2. The point clouds in Datasets 1-4 [5] are generated
by Microsoft Kinect sensors [34], which cover a variety of
scenes and multiple types of human objects. The point clouds
in Datasets 1-4 are usually sparse and noisy. On the contrary,

the point clouds in Datasets 5-6 are captured by 42 synchro-
nized RGB cameras [6], which are denser and noise-free. In
the experiments, we select 300 frames per dataset.

B. Metrics

We use multiple types of metrics to evaluate the
performance and efficiency of different volumetric video
codecs, including:

• Compression Ratio (CR), which is defined as the ratio
of video size before compression to video size after
compression.

• Encoding Time (ET)/Decoding Time (DT), which is
defined as the time required to perform encoding (or
decoding) operation on the video content.

• Chamfer distance (CD), which relates to pair-wise geom-
etry distance of the closest points in two point clouds [27].
The chamfer distance between point cloud S1 and S2 is
defined as:

CD(S1, S2) = 1

2|S1|
∑

p∈S1

min
q∈S2

‖p − q‖2
2

+ 1

2|S2|
∑

q∈S2

min
p∈S1

‖p − q‖2
2. (1)

A higher value of CD means that there exists higher
distortion in the geometry.

• CD-PSNR, which is the peak signal of geometry over the
chamfer distance distortion [27], [35]:

CD-PSNR(S1, S2) = 10 × log10
D2

m

CD(S1, S2)
, (2)

where

Dm = max
{
(xmax − xmin), (ymax − ymin),

(zmax − zmin)
}
, (3)

xmax, xmin, ymax, ymin, zmax, zmin are the maximum and
minimum coordinates of the point cloud along with
three axes respectively [36]. The value of CD-PSNR is
positively correlated to decoding quality of geometric
attribute.
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• Color-PSNR, which represents the YUV difference
between the closest points in the log scale [36], [37]:

Color-PSNR = 6 × PSNRy + PSNRu + PNSRv

8
, (4)

where

PSNRy = 10 × log10

(
2552

dMSEy(S1, S2)

)
, (5)

and dMSEy is the Mean Square Error (MSE) of luminance
values over all closest point pairs. PSNRu and PSNRv

can be calculated by replacing the luminance values in
Eq. (5) with chrominance and chroma values. When color
attribute is better decoded, a higher value of Color-PSNR
can be obtained.

• Hybrid-PSNR (i.e., H-PSNR):

H-PSNR = α · CD-PSNR + (1 − α) · Color-PSNR, (6)

which provides a global quality score by combining color-
based and geometry-based metrics. It is the weighted sum
of Color-PSNR and CD-PSNR, and the setting of the
weights α is based on the measurement results of [38].

• QoE, which is a metric defined in [11] to evaluate the
quality of user experience for volumetric video streaming.
The QoE definition is as follows:

QoE =
∑

i

Qi −
∑

i

μf (σ )Iframe
i −

∑

i

μs(σi)I
stall
i , (7)

where

Qi = w1(σi) × di × ri − w2(σi) × mi, (8)

Iframe
i = ‖Qi − Qi−1‖, (9)

Qi is the visual quality of each frame relating to the den-
sity di, upsampling ratio ri and geometric distortion mi of
point clouds as well as the distance σi from the viewer,
Iframe
i is the quality change between frame i−1 to frame i,

and Istall
i is the stall of frame i. The weights μf , μs, w1

and w2 are parameterized on σi and set according to the
settings in [11].

C. Point Cloud-Based Volumetric Video Codecs

Existing point cloud-based volumetric video codecs can be
generally divided into two categories, namely, conventional
codecs and neural-based codecs. In this measurement, we
mainly choose 5 state-of-the-art codecs [11], [22] for com-
parison, including 3 conventional codecs and 2 neural-based
codecs. These 5 codecs are representative as they are also com-
monly used in point cloud-based volumetric video streaming
systems [9], [11], [33], [39]. The description and settings of
each codec are given as below:

• Draco, which was developed by Google [12] and has
been widely adopted by existing systems. It controls the
bit depth of different attributes by setting quantization
parameters, and the encoder parameters are set according
to [27].

• G-PCC, which was developed by MPEG [40] for the
compression of static volumetric contents [41]. Lifting

TABLE II
ENCODER PARAMETERS FOR FIVE CODECS AND EACH CODEC HAS FIVE

SETS OF PARAMETERS CORRESPONDING TO FIVE BITRATE LEVELS

transformation [8] is used as the transforming tool and
octree is set as the default data structure. The value
of pq_scale and qp parameters corresponds to differ-
ent compression effects and we set their value following
the instructions from the MPEG’s common test condi-
tion [42].

• V-PCC, which was developed by MPEG for the com-
pression of dynamic volumetric contents [43]. The V-PCC
encoder employs HEVC [8], [44] to encode the generated
2D videos using all-intra mode.1 The values of geoQP
and texQP indicate geometry and texture quantization
parameters, respectively. And we also set the parameters
according to the MPEG’s common test condition [42].

• PU-GCN+, which is an extension of PU-GCN [14]. It
adopts the SR technique to compress and decompress a
point cloud and extends PU-GCN with more optimiza-
tions (e.g., extracting patches based on octree, nearest
neighbor interpolation, merging SR input with the out-
put [11], [32]). The model size of PU-GCN+ is around
1.75MB.

• MPU+, which is an extension of MPU [13]. Compared
to PU-GCN+, MPU+ also uses spherical kernel func-
tion (SKF) [11], [45] to accelerate convolutions when
extracting features. The model size of MPU+ is around
1.08 MB.

In our comparison, we select 5 different settings (i.e., R1,
R2, . . . , R5) for each codec when compressing point clouds
into various quality. From R1 to R5, the bitrate of each
codec increases sequentially. For conventional codecs, their
parameter selection is based on the works mentioned above.
For PU-GCN+ and MPU+, we select five upsampling ratios
(up_ratio) similar to [11]. The parameter settings are shown
in Table II.

D. Methodology

We measure the performance of all codecs on a computer
equipped with an AMD Ryzen 5 1600X 6-core 3.60GHz
CPU and an NVIDIA GeForce GTX 1080Ti GPU. The
volumetric video player is designed with the Point Cloud
Library(PCL) [46] and written in C++. PU-GCN+ and
MPU+ are implemented using TensorFlow. We use a model
pre-trained on the PU1K dataset [17] to upsample all point
clouds for different datasets. The pre-trained model can be

1The encoder of V-PCC employs the all-intra mode to archieve fair com-
parison because the other 4 codecs cannot compress the inter-frame redundant
information of point cloud-based volumetric videos.
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generalized to different point clouds with similar upsampling
results.

We first evaluate the performance of different codecs for
different application scenarios. For each codec, we apply five
settings to process all 6 datasets in Table I. For each metric, we
calculate the average value for all frames. Before performing
the experiments, all point cloud files are converted into binary
format.

Next, we proceed to investigate the influence of different
attributes of a point cloud on the codec performance includ-
ing color, geometric and scene complexity as well as noise
level. For the experiments on color attribute, we make some
deformation on the longdress dataset by using interpolation to
change the texture complexity without changing its geometric
attribute. To characterize the color attribute, we capture several
screenshots of those point clouds and use texture complex-
ity calculated by the entropy of the grey-level co-occurrence
matrix [47]. For the experiment on the geometric attribute,
we perform surface reconstruction of the longdress dataset
and simplify the mesh to various degrees in order to obtain
point clouds with different geometric complexity. In our mea-
surement, the number of face elements ranges from 130 to
2,050,000. When measuring targeted scene complexity, we
vary the scene complexity of a point cloud by stitching dif-
ferent numbers of objects in the longdress dataset. The more
objects a scene contains, the higher the scene complexity is.
In order to generate point clouds with different noise levels,
we add Gaussian noise to their geometry elements with stan-
dard deviations from 0.5 to 20. A larger noise deviation leads
to more severe quality degradation. When exploring the influ-
ence of one attribute, we strictly control the size and the other
three attributes of the generated point cloud to be consistent.
In the measurement, we choose two sets of parameters that
can best show changes, corresponding to the levels of R1
and R5.

Finally, we also study the performance of these five codecs
in on-demand volumetric video streaming scenarios with real
user viewing traces. We first collect viewing traces of eight
users by letting them watch 6 videos (as shown in Table I)
freely and record viewport positions and orientations for each
frame. Then we calculate QoE when using different codecs
under two bandwidth settings [11], namely, 25Mbps and
75Mbps. In the measurement, we configure encoder parame-
ters to be at the R4 level, as five codecs have similar decoding
quality with parameters at this level.

For conventional codecs, we apply the optimization method
Distance Visibility (DV) in ViVo [9] to establish the mapping
between the distance and the point density level (PDL). When
a user’s viewpoint is far away, objects in the field of view will
become small and adjacent 3D points in the point cloud may
be projected to the same 2D pixel. As a result, point cloud
density can be reduced while the visual quality of a user can
still be maintained. The maximum value of PDL is set as 1.0
in default, which means that the upper limit of point cloud
density is the raw data density. For neural-based codecs, the
upsampling ratio is equal to the product of the compression
ratio and PDL when the value of PDL is less than 1.0. When
the value of PDL is equal to 1.0, the most suitable model

will be selected from the pre-trained models to minimize the
resolution change.

IV. COMPARATIVE STUDY AND ANALYSIS

In this section, we describe our measurement results and
compare the performance of different codecs.

A. Practicality and Performance of Volumetric Video Codecs

For all five codecs, we compare their performance with five
different settings using 6 real datasets. Fig. 3(a) shows the
compression ratio of different codecs. According to the results,
V-PCC and G-PCC perform much better than others. For G-
PCC at the R1 level, a soldier dataset with a size of 4.5GB
can be compressed into 3.5MB. However, the compression
ratio of Draco, MPU+ and PU-GCN+ at high-bitrate levels
(e.g., R4 and R5) are less satisfactory. It is difficult to meet
the requirement of transmitting a large volumetric video with
compression ratio of less than 6.0.

Fig. 3(b) shows the value of Hybrid-PSNR of different
codecs and Fig. 4 shows the decoding quality of each codec
on different datasets in more details. It can be found that the
quality of volumetric video after decoding varies with codec
type and attributes of original videos before encoding. For
high-quality video datasets (e.g., longdress, soldier), all codecs
can perform well in decoding to obtain geometric attributes
at high-bitrate level. However, for low-quality video datasets
(e.g., pose, office, haggling, pizza), V-PCC and G-PCC exhibit
significant performance degradation, while Draco and neural-
based codecs can properly decode geometric attributes. Such
results are caused by the projection mechanism of V-PCC and
the sensitivity of the predictor of G-PCC to the density of a
point cloud. For color attributes, it is obvious that for all 5
codecs, the decoding quality of the soldier dataset is the best,
which is due to simple color attribute of this dataset.

When the bitrate is low (e.g., at the R1 level), the point
cloud quality has no significant effect on the decoding effect
of color attributes. However, at the R5 level, decoding color
attributes on high-quality datasets is significantly better than
that on low-quality datasets. For example, Draco can decode
color attributes losslessly for longdress and soldier datasets at
a high bitrate, but the value of Color-PSNR cannot exceed
40 for low-quality datasets. It is also caused by noises that
interfere with the work of the color prediction module in the
codec, resulting in performance degradation. In Section IV-B,
we will delve deeper into the impact of point cloud attributes
on the codec.

According to the above results, the compression quality
and efficiency of Draco and G-PCC will change significantly
with the change of quantization parameters while V-PCC
and neural-based methods are relatively stable. Therefore,
when selecting parameters for G-PCC and Draco, a dedicated
tradeoff should be considered.

Fig. 3(c) and Fig. 3(d) plot the encoding and decoding time
of different codecs. The encoding time of V-PCC is the longest
among all the codecs, which takes around 2 minutes to com-
press a single frame. It is because that V-PCC encodes point
clouds based on decomposing them into multiple patches with
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Fig. 3. Performance of different codecs on 6 datasets with 4 metrics: (a) Compression Ratio, (b) Hybrid-PSNR, (c) Encoding Time, (d) Decoding Time.

Fig. 4. Measurement results of CD-PSNR and Color-PSNR at R1 and R5 levels.

surface normal information, which is very time-consuming.
Instead, MPU+ and PU-GCN+ are highly efficient in encod-
ing with random downsampling as the encoding method,
which are able to encode thousands or even tens of thousands
of frames in one minute. For decoding time, Draco performs
the best and can reach 30FPS for small-size point clouds (such
as 300k points/frame). However, with the increase of point
cloud size, all five codecs perform poorly in decoding.

Particularly, PU-GCN+ and V-PCC are the worst in terms of
decoding time. Moreover, in 5 groups of experiments, the time
consumption of V-PCC seldom changes under different param-
eter settings. The results indicate that the bottleneck of V-PCC
in terms of time consumption is the conversion between point
cloud and patches. In addition, MPU+ is significantly bet-
ter than PU-GCN+ in terms of decoding efficiency with the
acceleration gains brought by SKF, which quantizes the local

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 07,2025 at 10:37:33 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: COMPARATIVE MEASUREMENT STUDY OF POINT CLOUD-BASED VOLUMETRIC VIDEO CODECS 721

Fig. 5. Impact of color attribute on different codecs.

Fig. 6. Impact of geometric attribute on different codecs.

3D space of point clouds and specifies a learnable parameter
to convolve the points falling in each sub-space [45]. It can
reduce the computational overhead without reducing precision.

In summary, G-PCC is most suitable for the transmission
of high-quality volumetric videos in on-demand streaming
applications due to its high compression ratio and excellent
decoding quality. Instead, Draco is suitable for delivering
volumetric videos with a small data volume or with suffi-
cient bandwidth, as it has a limited compression ratio and
maximum decoding efficiency. For live streaming, all the
codecs cannot meet the latency requirement. For Draco, its
encoding speed is only 10FPS for a small dataset of 300K
points/frame. Because neural-based codecs use downsampling
as the encoding method, they can process hundreds of frames
per second. However, the long single-frame decoding time
(e.g., a few seconds) limits their application, which needs
further optimization.

B. Impact of Different Attributes on Codec Performance

Fig. 5 shows the influence of color attribute (e.g., tex-
ture complexity) on the codec performance. According to the
results, Draco at the R1 level shows the maximum performance
attenuation with the increase of texture complexity. When the
value of texture complexity of a point cloud increases from
0.48 to 0.56, its compression ratio drops to 1/30 of the original
size and the decoding time doubles, which indicates its poor
performance in compressing color attribute. Apart from Draco,
the compression ratio of V-PCC at the R5 level also decreases
with the increase of texture complexity. On the contrary, PU-
GCN+ and MPU+ perform much more stably in terms of
compression ratio and encoding/decoding time with the near-
est neighbor interpolation to upsample the color attribute. For
Color-PSNR, Draco at the R5 level does not exhibit fluctuation

and performs well on encoding/decoding complex textures.
The performance of other codecs drop by about 5 dB with
the change of color attribute. It is because that the quan-
tization parameter of Draco is large enough to encode and
decode complex textures without information loss. However,
for other codecs, parameter settings at the R5 level do not cor-
respond to their lossless mode,2 so it will cause a certain loss
of information after quantization.

Fig. 6 and Fig. 7 show the impact of geometric and scene
complexity on the codec performance, respectively. When
exploring the geometric complexity, only a single geometry
is included in the point cloud. We change geometric com-
plexity of the point cloud by varying the number of face
elements. As shown in Fig. 6, the performance of all five
codecs does not show a significant change when the geomet-
ric complexity increases. However, when the scene complexity
increases, there exhibits significant fluctuation in terms of
codec performance. According to Fig. 7, V-PCC is most sen-
sitive to scene complexity. When the number of objects in
the point cloud is increased from 1 to 5, the chamfer dis-
tance between the decoded point cloud and the original one
quickly increases to 105 times, which means that there exists
significant geometric distortion. This is due to the fact that
the V-PCC codec is projection-based, and a point cloud with
complex scene (e.g., multiple objects) requires more 2D layers
to be generated, thus increasing the difficulty of encoding and
decoding.

It is also worth mentioning that the slight performance fluc-
tuation of MPU+ and PU-GCN+ is caused by the improved

2G-PCC and V-PCC can achieve lossless compression via parameter
adjustment, but the compression performance will greatly degrade (e.g., the
compression ratio will drop to around 10.0). MPU+ and PU-GCN+ cannot
achieve lossless compression.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 07,2025 at 10:37:33 UTC from IEEE Xplore.  Restrictions apply. 



722 IEEE TRANSACTIONS ON BROADCASTING, VOL. 69, NO. 3, SEPTEMBER 2023

Fig. 7. Impact of scene complexity on different codecs.

Fig. 8. Impact of noise level on different codecs.

patch generation method. When generating patches through
octree, if the number of points in a patch is too small, patches
will be discarded. It results in that the shape and density of a
point cloud will affect the number of patches. In this exper-
iment, we increase the number of objects without changing
the size of the point cloud file, which results in significant
changes in the density of the point cloud and patches divided
by the octree. Therefore, the decoding time of MPU+ and
PU-GCN+ will fluctuate.

Fig. 8 plots the effects of noise intensity on codec
performance. It is observed that V-PCC fails to encode the
point cloud when noise intensity reaches the highest level
(standard deviation of 20). This is due to the high noise inten-
sity, which affects the normal estimation of a point cloud and
thus interferes with patch generation. When noise intensity is
low, the compression ratio and decoding quality of V-PCC will
also degrade with the addition of noise. On the contrary, the
performance of Draco is the most stable when handling data
with noise. There is little change on compression performance
or point cloud quality after decoding.

In summary, Draco is the most instable one when color
attribute changes. The performance of V-PCC becomes the
worst with the increase of scene complexity and noise level.
Besides, the compression ratio, encoding time and decoding
time of PU-GCN+ and MPU+ do not fluctuate significantly
when these four attributes change. This is because their down-
sampling and upsampling methods are independent of the
point cloud content, which enables them to maintain stable
performance when the video content changes. The above mea-
surement results provide useful guidelines on how to select a
better codec (or determine encoder parameters) according to
the attributes of a point cloud.

C. Impact of User Viewing Behaviors on QoE Changes

Fig. 9 shows the QoE result for each dataset and codec.
For high-quality datasets with simple scene (e.g., longdress,
soldier), G-PCC and Draco outperform others with excellent
decoding quality and low decoding delay. When the bandwidth
increases, the QoE of Draco also increases. The reason is that,
when the bandwidth is sufficient, Draco’s low compression
ratio is no longer a performance bottleneck. For datasets with
complex scene (e.g., office, haggling, pizza), MPU+ and PU-
GCN+ show significant improvement. It attributes to the QoE
gain brought by point cloud upsampling algorithm. On the
contrary, V-PCC with long decoding delay is inferior to the
others in all six experiments.

Fig. 10 shows the result of visual quality, which is an
important component of QoE. It is obvious that both MPU+
and PU-GCN+ outperform conventional codecs on 6 datasets,
especially on datasets with complex scenes. Through analysis
of collected user trajectories, it is found that, when viewing
videos with complex scenes, a user’s range of motion at z-axis
is 160% larger than that when viewing videos with simple
scenes. Videos with complex scenes can provide users with
richer information and more viewport options, however, they
also pose a higher requirement for resolution adaptation. As
neural-based methods can control the flexibility of video res-
olution by adjusting the upsampling ratio, they are able to
enhance a user’s QoE significantly, especially for volumetric
videos with complex scenes. As shown in Fig. 11, with the
decrease of viewing distance of a user, the upsampling oper-
ation on a point cloud can effectively increase the density of
a point cloud, thereby improving the visual quality.

Based on our measurements, we provide the pros and cons
of different codecs as follows:
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Fig. 9. Normalized QoE over different bandwidth: (a): 25Mbps; (b): 75Mbps.

Fig. 10. Normalized visual quality on different codecs and datasets.

• Draco: The compression ratio of Draco is limited while
its maximum decoding efficiency is suitable for delivering
videos with small size or with sufficient bandwidth. It
can reach 30FPS when the size of point cloud does not
exceed 300K points/frame. Besides, its compression ratio
will increase significantly as the color complexity of a
point cloud decreases. In addition, Draco can encode and
decode geometric attributes of both low-quality and high-
quality point clouds well and be insensitive to changes in
geometric and scene complexity as well as noise level.

• G-PCC: G-PCC takes both high compression ratio and
efficiency into account. However, when dealing with
low-quality point clouds, the decoding quality will be
degraded. Those features make it more suitable for trans-
mitting high-quality point clouds with large data volume
in on-demand scenarios. When the quantization factor is
0.25, its compression ratio can even reach 1000, but the
quality is poor. As the quantization factor increases, its
compression performance and quality will also change
significantly. Therefore, it is necessary to find a trade-off
between these two factors during real usage.

Fig. 11. Screenshots of point clouds of haggling dataset from different
viewpoints decoded by different kinds of codecs: (a) point clouds decoded by
conventional codecs; (b) point clouds decoded by neural-based codecs.

• V-PCC: V-PCC compresses point clouds based on 2D
video compression technology, which has pros and cons.
The advantage is that it can achieve a high compression
ratio with the help of 2D video codecs and reuse the
architecture of 2D video transmission systems. However,
V-PCC needs to convert point clouds into patches for
compression, which leads to long encoding and decod-
ing delay. Besides, the increase in noise level and scene
complexity also greatly degrades its performance.

• PU-GCN+: Due to its short encoding latency and sta-
ble performance, PU-GCN+ has potential to be used in
live streaming applications. The performance can be well
maintained for point clouds with different attributes. For
videos with complex scene, PU-GCN+ can adjust the
point cloud density according to a user’s viewing distance
and improve user viewing quality. However, its decoding
operation is too time-consuming and the nearest neigh-
bor interpolation method used by PU-GCN+ cannot well
deal with complex texture information.
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• MPU+: Similar to PU-GCN+, MPU+ also has low
encoding latency, stable performance and excellent abil-
ity to improve the visual quality of volumetric videos.
Meanwhile, with the help of SKF, MPU+ can effec-
tively reduce the decoding time, and show much bet-
ter performance than PU-GCN+ when streaming point
clouds with large data volume. However, its decoding
delay is still too high.

D. Insights and Discussion

We briefly summarize all the important insights obtained
from our comparative study and discuss their implications as
below:

• Existing conventional codecs can hardly meet the require-
ment of live volumetric video streaming due to their long
encoding time, while neural-based codecs show much
better performance in encoding.

• Selecting an appropriate bitrate according to the content
of a point cloud and the characteristics of the codec can
improve the coding efficiency. Different codecs exhibit
diverse sensitivity to different point cloud features. It is
efficient to select an appropriate bitrate for a video by
tile or chunk based on codec-specific characteristics and
video content analysis.

• A point cloud with complex scenes has a higher require-
ment for the selection of codec in the streaming system.
It results in more sophisticated user viewing behaviors
and more severe fluctuation in size between frames. Since
neural-based codecs can maintain high viewing quality of
the video by upsampling point clouds, they exhibit supe-
rior performance in the transmission of point clouds with
complex scenes.

• When designing a neural-based point cloud video stream-
ing system, the user experience can be effectively
improved by preset models at the client side. The neural-
based codecs exhibit satisfactory generalization capabil-
ity, especially for the geometric attribute of point clouds,
which means the overhead of video transmission and
model training can be reduced by preset models.

Conventional codecs have been studied extensively in the
past few years, but there are still some obstacles that prevent
their wide application in point cloud-based volumetric video
streaming.

Instable color compression ratio: Our measurements show
that the compression ratio of Draco decreases rapidly as the
color complexity of a point cloud increases. For example,
when Draco compresses point clouds with low color complex-
ity at the R1 bitrate level, its compression ratio can be as high
as 712. But when it deals point clouds with high color com-
plexity, the compression ratio drops significantly to 11, which
indicates its inefficiency when dealing with color attribute. It
is because the quantization operation in Draco is used only
for floating-point attributes. If integer attributes are provided,
Draco will treat them as pre-quantized. Therefore, the color
attribute of a point cloud will not be quantized in Draco, which
leads to its low compression ratio.

Low performance due to 3D to 2D projection: V-PCC needs
to extract surface normals before projecting a point cloud from

the 3D space to the 2D plane. This is why V-PCC will expe-
rience a decrease in efficiency or even incompressibility when
dealing with noisy data. Meanwhile, When the scene com-
plexity of a point cloud increases, 2D layers projected by
the V-PCC encoder will also increase, resulting in a decrease
in coding performance. To solve these problems, preprocess-
ing (e.g., denoising) before encoding point cloud is necessary.
Moreover, some work [48] has improved the efficiency of
V-PCC by optimizing the process of 2D projection.

Lack of inter-frame compression capability: V-PCC can use
2D codecs to perform inter-frame compression, but tree-based
codecs such as Draco and G-PCC cannot exploit temporal
redundancy in a point cloud. There have been quite a few
studies have aimed to achieve inter-frame compression of
tree-based codecs. Mekuria et al. [1] adapted point cloud reg-
istration technology to extract rigid transformation between
two subsets of points. Recently, optimizing the inter-frame
predictor with deep learning [49], [50] has become a feasi-
ble direction. Besides, using technologies such as point cloud
scene flow [51] to extract motion vectors between frames is
also a promising research direction.

Long processing and inference delay: The time consumed
by a neural-based codec can be divided into two parts, namely,
the processing time and the inference time. Processing time
includes the time of extracting patches and uniform downsam-
pling. For example, if we replace the most time-consuming
farthest point sampling with voxel downsampling, the pro-
cessing time can be significantly reduced. Further, if we
improve the way to generate patches with octree, we can sim-
ply remove the step of uniform downsampling and reduce
the total time to 1/300 of the original time. In the inference
stage, feature extraction consumes a large portion of time. The
key function of feature extraction is to establish topological
relationships between scattered points. The current k-nearest
neighbors (kNN) method is inefficient to provide the above
function. It is better to find other efficient methods to replace
the kNN method. Yuzu [11] applies SKF which partitions a
3D space into multiple volumetric bins to extract neighborhood
information more efficiently. However, the method still suffers
from poor performance when dealing with point clouds with
large data volume. On one hand, we can speed up inference
through optimization methods such as parallelization, and on
the other hand, we can introduce a simpler network structure
to perform low-complexity inference on simple geometric or
color attributes.

Inference problem for color attribute: Existing upsampling
methods cannot well handle the color attribute of point clouds.
From our measurement results, we can find the interpolation
method for calculating color attributes also has limited effects
especially for point clouds with complex textures. Therefore,
a color model is needed to colorize the high-resolution point
cloud with a low-resolution colored one. We can feed each
patch to a coloring module after upsampling, whose depth
can be changed based on the color complexity of that patch.
Moreover, the geometric model can form a pipeline with the
coloring model to further speed up the processing. In addition
to the feature extraction-feature expansion upsampling struc-
ture adopted by most methods, the dense generator-spatial
refiner structure shown in Dis-PU [52] also deserves attention.
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After rough upsampling, a patch can be fed into a geometry
refinement network and a color refinement network at the same
time to speed up the processing.

Lack of capability to analyze redundant information:
Existing neural-based codecs only perform random down-
sampling when compressing point clouds, which may result
in many important point features being discarded [53]. To
solve this problem, it is necessary to analyze and utilize
the characteristics of a point cloud itself when performing
downsampling. Recent researches show learning-based point
cloud downsampling methods [54], [55], [56] can improve
application performance compared to traditional methods(e.g.,
random sampling and farthest point sampling). However, these
methods are only applicable for small-scale and colorless point
clouds, so it is of great research value to downsample large-
scale and colored point clouds with the help of learning-based
methods. Besides, how to make better use of the inter-frame
redundancy of volumetric video for compression also needs
attention. Yuzu [11] reduces computational overhead on the
decoding side by caching and reusing similar patches between
frames. This method can be further improved with point cloud
registration [32], [57] or video-based point cloud upsampling
framework [58] for better compression performance.

V. CONCLUSION

In this paper, we conduct an in-depth comparative mea-
surement study on five point cloud-based volumetric video
codecs, including 3 conventional codecs and 2 neural-based
codecs. For each codec, we analyze its performance on six
real datasets with different characteristics. Our results reveal
the effectiveness of different codecs under various applica-
tion scenarios and the impact of point cloud features, such as
texture, geometric complexity and so on. We also study the
effect of user viewing behaviors on the codec performance
with real user viewing traces. Our results are useful in helping
the design of volumetric video streaming systems. In the next
step, we plan to conduct more comprehensive measurements
in terms of neural-based codecs and consider how to improve
their efficiency with the state-of-the-art neural enhancement
techniques.
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