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Abstract—The emergence of mobile edge computing (MEC)
technology has deployed edge clouds with strong computing
capabilities closer to Internet of Thing (IoT) devices, which can
effectively meet the demands for computing power and latency.
However, in addition to the stringent latency requirements, more
and more emerging IoT applications also have higher standards
for the freshness and timeliness of collected information. In order
to ensure the freshness and high-information value in IoT system,
we propose an Age of Information (AoI)-based optimization strat-
egy for computation offloading and transmission scheduling. The
strategy considers the AoI during the transmission phase and the
execution phase, respectively, under the constraints of delay and
remaining energy. Then, a joint optimization model is established
based on the comprehensive benefits of AoI and computation rate.
To address the strong coupling between the offloading decision
and the transmission decision, the original optimization problem
is divided into two stages. By the use of the deep deterministic
policy gradient (DDPG) algorithm and the dueling double deep
Q network (D3QN) algorithm, the solution is obtained in terms
of the offloading decision and transmission scheduling decision,
respectively. The proposed joint optimization strategy considers
the impact of the transmission decision on the offloading decision
and is adaptable to the dynamic changes in the channel connec-
tion between the edge cloud and the user due to user mobility.
Experimental results show that compared with other offloading
and transmission strategies, the proposed approach has higher
overall system revenue and lower AoI.

Index Terms—Age of Information (AoI), dueling double deep
Q network (D3QN), Internet of Things (IoT), transmission
scheduling.
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I. INTRODUCTION

W ITH the rapid development of 5G and AI, intelligent
Internet of Things (IoT) applications are continuously

emerging, such as autonomous driving, smart healthcare, intel-
ligent transportation, Industry 4.0, etc [1], [2], [3]. These
applications often have computing requirements with ultralow
latency and ultrahigh reliability [4]. Due to the limited com-
puting power and battery capacity of IoT devices, edge servers
with sufficient computing power are usually deployed closer to
the terminal devices, and computation-intensive and latency-
sensitive applications can be offloaded to the edge servers
for execution [5]. In traditional 0-1 binary offloading strate-
gies, IoT devices make offloading decisions based on local
computing power and wireless channel connection quality,
determining whether to execute computing tasks locally or at
edge servers [6], [7], in order to minimize latency, energy
consumption, or maximize system resource utilization [8].
However, performance metrics, such as latency and through-
put cannot fully represent the requirements of latency-sensitive
applications for data freshness and timeliness [9]. For example,
in an IoT application of autonomous driving, transmitting and
processing outdated environmental information can reduce the
reliability of data analysis results, leading to erroneous deci-
sions made by vehicles. Therefore, the requirements of data
freshness in IoT applications should also be taken into account
during offloading decisions.

The data freshness is measured by the Age of Information
(AoI), which describes the time interval between the reception
of the latest data packet by the information receiver and the
time when the packet was generated by the IoT terminal [10].
The larger the AoI, the lower the freshness of the transmitted
information in the system. Information with larger AoI can
even be outdated and need to be obsoleted. Therefore, the ref-
erence value for making decisions in a mobile edge computing
(MEC) system is also lower.

Existing work on AoI mainly focus on the timeliness of
information during task transmission, while ignore the timeli-
ness of information during task execution. In particular, there
is insufficient research on the relevance of information fresh-
ness in edge computing environments [11]. In IoT systems
with high-real-time requirements, the channel capacity of the
edge cloud and bandwidth resource are limited, making it
difficult to simultaneously transmit all data collected by IoT
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devices to the edge cloud. The congestion of data packets
in the transmission queue and the backlog of jobs in the
edge cloud further hinder the timely delivery of data packets
and their updating [12]. Therefore, an efficient transmission
scheduling strategy is critical to ensure the real-time percep-
tion and transmission of fresh data in delay-sensitivity green
IoT applications [13], [14]. On the other hand, the impact
of the computation offloading strategy on the AoI cannot be
ignored [15]. When the IoT device’s offloading decision is to
execute locally, the update of AoI is mainly related to the local
computing time; when the offloading decision is to execute
on the edge cloud, the update of AoI is related to the waiting
time, transmission time, and computing time in the edge cloud.
Therefore, the optimal offloading and transmission strategies
need to be formulated based on the IoT device’s computing
capacity and channel connection status to minimize the AoI.

Due to the channel dynamics between end users and edge
clouds, optimizing the computation offloading and transmis-
sion strategies to minimize the average AoI of the system in
face of time varying information poses a great challenge [16].
IoT applications with multi users are particularly sensitive
to latency, which has higher requirements for AoI. In addi-
tion, there are few studies on considering the mutual influence
between transmission and offloading strategies, in order to
minimize the AoI by jointly optimizing the offloading and
link scheduling strategies. Therefore, we propose an AoI-based
joint optimization strategy for transmission scheduling and
computation offloading in edge networks. This strategy com-
prehensively considers the AoI in both the task transmission
and execution phases [17], and establish the objective with the
weighted gain of AoI and computation rate (i.e., the number
of bits processed per unit time). The main contributions of our
work are summarized as follows.

1) We propose an AoI-based joint optimization strategy for
transmission scheduling and computation offloading in
edge networks. An optimization model is established
with the integrated benefit of AoI and computation rate
as the objective under the constraints of delay and energy
consumption, ensuring the freshness of data during task
transmission and execution.

2) To address the strong coupling between transmission and
offloading decisions, the optimization objective is mod-
eled as a Markov decision process (MDP), and a solution
for transmission scheduling and computation offloading
is proposed based on the deep deterministic policy gra-
dient (DDPG) algorithm and the dueling double deep Q
network (D3QN).

3) Simulation experiments are conducted to validate that
the proposed solution outperforms four baseline offload-
ing schemes and three transmission schemes, while
achieving the maximum overall system benefit and the
minimum AoI.

The remaining structure of this article is organized as fol-
lows: Section II reviews the studies related to AoI and MEC.
Section III establishes the joint optimization model of AoI
and computation rate for computation offloading and transmis-
sion scheduling. Section III-B designs computation offloading
and transmission scheduling strategies based on DDPG and

D3QN, respectively. Section IV conducts multiple comparative
experiments to demonstrate the effectiveness of the proposed
approach. Finally, Section V concludes this article.

II. RELATED WORK

In order to measure the freshness of the information in real-
time IoT applications, the concept of AoI was first proposed
by Kaul et al. [10]. The previous research on AoI mainly focus
on the transmission scheduling problem in wireless networks,
and only a few started to address the computation offloading
problem based on AoI-awareness in last two years. In this sec-
tion, the related work on AoI-aware transmission scheduling
and computation offloading will be introduced, respectively.

AoI-Based Data Transmission: To ensure the full utiliza-
tion of wireless network resources, many advances have been
made in AoI-aware transmission scheduling strategies in MEC
networks. Kadota et al. [19] proposed a discrete-time decision
transmission scheduling strategy for unreliable channels and
compare the following four scheme in terms of AoI: 1) greedy
strategy; 2) random strategy; 3) maximum weight strategy;
and 4) Whittle index strategy. Talak et al. [20] considered the
problem of minimizing the average and peak AoI in wire-
less networks under interference constraints and analyzed the
relationship between packet generation rate and link schedul-
ing strategy. Jiang et al. [21] proposed a polling scheduling
strategy to achieve a stable distribution of time-averaged
AoI. Chen et al. [22] designed a static threshold-based AoI-
dependent random access protocol, in which each IoT device
accesses the channel with a certain probability only when
its instantaneous AoI exceeds the threshold. Chen et al. [23]
researched the AoI-aware radio resource management in a
Manhattan grid vehicle-to-vehicle network to make band allo-
cation and packet scheduling decision. Bhat et al. [24] assumed
that the complete information about the channel state is known,
and discuss which user should be selected to transmit data with
a specific transmission power, so as to minimize the average
AoI under time division multiple access and nonorthogonal
multiple access strategies, respectively. Qian et al. [25] exam-
ined the transmission scheduling strategy for channel–user
matching in a multiuser multichannel system to minimize the
overall average AoI.

AoI-Based Computation Offloading: In addition, making
computation offloading decisions based on AoI in MEC
networks has attracted the attention of a small number of
researchers. Kuang et al. [15] studied the AoI of computation-
intensive tasks in MEC and derived closed-form AoI values
for three modes: 1) local offloading; 2) full offloading; and
3) partial offloading, assuming an exponential distribution of
infinite queues and transmission times. Li et al. [26], [27] opti-
mized the offloading ratio and power in MEC systems with
nonorthogonal multiple access to minimize the weighted sum
of AoI and interference cost. Chen et al. [11] considered that
IoT devices compete for shared spectrum and computational
resources over time, and then define the AoI for task updates
and model the computational offloading decision as a stochas-
tic game model for solution. Li et al. [28] defined the Age of
Processing (AoP) based on the AoI by jointly optimizing the
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Fig. 1. System architecture of computation offloading and transmission
scheduling.

state sampling frequency and computational offloading policy
to minimize the average AoP in the long-term process, and
formulated this problem as an infinite range constrained MDP
(CMDP) with an average reward criterion, and transformed the
CMDP problem into an unconstrained MDP using Lagrangian
methods.

In general, most of above work is based on the AoI alone
to develop the transmission scheduling policy or computation
offloading policy, and rarely considers their joint optimization.
On the one hand, the transmission scheduling policy of the
edge cloud is affected by the offloading decision of IoT
devices, and for the device whose offloading decision is locally
executed, the edge cloud also does not need to schedule the
device to transmit the task data. On the other hand, different
transmission scheduling policies lead to different transmission
AoI levels, which further affect the AoI level when the task
is executed. Therefore, there is a strong coupling relationship
between the offloading decision and the transmission decision,
which is lack of consideration in aforementioned study.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Architecture

The edge network system architecture for AoI-based com-
putation offloading and transmission scheduling is shown in
Fig. 1. This architecture includes a traditional fixed cellular
base station and N IoT devices. The small edge server is
deployed in the base station to provide computation offload-
ing services to IoT devices with the capability of low-delay
response. IoT devices have data acquisition units and pro-
cessing units, continuously collecting real-time environmental
data based on different application scenarios. These data
need to be processed or transmitted in a timely manner to
satisfy the demands of the users. As the wireless channel
connection quality between IoT devices and the edge cloud
changes dynamically, each time slot, the device needs to make
offloading decisions based on the channel connection status,
the computational amount, the latency requirements, and the
remaining energy of the device. After receiving the offloading
request from the terminal device, the edge server also needs
to determine the scheduling of users for task data transmis-
sion based on the AoI requirements and channel status. Due

TABLE I
TABLE OF NOTATIONS

to the limitation of wireless network channel capacity, only
a limited number of tasks can be transmitted in each time
slot. Therefore, for the tasks that are offloaded to the edge
cloud and have not been transmitted, they need to wait in the
transmission queue.

Consider discrete time slots t ∈ {1, 2, 3, . . . , T}, where
the length of each time slot is denoted by τ , and assume
that the execution time of each task cannot exceed one time
slot [18]. The system consists of N IoT devices, correspond-
ing to N computing tasks, and the set of tasks is denoted by
N = {1, 2, 3, . . . , N}. At time slot t, the size of the comput-
ing task data generated by user i ∈ {1, 2, . . . , N} is denoted
by Si(t). The set of each user’s offloading decisions is denoted
by x(t) � (x1(t), x2(t), . . . , xN(t)), where xi(t) = 1 means that
user i offloads its task to the edge server for computation,
and xi(t) = 0 means that user i performs the task locally.
The transmission decision of the edge server is denoted by
y(t) � (y1(t), y2(t), . . . , yN(t)), where yi(t) = 1 means that
user i is scheduled by the edge cloud to transmit the comput-
ing task in time slot t, and yi(t) = 0 means that user i is not
scheduled, and its computing task is waiting in the transmis-
sion queue. Each user needs to make an offloading decision
first, and then the edge cloud makes a transmission scheduling
decision based on the offloading requests of users who have
decided to offload. Only users with xi(t) = 1 can be scheduled
by the edge cloud to transmit their computing tasks. The main
symbols used in this chapter are summarized in Table I.

B. Network Model

1) Local Computing: When the wireless channel quality
between the user and the edge cloud is poor, or the task compu-
tation requirement is low, the IoT device has certain computing
capability. In this case, offloading the task to the edge cloud
requires significant transmission delay and energy consump-
tion. Therefore, the user is likely to make a decision to execute
the task locally. For user i, the computation delay for the task
to be computed locally on the device is as the following:

Dl,i(t) = CiSi(t)

fl,i(t)
(1)
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where Ci is the computational intensity of task i, which is the
number of CPU cycles consumed per bit of data, and fl,i is the
CPU frequency of device i. When the offloading decision is
to execute the task locally, in order to ensure that the task is
executed in a timely manner to avoid affecting the freshness
of the data, it is assumed that the task needs to be completed
within one time slot, subject to the following constraint:

Dl,i(t) ≤ τ. (2)

The energy consumption El,i(t) for task i when locally com-
puted is shown as follows:

El,i(t) = kifl,i(t)
3Dl,i(t) = kifl,i(t)

2CiSi(t) (3)

where ki is the energy coefficient of device i, which is deter-
mined by the processor structure of the device. Since the
battery capacity of terminal devices is limited, the energy
consumed by tasks when executed locally cannot exceed the
remaining battery energy Emax,i(t) is shown as follows:

El,i(t) ≤ Emax,i(t). (4)

In addition to latency and energy consumption, the computa-
tion rate metric can also reflect the performance benefits of
offloading decisions in the edge computing system. When the
task is computed locally, the computation rate is the number
of bits computed by the local CPU per unit time, and the local
computation rate rl,i(t) is calculated as

rl,i(t) = fl,i(t)

Ci
. (5)

2) Edge Computing: Due to the limited local computing
power of the terminal device, when the required computing
workload of the task is large or the channel status is good,
users usually choose to offload the task to the edge cloud for
execution, exchanging the cost of transmission for the cost of
local computation. When the offloading decision is made to
execute the task at the edge cloud, the computation rate is
equal to the data transmission rate ro,i(t), which is the num-
ber of bits transmitted per unit time. The transmission delay
Dtr,i(t) during transmission is given as

Dto,i(t) = Si(t)

ro,i(t)
. (6)

In addition to the transmission delay, the computation delay
Deo,i(t) at the edge cloud is related to the computation resource
allocation fe,i(t) assigned to task i by the edge cloud

Deo,i(t) = Si(t)

fe,i(t)
. (7)

Since the computation result is small, the downlink trans-
mission time of the edge cloud feedback to the user can be
ignored. The overall delay of offloading task i to the edge
cloud mainly includes the transmission delay and the compu-
tation delay in the edge cloud, that is, the offloading delay
Do,i(t) is

Do,i(t) = Dto,i(t) + Deo,i(t). (8)

The total offloading latency for each time slot should not
exceed the length of the time slot τ , i.e.,

Do,i(t) ≤ τ. (9)

The total energy consumption of user device offloading mainly
includes the transmission energy consumption Eo,i(t)

Eo,i(t) = ei(t)Dto,i(t). (10)

Similarly, the transmission energy cannot exceed the remain-
ing energy of the device Emax,i(t), which is expressed as

Eo,i(t) ≤ Emax,i(t). (11)

C. Age of Information Model

In each time slot, the user first makes an offloading decision
x(t), and then the edge cloud makes a transmission scheduling
decision y(t) based on the offloading decision. Since only the
tasks that are offloaded to the edge cloud will generate trans-
mission scheduling problems, the constraints that need to be
satisfied between the offloading decision and the transmission
decision are

yi(t) ≤ xi(t) ∀i ∈ N . (12)

For tasks offloaded to the edge cloud, to ensure the freshness
of the data transmitted to the edge cloud, the AoI of the data
packet during the transmission stage is used to represent its
freshness, denoted as Atr,i(t). Since it is assumed that tasks are
completed within one time slot, the AoI changes linearly. For
users whose offloading decision is 1, if the edge cloud does
not select them for data transmission, their tasks will wait in
the transmission queue, and the AoI during the transmission
phase will be increased by 1 based on the previous time slot.
Conversely, if the user is scheduled by the edge cloud for data
transmission, the AoI will be reset to 1, as the following:

Atr,i(t) =
{

1, if yi(t) = 1
Atr,i(t − 1) + 1, else.

(13)

In order to avoid situations where some users are never sched-
uled by the edge cloud for data transmission, which would
result in an infinite increase in their AoI and therefore affect
the correctness of user and edge cloud decisions, it is neces-
sary to limit the AoI and provide a maximum threshold Amax,i

for the AoI of each user.
In addition to the AoI during the transmission phase, we

also considers the freshness of data during task execution,
represented by Aex,i(t). Compared with the AoI during the
transmission phase, the AoI during the execution phase Aex,i(t)
also takes into account the task’s computation delay [11],
which means Aex,i(t) represents the number of time slots
elapsed from the generation to the successful execution of
user i’s task. According to the user’s offloading decision, the
AoI during task execution can be divided into three cases.
When the offloading decision is to execute locally, the task
does not involve scheduling for transmission to the edge cloud.
Therefore, if the task can be computed within one time slot
and the local computation energy consumption satisfies the
requirement of maximum remaining energy Emax,i(t), the task
can be successfully executed, and Aex,i(t) will be reset to 1.
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When the offloading decision is to offload to the edge cloud, it
is also necessary to determine whether the task is selected for
transmission based on the edge cloud’s transmission schedul-
ing decision. If the task data is successfully transmitted to
the edge cloud and successfully executed, Aex,i(t) will also be
reset to 1. Otherwise, if the user is not selected by the edge
cloud, the task will continue to wait in the transmission queue,
Aex,i(t) will be increased by 1 based on the previous moment,
as follows:

Aex,i(t) =
⎧⎨
⎩

1, if xi(t) = 0
1, if xi(t) = 1 and yi(t) = 1
Aex,i(t − 1) + 1, else.

(14)

Similarly, the execution-stage AoI Aex,i(t) is also subject to the
maximum threshold limit Amax,i(t). If the AoI of user i reaches
the maximum threshold limit, then the user’s computation task
will be immediately executed locally or transmitted to the edge
cloud for execution.

D. Problem Formulation

Whether executed locally or on the edge cloud, the compu-
tation rate of user i, denoted by ri(t), can be expressed as

ri(t) = (1 − xi(t))rl,i(t) + xi(t)yi(t)ro,i(t). (15)

Similarly, the total latency Di(t) and total energy consumption
Ei(t) can be represented as

Di(t) = (1 − xi(t))Dl,i(t) + xi(t)yi(t)Do,i(t) (16)

Ei(t) = (1 − xi(t))El,i(t) + xi(t)yi(t)Eo,i(t). (17)

To improve the freshness of data in MEC systems, the
user’s offloading decision needs to consider both the latency
and energy constraints as well as the requirements for AoI.
The offloading decision result further affects the formula-
tion of edge cloud transmission scheduling decisions. In
MEC systems with dynamically changing network states by
considering quality of experience of multiusers and energy
consumption, we jointly formulates offloading decision x and
transmission decision y based on the current channel connec-
tion value quality, latency and energy constraints, and AoI
requirements. In addition to minimizing the AoI of the MEC
system, the optimization objective is to maximize the amount
of bits processed per unit time, i.e., to maximize the system’s
computation rate. Therefore, the optimization problem is for-
mulated as the weighted sum of task execution AoI and
computation rate, is shown as follows:

P : max
x,y

lim
T→∞

1

T
E

[
T∑

t=1

N∑
n=1

ηri(t) − wiAex,i(t)

]

s.t. C1 : yi(t) ≤ xi(t) ∀i ∈ N
C2 : Di(t) ≤ τ ∀i ∈ N
C3 : Ei(t) ≤ Emax,i(t) ∀i ∈ N
C4 : Atr,i(t) ≤ Amax,i ∀i ∈ N
C5 : Aex,i(t) ≤ Amax,i ∀i ∈ N .

In optimization problem P, η is used to balance the impor-
tance of AoI and computation rate in the objective function. By

adjusting the value of η, the contribution of computation rate
to the overall system performance can be adjusted. When η is
0, the IoT system only considers AoI, and the objective of the
unload and transmission decisions is to minimize the average
AoI. As η increases, the weight of computation rate gradually
increases, and the objective of the offloading and transmission
decisions is to maximize the average weighted sum of AoI
and computation rate. It should be noted that because smaller
AoI values lead to higher system performance, the reward is
calculated as a negative value of the AoI. wi is the weight
of AoI for each user’s task execution process. Constraint C1
indicates that the transmission decision is made based on the
unload decision, and only when the unload decision is to exe-
cute the task in the edge cloud will it be determined whether
to schedule the task for transmission. Constraint C2 requires
that the task execution delay cannot exceed the length of one
time slot, C3 is the energy constraint, and C4 and C5 indicate
that the AoI in both the transmission and execution phases of
the task cannot exceed the maximum threshold Amax,i.

IV. JOINT OPTIMIZATION STRATEGY FOR COMPUTATION

OFFLOADING AND TRANSMISSION SCHEDULING

A. Overall Optimization Strategy Design

Our joint optimization strategy is denoted by π = (πex, πtr),
where πex is the offloading strategy, and πtr is the transmis-
sion strategy. Different from the previous scheme which uses
one deep reinforcement learning (DRL) algorithm to obtain
multiple solution variables [29], due to the strong coupling
between the two variables, the offloading decision needs to be
given first, and then the transmission decision can select the
user according to the place of the task execution. If one DRL
algorithm is directly used to output the offloading decision
and the transmission decision simultaneously, and the making
of the two decisions is isolated, then the offloading decision
cannot provide relevant information and guidance for the trans-
mission decision. Therefore, this article uses a combination of
two DRL algorithms to obtain the offloading strategy and the
transmission strategy, respectively. Next, the design of the state
space, action space, and reward function for the two strategies
are presented.

State Space: The state sex(t) of the offloading strat-
egy is expressed as sex(t) = {sex,1(t), sex,2(t), . . . , sex,N(t)},
where each component sex,i(t) is composed of the trans-
mission decision of the previous time slot, the cur-
rent offloading AoI, the transmission AoI, computation
rate, delay, and energy consumption, that is, sex,i(t) �
{atr(t − 1), Aex,i(t), Atr,i(t), ri(t), Di(t), Ei(t)}. The state str(t)
of the transmission strategy is denoted as str(t) =
{str,1(t), str,2(t), . . . , str,N(t)}, where each component str,i(t)
consists of the user’s offloading decision in the current time
slot, the data transmission rate of the uplink and the transmis-
sion AoI, that is, str,i(t) � {xi(t), ro,i(t), Atr,i(t)}.

Action Space: In the binary offloading mode, the offloading
action aex(t) consists of 0 and 1. Considering that when the
offloading decision is executed by the edge cloud, the task
is not scheduled for transmission but continues to wait, it is
necessary to add an action dimension −1. In addition, when the
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execution delay of the task exceeds the time slot length τ or the
energy consumption exceeds Emax,i(t), the task is also in the
state of waiting for execution, and the task is continued until
the channel state is good or the delay and energy consumption
meet the constraints. Therefore, each user’s offloading action
is aex,i(t) = {−1, 0, 1}. When the offloading action is −1, the
corresponding computation rate, delay, and energy consumption
are recorded as 0. At time slot t, the set of users whose offloading
decision is executed by the edge cloud is recorded as N′(t).
Then the transmission decision is to select users in N′(t) to
offload the task to the edge cloud, so atr(t) = {1, 2, . . . , N′(t)}.
If atr(t) = i, then the transmission decision yi(t) = 1, i.e., user
i is selected by the edge cloud for task transmission, and vice
versa, user i is not selected for transmission.

Reward Function: The goal of the offloading policy πex

is to maximize the weighted gain of the computation rate
and the AoI of the task execution, while also satisfying the
latency and energy consumption requirements. In designing
the reward function of the offloading strategy, the delay and
energy consumption constraints are taken into account in the
reward function Rex(t). Thus, at time slot t, the reward function
Rex(t) is calculated as the following:

Rex(t) =
N∑

i=1

ηri(t) − wiAex,i

+ α(τ − Di(t)) + β
(
Emax,i(t) − Ei(t)

)
(18)

where α and β are the weighting factors of delay constraint
and energy consumption constraint, respectively. When the
delay or energy consumption of an offloading action does not
meet the constraint requirements, the reward value correspond-
ing to the action will decrease, and the strategy will reduce
the execution probability of the action in the next action selec-
tion. The goal of the transmission strategy πtr is to select the
user for transmission from the offloading set N′(t) when the
offloading action is known, so as to maximize the weighted
benefit of the AoI and data transmission rate in the trans-
mission phase. The reward function Rtr(t) of the transmission
strategy is calculated according to the following:

Rtr(t) =
N′(t)∑
i=1

ηyi(t)ro,i(t) − wiAtr,i(t). (19)

At the beginning of each time slot, the state value sex(t) is
first input into the offloading strategy to obtain the offloading
decision, which determines the execution position of each user.
The reward value Rex(t) is not immediately available at this
point, but rather, the offloading decision needs to be input into
the transmission algorithm. The transmission strategy selects
the user from the users whose offloading position is the edge
cloud based on the offloading action, the data transmission rate
and the transmission AoI, performs the transmission action,
reaches the next state value str(t + 1) and gets the trans-
mission reward value Rtr(t), and then sends the transmission
decision and AoI value to the offloading strategy. According
to the offloading and transmission action, the offloading strat-
egy calculates the AoI, the computation rate, delay, and energy
consumption of the offloading, reaches the next state sex(t+1),

and obtains the reward value Rex(t). Next, proceed to the next
time slot t + 1. It should be noted that, after the transmission
strategy selects the transmission user, the unselected user tasks
are still in the waiting state. Then, in the time slot t+1, for
the task in the waiting state, the taken offloading action is −1,
i.e., the task is not executed. In addition, for a task whose time
delay and energy consumption exceed the constraint condi-
tion after the offloading action is performed, action −1 is also
taken, that is, the task is not suitable to be executed currently,
and is also in a waiting state until the condition is suitable for
execution. When the offloading strategy executes action −1,
the computation rate, latency, and energy consumption are all
0. However, if the AoI (including Aex(t) and Atr(t)) in the
waiting state exceeds the threshold limit, the action of execut-
ing the task locally or transmitting the task to the edge cloud
is directly taken.

B. DDPG-Based Computation Offloading Strategy

The DDPG algorithm combines the advantages of the deep
Q network (DQN) algorithm and actor–critic algorithm [30],
solves the problem that the sample data cannot be indepen-
dently and identically distributed through the mechanism of
experience replay and the mechanism of coexistence of online
network and target network [31]. The actor network and crit-
ical network are used to formulate and evaluate strategies,
respectively. Fig. 2 is the diagram of the DDPG algorithm. The
DDPG algorithm contains a total of four networks, namely,
the online actor network, the online critic network, the tar-
get actor network, and the target critic network. The online
actor network parameters are denoted as θu, the online critic
network parameters are denoted as θQ, the target actor network
parameters are denoted as θu′

, and the target critic network
parameters are denoted as θQ′

.
The online actor network is used to interact with the envi-

ronment to generate sample data. The user state sex(t) is input
to the online actor network, and the Gumbel-Softmax in [32]
is used to obtain the discrete offloading action aex(t). The edge
cloud selects the user for transmission according to the offload-
ing strategy and sends the transmission strategy to the user,
who gets the reward value Rex(t) according to the offload-
ing and transmission decision, and arrives at the next state
sex(t + 1). The data [sex(t), aex(t), Rex(t), sex(t + 1)] gener-
ated in the interaction process is stored in the experience
playback unit, and when there are enough samples in the expe-
rience playback unit, a batch of sample data is taken out for
updating the four networks. Record the sample data taken as
[sm

ex, am
ex, Rm

ex, sm′
ex ]. When updating the online critical network,

sm
ex and am

ex are input to the online critical network to obtain
the state–action evaluation value Q. To get the action corre-
sponding to sm′

ex , sm′
ex is fed into the target actor network, and

then the corresponding action is evaluated by the target critic
network to get the value ′. The loss function of the online
critic network is as follows:

L = 1

M

M∑
m=1

[
Rm

ex + γexQ′(sm′
ex , u′(sm′

ex

))

− Q
(
sm

ex, am
ex

)]2
(20)
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Fig. 2. DDPG-based computation offloading strategy.

where M is the number of taken samples, and γex is the dis-
count factor in the offloading strategy. We use the gradient
descent method to update the online critical network param-
eter θQ. Next, in order to update the online actor network,
it is necessary to input the Q value obtained from the online
critical network into the online actor network, as shown in the
following:

∇θuJ = 1

M

M∑
m=1

∇aQ(s, a)

∣∣∣∣∣
s=sm

ex,a=u(sm
ex)

∇θ uu
(
sm

ex

)
. (21)

After the online network is updated, the soft update method
is used to update the two target networks, as shown

{
θu′ = δθu + (1 − δ)θu′

θQ′ = δθQ + (1 − δ)θQ′ (22)

where δ is a constant that is much less than 1. Algorithm 1
summarizes the detailed process of solving the unloading
strategy based on DDPG.

C. D3QN-Based Transmission Scheduling Strategy

When solving the transmission strategy, it is mainly to select
tasks for transmission from the users whose execution loca-
tion is the edge cloud. Compared with the DDPG algorithm,
the DQN algorithm is simpler and suitable for the user selec-
tion problem in the transmission scheduling scenario, but the
DQN algorithm also has some defects. For the state s′

tr of the
next time node, DQN estimates the action selection a′

tr and
value function Q of s′

tr all in the target network. However,
the action a′

tr with the largest target Q value is not necessar-
ily the best action for the state s′

tr, which can easily lead to
the estimated Q value of the target network being larger than
the real value function, and the problem of overestimation
occurs. Overestimation spreads wrong information, resulting
in the trained parameter θ not being able to fit the state value
well, and as the number of training increases, the error will
gradually increase.

Algorithm 1 DDPG-Based Offloading Strategy

Input:
Time slot τ , the weight η of computation rate, weights
α and β of delay constraint and energy consumption
constraint;

Output:
The optimal task offloading strategy π∗

ex;
1: Initialize state sex(0) and online network parameters θu

and θQ;
2: for t = 1, 2, . . . , T do
3: Input the state sex(t) into the online actor network to

obtain the action value aex(t);
4: Obtain the transmission strategy πtr and the transmis-

sion AoI according to the Algorithm 2;
5: Users perform the offloading action, calculating the

latency, energy consumption, computation rate and the
offloading AoI;

6: Calculate the reward value Rex(t + 1) according to the
equation (18) and update the state sex(t + 1);

7: Store the data [sex(t), aex(t), Rex(t), sex(t + 1)] in the
experience playback unit;

8: Take out a batch of data from that experience playback
unit for training;

9: Update the online critic and actor network according to
the equation (20) and (21), respectively;

10: Update the target actor and critic network according to
the equation (22);

11: end for

To solve the problem of overestimation in DQN, we intro-
duce the double DQN algorithm, which decouples the estima-
tion of the action value function from the action selection of
s′

tr [33]. The action selection for the next time node state s′
tr is

performed in the online network, that is, the action a′
tr corre-

sponding to the maximum Q(s′
tr, a′

tr; θ) is selected, where θ is
the online network parameter. The value function estimation
of a′

tr is performed in the target network, that is, the value
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Fig. 3. D3QN-based transmission scheduling strategy.

function of a′
tr is estimated as Q(s−

tr ), where θ− is the tar-
get network parameter. The loss function LDDQN(θ) of double
DQN is as the following:

LDDQN(θ) = E

[(
Rtx + γtrQ

(
s′

tr, arg max
a′

tr

Q
(
s′

tr, a′
tr; θ

); θ−
)

− Q(str, atr; θ)

)2
⎤
⎦. (23)

However, in some cases, different actions taken in the same
state have the same impact on the environment, which can
lead to the same reward value. At this time, it is not nec-
essary to evaluate the value of each action choice. However,
different states still have different values. One problem with
DQN or double DQN is that it is impossible to distin-
guish the value of states. In order to evaluate the advantages
and disadvantages of state value functions, we also intro-
duced the dueling DQN algorithm, which decomposes the
action value function Q(str, atr) into a state value function
V(str) and an action advantage function A(str, atr), that is,
Q(str, atr) = V(str) + A(str, atr) [34]. This algorithm adjusts
the structure of the deep neural network in DQN. The first few
layers of the network are the same as the structure in DQN, and
the parameter is θ . In the previous layer of the output layer, the
network is divided into two parallel structures, one network is
used to calculate the state value function V(str), the parameter
is λ; the other network is used to calculate the action advan-
tage function A(str, atr), the parameter is φ. Finally, there is
an aggregation layer that adds the state value function V(str)

and the action advantage function A(str, atr) to obtain the final
action value function Q(str, atr). However, in dueling DQN, if
the state value function and the action advantage function are
directly added, once the final output Q value is given, it will
cause the lack of recognizability of V and A. To solve this
problem, the advantage function needs to subtract the mean for
decentralization. The action value function Q(str, atr; θ, λ, φ)

in dueling DQN can be expressed as the following formula:

Q(str, atr; θ, λ, φ) = V(str; θ, λ)

+
⎡
⎣A(str, atr; θ, φ) − 1

|N′(t)|
∑

a′
tr∈N′(t)

A
(
str, a′

tr; θ, φ
)⎤⎦. (24)

Combining the advantages of double DQN and dueling
DQN, we fuse the two DRL algorithms to obtain dueling dou-
ble DQN (D3QN), and then use the D3QN algorithm to solve
the optimal transmission policy for edge clouds, as shown in
Fig. 3. The temporal differential error L of LD3QN is calculated
according to the following:

LD3QN(θ, λ, φ) = E

[(
Rtr + γtrQ

(
s′

tr, arg max
a′

tr

Q

(
s′

tr, a′
tr;

θ, λ, φ); θ−, λ−, φ−
)

− Q(str, atr; θ, λ, φ)

)2
⎤
⎦ (25)

where θ, λ, and φ are the online network parameters and
θ−, λ−, and φ− are the target network parameters.

The process of solving the transmission strategy based on
D3QN is shown in Algorithm 2. At each moment, the trans-
mission state str is first input into the online network to
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Algorithm 2 D3QN-Based Transmission Scheduling Strategy

Input:
The weight η of computation rate, the weight wi of AoI;

Output:
The optimal transmission strategy π∗

tr;
1: Initialize the state str(0) and the network parameters

θ, λ, φ;
2: Initialize ε = 1, minimum value εmin;
3: for t = 1, 2, . . . , T do
4: Obtain the offloading policy πex according to

Algorithm 1;
5: Generate the transmission decision atr(t) via the ε-

greedy policy;
6: Set the selected user’s transmission AoI to 1, and the

unselected user plus 1;
7: if the transmission AoI of non-selected users ≥ Amax,i

then
8: set the AoI of this user to Amax,i;
9: Increase the probability of the user being selected;

10: end if
11: Get the next state s′

tr according to the data transmission
rate and AoI;

12: Calculate the reward function Rtr according to the
equation (19);

13: Store the sequence pair [str, atr, Rtr, s′
tr] into the expe-

rience playback unit;
14: Randomly select a batch of data sets from the experi-

ence playback unit for training;
15: Calculate the loss function LD3QN according to the

equation (25);
16: Update θ, λ, φ through gradient descent method;
17: if training steps % 
 == 0 then
18: Copy θ, λ, φ to θ−, λ−, φ−;
19: end if
20: end for

obtain the state value function V(str) and the action advan-
tage function A(str, atr), and further aggregated to obtain the
state–action value function Q(str, atr), and then the ε-greedy
strategy of exploration rate decay is adopted. At the initial
training stage of the algorithm, because the edge cloud has not
yet learned a better transmission strategy, it randomly selects
an action with a large probability value ε for exploration, and
selects the action atr corresponding to the largest Q value with
a small utilization probability value 1−ε, so as to avoid falling
into a local optimal situation. The increment of each decay of
ε is 0.001, and the minimum value of decay εmin is 0.1. After
the algorithm has been trained for a period of time, the edge
cloud has learned a better strategy, so the probability of utiliza-
tion is gradually increased, and the probability of exploration
is reduced until the probability of exploration decays to the
minimum value of 0.1. Afterward, when the DRL agent of
the edge cloud interacts with the environment, the user is ran-
domly selected for data transmission with a probability of 0.1,
and the action corresponding to the maximum Q is selected
with a probability of 0.9.

After the edge cloud selects the transmission user, the sta-
tus of transmission AoI and computation rate shifts to s′

tr.
When the user’s AoI reaches the maximum threshold Amax,i

the probability of the user being selected is increased in the
next transmission scheduling, and the action selection of the
edge cloud at the next moment will be more inclined toward
the user. The interaction data [str, atr, Rtr, s′

tr] is stored in the
experience playback unit M. When the number of interac-
tions reaches a predetermined tpre, a batch of data is randomly
selected from M to update the evaluation network. After each
training 
 steps of the evaluation network, the parameters are
copied to θ−, λ−, and φ−. As the evaluation network contin-
ues to train and learn, the algorithm eventually reaches a stable
state, and the edge cloud obtains an approximately optimal
transmission strategy π∗

tr.

D. Complexity Analysis

The complexity of our proposed joint optimization algo-
rithm consists of two parts, namely, the computation offload-
ing solution algorithm of Algorithm 1 and the transmission
scheduling solution algorithm of Algorithm 2. Since the user’s
offloading decision is formulated in the online execution phase
of the DDPG algorithm, the main focus is on the complexity
of the online execution of the algorithm. The complexity of the
online execution phase of the DDPG algorithm is related to the
input state dimension of the actor network, the output action
dimension, the number of network layers, and the number of
neurons.The input state dimension of the actor network is |sex|,
the output action dimension is |aex|, the number of hidden lay-
ers is Lex and the number of hidden units in the lexth layer is
Klex . The complexity of a single user making an uninstall deci-

sion is O(G1) = O(|sex|K1 +∑L−1
ex

lex=1 Klex Klex+1 +KLex |aex|) and
the overall complexity of N users making an uninstall deci-
sion is O(NG1). When the edge cloud makes transmission
scheduling decisions, it also focuses on the online execution
complexity of the D3QN algorithm. The input state dimen-
sion of the D3QN algorithm online network is |str|, the output
action dimension is |atr|, the number of hidden layers is Ltr,
and the number of hidden units in the ltrth layer is Kltr , then
the complexity of the transmission scheduling algorithm is
O(G2) = O(|str|K1 + ∑Ltr−1

ltr=1 KltrKltr+1 + KLtr |atr|). Based
on the above analysis, the overall complexity of the joint
optimization algorithm for computing offloading and trans-
mission scheduling is O(NG1 + G2). Since the number of
network layers and hidden units in the DDPG algorithm and
D3QN algorithm are fixed, the complexity of the algorithm
is mainly related to the input state dimension, output action
dimension, and the number of users.

V. EXPERIMENT AND PERFORMANCE ANALYSIS

A. Parameters Setting

According to the work of Chen et al. [35], the wireless
channel maintains the original state with a probability of 0.8
and is in another channel state with a probability of 0.2 at each
moment. The initial data transmission rates are (1.5, 2.25, 1.25,
1.5) MB/s, and the changed data transmission rates are (0.768,
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Fig. 4. Convergence under different η. (a) Effect of η on average reward. (b) Effect of η on average weighted-sum AoI.

1.0, 0.384, 1.12) MB/s. The data size Si(t) of computing tasks
in each time slot is evenly distributed between [1,2] Mbits, the
residual energy Emax,i(t) of the IoT device is evenly distributed
between [0.5,1.5] J, and the time slot length τ is 1 s. The
energy consumption coefficient of the IoT device is 10−28 and
the calculation intensity Ci is 1000 cycles/bit. The edge cloud
has 50 GHz of computing power, and computing resources
are evenly distributed to users whose offloading decisions are
performed for the edge cloud. The local computing power fl,i is
evenly distributed between [0.5, 1] GHz. The maximum values
Amax,i of the AoI in the offloading stage and the transmission
stage are both 10, and the initial AoI are set to 0. Unless
otherwise specified, the AoI weight of each user is 1 in the
offloading stage, the computation rate weight η is 10, and the
delay and energy consumption constraint parameters α and β

are 1.
In the offloading strategy based on the DDPG algorithm,

two hidden layers are set, with 64 hidden units per layer. The
capacity of the experience playback unit is 2000, the batch
data size is set to 64, the learning rate of both the actor and
critical networks is 0.001, and the soft update factor δ is 0.01.
Each hidden layer is output using the ReLU activation func-
tion, and parameters are updated using the Adam optimizer.
The discount factor γex of the reward function is 0.95. In the
D3QN-based transmission strategy, three hidden layers are set,
with 250 hidden units per layer. The size of the batch is 32,
and the capacity of the experience playback unit is also 2000.
After 500 online network executions, network training, and
updates begin. After every 200 training sessions of the online
network, the parameters θ, λ, and φ are copied to θ−, λ−, φ−.
The discount factor γtr of the reward function is 0.9, and the
learning rate is also 0.001. Like the DDPG algorithm, the
ReLU activation function and the Adam optimizer are used.

In order to verify the scheme proposed in this arti-
cle, we compare the proposed scheme with four other
offloading schemes. The four compared offloading schemes
are: 1) computation rate-based offloading scheme, i.e., the
optimization objective is to maximize the computation rate
without considering the requirement of information freshness;

2) random offloading scheme, i.e., each time slot user ran-
domly chooses to execute locally or in the edge cloud; 3) local
execution scheme, i.e., the tasks are all executed locally; and
4) all offloading scheme, i.e., all tasks are offloaded to the edge
cloud for execution. In addition, to verify the performance
of the transmission scheduling strategy, we also compare the
D3QN-based transmission scheme with the DQN-based, the
policy gradient-based, and the random transmission policy.

B. Performance Analysis

Fig. 4 shows the influence of different η on the average
rewards of the system and the average weighted-sum AoI of
task execution. It can be clearly seen that they all converge in
6000 iterations under five different values of η. In addition, as
can be seen from Fig. 4(a), as η increases, the average rewards
of the system also increases. This is because the system rev-
enue is calculated as the weighted sum of the negative value
of the AoI and the computation rate, then plus the impact
of delay and energy constraints. If η is larger, the impact
of computation rate on overall benefits will also be greater,
which leads to users being more inclined to make actions that
increase computation rate (including local computation rate
and data transmission rate) when making offloading decisions.
As can be seen from Fig. 4(b), the average weighted-sum AoI
decreases as η increases, which reflects the higher freshness
of information during task execution. The increase in η skews
the user’s offloading decision toward actions with larger com-
putation rates. If the local computation rate is greater, tasks
are executed more quickly locally, making the AoI decrease.
If the data transmission rate is greater, then tasks are also
transmitted more quickly to the edge cloud, so the AoI also
decreases.

As shown in Fig. 5, with the increase of the local computing
power of the IoT device, the average rewards of the proposed
scheme and the other three schemes increases except for the
all offloading scheme. This is because the local computation
rate increases, and therefore the average revenue value of the
system also increases. In the all offloading scheme, tasks are
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Fig. 5. Comparison of the impact of local computing power. (a) Comparison of average reward. (b) Comparison of average weighted-sum AoI.

all offloaded to the edge cloud for execution, and the chan-
nel state between the user and the edge cloud is independent
of the local computing capacity, so the average revenue value
of all offloading schemes is not affected by the local com-
puting capacity of the device. Moreover, as can be seen from
Fig. 5(a), the average benefits of the proposed scheme is larger
than that of the other three schemes except for the computation
rate-based offloading scheme. This is because, in the computa-
tion rate-based offloading scheme, the system revenue is aimed
at maximizing the computation rate, without considering the
AoI. However, this does not mean that this scheme is superior
to the proposed scheme. From Fig. 5(b), it can be seen that this
scheme is at the expense of AoI. The proposed scheme takes
into account both the computation rate and the AoI, while
the random offloading scheme takes neither the computation
rate nor the AoI into account, and the local execution and
all offloading schemes have fixed actions and cannot adapt to
the dynamic changes of the channel, so the system benefit is
smaller than the proposed scheme.

In the transmission experiment, the transmission AoI
weights of the four users are set to (4, 3, 2, 1), respec-
tively. Fig. 6(a) shows the change of the average weighted-sum
AoI in transmission phase with the number of iterations.
Obviously, the AoI of the four transmission schemes converge
in 6000 iterations. The D3QN-based transmission scheme has
the smallest AoI among the four schemes, followed by the
DQN algorithm, and the random transmission scheme has the
largest AoI. This is because the D3QN-base strategy combines
the advantages of dueling DQN and double DQN, solves the
overestimation problem in the DQN algorithm, and introduces
state value function and action advantage function, which is
better than the unimproved DQN algorithm. Policy gradient
algorithm has poor stability because of the correlation between
the previous and subsequent states in the data sequence used
in parameters update, but its effect is better than the random
algorithm. The random transmission scheme does not consider
the influence of the AoI, and the user is randomly selected for
data transmission each time, so the AoI is the largest.

Fig. 6(b) shows the proportion of each user being
successfully transmitted under the four transmission schemes.
The AoI weight and network environment state of different
users are considered in the D3QN-based transmission schedul-
ing strategy. Since user2 has a better network environment
(higher data transmission rate) and the AoI weight is second
only to user1, the proportion of successfully transmitted pack-
ets is the highest. User1 has the highest AoI weight, but due
to its poor network environment, the edge cloud is affected by
the computation rate when making transmission policies, so
the percentage of successfully transmitted packets for user1 is
slightly lower than that for user2. However, due to the low-AoI
weight, the proportion of successfully transmitted data pack-
ets of user3 and user4 is lower than that of user1 and user2.
This is consistent with the transmission scheduling strategy
to be implemented in the actual situation, that is, user data
with a higher AoI weight level is transmitted as far as pos-
sible, but the network environment of different users cannot
be ignored. The problem with the DQN-based strategy is that
the transmission ratio of user2 is too high compared to user1,
which does not meet the requirement that user1 has the highest
AoI weight. In the policy gradient-based scheme, user4, which
has the lowest AoI weight, is completely ignored, resulting in
the packets in user4 not being transmitted all the time. In the
random transmission scheme, users are randomly selected to
transmit each time, and the AoI weight characteristics are not
considered at all, and the influence of the network environment
is also not taken into account.

Fig. 6(c) shows the change of the average data transmis-
sion rate of four users based on D3QN transmission strategy.
Obviously, the average data transmission rate of user 2 is
higher because it is scheduled by the edge cloud more times.
The second is user 1. Because its AoI weight level is the high-
est, then the AoI of this user has the greatest impact on the
overall income among the four users. Although the network
environment is poor, it is also selected by the edge cloud for
many times, so the average data transmission rate is still high.
User 3 and user 4 are selected less times due to lower AoI
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Fig. 6. Performance comparison of transmission strategies. (a) Convergence of transmission AoI. (b) Percentage of packets successfully transmitted. (c) Average
data transmission rate. (d) Effect of the number of users on AoI.

weight level, and the average data transmission rate is lower
than that of the first two users.

Fig. 6(d) shows the variation of the average weighted-sum
AoI with the number of users for the four transmission strate-
gies. As the number of users increases, the AoI performance
is decreasing. However, the D3QN-based strategy still has the
smallest AoI. This shows that the D3QN-based transmission
scheduling strategy can provide a good perception of the over-
all gain in AoI and computation rate, so that the data received
in the edge cloud is as fresh as possible, thus giving more
reliable analysis results.

VI. CONCLUSION

In order to guarantee the timeliness and freshness of data in
real-time IoT application systems, this article proposes an AoI-
aware joint optimization strategy for computation offloading
and transmission scheduling. Considering the constraints of
delay and energy consumption, our model aims at the compre-
hensive benefit of AoI and computation rate in task execution
and transmission phase. Then, a joint optimization strategy of
computation offloading and transmission scheduling based on
DDPG and D3QN is proposed. Experimental results show that

the proposed scheme has greater overall system revenue and
lower AoI than the other four offloading schemes and three
transmission schemes.
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