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Abstract—Handoff decision making is critical for mobile users
to reap potential benefits from heterogeneous wireless networks.
This letter proposes a biologically inspired handoff decision-
making method by mimicking the dynamics which govern the
adaptive behavior of an Escherichia coli cell in a time-varying
environment. With the goal of guaranteeing the Quality of Service
(QoS), we formulate a utility function that covers the demands
of a user’s diverse applications and the time-varying network
conditions. With this utility function, we map the dynamic
heterogeneous environment to a cellular decision-making space,
such that the user is induced by a cellular attractor selection
mechanism to make distributed and robust handoff decisions.
Furthermore, we also present a multi-attribute decision-making
network selection algorithm for any user to determine an access
network, which is integrated with the proposed bio-inspired
decision-making mechanism. Simulation results are supplement-
ed to show that the proposed method can achieve better QoS
and fairness when it is compared with conventional methods.

Index Terms—Heterogeneous wireless networks, quality of ser-
vice, attractor selection model, multi-attribute decision making.

I. INTRODUCTION

IN heterogeneous wireless networks, it is one of the most
important issues to be addressed that how to enable mobile

users to make handoffs between networks [1]. There are many
challenges, such as increased complexity, lack of centralized
control, stochastic and dynamic nature in mobility scenarios,
etc [2]. Many studies in wireless communications have paid
great attention to the issue of heterogeneous handoff decision-
making or network selection. Several approaches have been
applied to deal with this issue, including multi-attribute
decision-making methods [1], mathematical programming op-
timization [3], reinforcement learning [4], fuzzification and
combinatorial fusion [5], and game-theoretic solutions [6]. A
survey of handoff paradigms can be found in [7].

Nonetheless, conventional optimization theory-based hand-
off algorithms are usually realized based on individual interest,
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thereby potentially negatively affecting the global benefit, e.g.,
degrading global QoS performance. Similarly, the fuzzification
and combinatorial fusion is based on user equilibrium without
considering the global resources allocation. It is known that the
reinforcement learning or game-theoretic solutions is unsteady
or even diverge, when an action-value function is unstable or
cannot be properly tuned. In particular, the degradation in the
performance of previous schemes will be further exacerbated
by high mobility scenarios. The design of a high effective,
robust and scalable handoff framework will be of great signif-
icance in leveraging large-scale deployment of heterogeneous
networks.

In this letter, we propose a biologically inspired decision-
making method, based on a cellular attractor selection mecha-
nism [8], to enable users to make handoffs between networks
with distributed adaptability and robustness. Specifically, we
formulate a utility function for each user, combining the
demands of user’s diverse applications and the time-varying
networking conditions provided by heterogeneous networks,
which specifies the degree of QoS experienced by users. With
this utility, we map the stochastic and dynamic heterogeneous
environment to the cellular decision-making space, such that
we can apply the cellular attractor selection mechanism to
induce each user, like a cell, to make decisions in a ful-
ly distributed and adaptive manner. We further develop a
multi-attribute decision-making algorithm to choose an access
network. Extensive simulations based on an actual traffic
network under different traffic conditions have been conducted
to confirm that our bio-inspired framework can achieve a
performance improvement in terms of better QoS and fairness.

II. SYSTEM MODEL

A. Problem Formulation

We consider that there exist M different wireless networks,
defined by a set Net = {i|i = 1, 2, . . . ,M}, in the overlapping
region of which N mobile communication nodes (users),
denoted by a set MT = {j|j = 1, 2, . . . , N}, are presented.
At current time instant t, a user j is assumed to access a
wireless network ij ∈ Net and employs this network to serve
an array of diverse applications. At this point, we assume
that any user’s application type set is S and its networking
applications associated with the type s ∈ S are denoted by
a set appS j,s. Additionally, we denote by a set cNetj(t)
any user j’s candidate access networks at time t except
for the current access network ij , i.e., ij /∈ cNetj(t) and
cNetj(t) ( Net . It should be noted that due to the user’s
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mobility, cNetj(t) may change over time t. The objective of
any user j is to gain better communication benefit, i.e., better
QoS, by determining when is the right time to make a handoff
and which network among cNetj(t) should be chosen as a new
access network.

Without loss of generality, we assume that there are ni(t)
applications that are accessing the network i at time t and
can sense an equal dynamic throughput per application pi(t)
offered by i. Given the available channels of i at t is Ci(t)
and its per-channel throughput is Ri, we can calculate the
instantaneous throughput per application provided by i at t is

pi(t) =
Ri × Ci(t)

ni(t)
. (1)

For any user i’s application associated with the type s ∈ S ,
denoted by aj,s ∈ appS j,s, we let the upper and the lower
bounds of its bandwidth demand per application be ps,max

and ps,min, respectively. When aj,s is currently served by the
network i at time t, we can define by satisfaction(i, s) the
degree of QoS perceived by the user’s application aj,s:

satisfaction(i, s) =


0, pi(t) ≤ ps,min;
pi(t)−ps,min

ps,max−ps,min
, ps,min < pi(t) < ps,max;

1, pi(t) ≥ ps,max.
(2)

It is obvious that satisfaction(i, s) is an increasing function
of pi(t) and satisfaction(i, s) ∈ [0, 1], implying that a larger
throughput provided by a network will serve the application
better.

Furthermore, for any user j, we can propose the following
utility function to map the communication condition provided
by its current access network and the demands of its diverse
applications to an experienced QoS measure, QoS j(t):

QoS j(t) =
∑
s∈S

∑
aj,s∈appSj,s

wj,s∣∣appS j,s

∣∣satisfaction (ij , s) (3)

where wj,s is introduced to weigh the individual preference of
the user j for an application type s. Here, we assume wj,s > 0
and

∑
s∈S wj,s = 1.

B. Mapping from Cellular Decision-Making to Handoff

As revealed in [8], a cell of Escherichia coli usually
performs a synthetic bistable switch between different genetic
programs, i.e., attractors, to adapt itself to environmental
changes, in which it is driven by noises to select a more stable
attractor to survive under new environmental conditions. Such
an adaptive behavior of Escherichia coli can be described by
a group of nonlinear ordinary differential equations (ODE):

dm1

dt = S(A)
1+m2

2
−D(A)×m1 + η1

dm2

dt = S(A)
1+m2

1
−D(A)×m2 + η2

S(A) = 6A
(2+A)

D(A) = A

(4)

where m1 and m2 are two cellular state variables, each
of which indicates a mRNA concentration. The parameter
A, called cellular activity, reflects the growth rate of the

cell. η1 and η2 are two independent white Gaussian noises
resulting from environmental fluctuations and gene expression
fluctuations. In (4), the functions S(A) and D(A) represent
the rates of nutrient synthesis and degradation, respectively.
Particularly, as the result of interaction between the cell and
the varying environment, the cellular activity is captured by
the following ODE:

dA

dt
=

P∏2
l=1

[(
Nthrl
ml+Nl

)nl

+ 1
] − C ×A (5)

where the parameters P and C denote the producing and
consuming rates of A, respectively. Nthrl (l = 1, 2) is
the threshold with regard to the mRNA concentration ml to
produce A, while nl (l = 1, 2) is the corresponding Hill
coefficient. N1 and N2 represent the level of two different
nutrients supplied by the external environment, which can
reflect the dynamics of the environment and N1, N2 ∈ [0, 10].
According to [8], we adopt the values of Nthr l = 2, nl = 5
for l = 1, 2 and P = C = 0.01 in the study.

From (4) and (5), there exist two adaptive attractors in
the system state space, in one of which the value of the
corresponding state variable, ml, will overtake that of the
other, ml′ , i.e., ml >> ml′ (l ̸= l′). The cell interacting
with the environment, after perception of the time-varying
environmental state, represented by the pair of (N1, N2), will
switch from one attractor to another to accommodate the
environmental changes when the cell cannot survive under
new conditions any longer. Otherwise, it will remain in the
current attractor. During such an interaction between the cell
and the time-varying environment, (N1, N2) plays a key role
in driving the cellular adaptive behavior. It is worth pointing
out that the detailed analysis on the dynamics of the biological
model is out of the scope of this letter. We refer the interested
reader to the original paper [8] for a preliminary understanding
of this model.

Inspired by the adaptive attractor selection of a cell, we
model a handoff decision-making process of any user j as
a binary decision process. To be specific, we assume that a
user j is associated with a pair of time-varying state variables
(m1,m2), which are updated by using the attractor selection
model (ASM) (4). When a user adapts to the new wireless
network environments where the nutrient N2 is synthesised
while N1 is inhibited, the system converges to one stable
state, i.e., selecting a stable attractor, where m1 overweighs
m2. Contrariwise, the system selects another attractor with
m1 << m2. Accordingly, our bio-inspired handoff decision-
making mechanism is as follows: when the attractor with
m1 >> m2 is selected by the ASM, the user j is suggested
to make a handoff decision, i.e., triggering a handoff from the
current access network to a new one; when the other attractor
with m1 << m2 or m1 ≃ m2 is selected, the user should keep
its current connection and a handoff is not recommended at
this moment.

In addition, to facilitate the bio-inspired mechanism afore-
mentioned, we have to map the dynamics of the heterogeneous
environment to the time-varying environmental conditions
perceived by a cell. First, to smooth out certain short-term
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Networks 1 and 2
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Fig. 1. A heterogeneous access environment simulated in our experiment,
where moving vehicles are treated as mobile users and four different wireless
networks coexist.

fluctuations in the user j’s QoS j(t), we are based on equation
(3) to calculate a moving average of the user’s QoS time series,{
QoS j(τ)|τ ∈ [t−Wj , t]

}
, within a given time window Wj :

h1 =

t∑
τ=t−Wj

QoS j(τ)

Wj
. (6)

Next, to reflect the potential benefit provided by the candidate
networks associated with the user j, we further introduce a
QoS coefficient, AvgQoS j(t), to quantify the average QoS
level that may be perceived by j from its cNetj(t)

AvgQoS j(t)

=
∑

kj∈cNetj(t)

∑
s∈S

∑
aj,s∈appSj,s

γ × wj,s

|cNetj(t)|
satisfaction(kj , s)∣∣appS j,s

∣∣ ,

(7)

where γ is a factor and γ ∈ (0, 1], which is used to discount
the average potential benefit due to the fact that a certain
uncertainty may exist in the individual perception. For the sake
of simplicity, we also denote h2 = AvgQoS j(t) hereafter.

Finally, with (6) and (7) given above, we can map h1 and
h2 into the interval [0, 10] by using a sigmoid function (8)
shaped by two parameters a and b, and associate them with
the environmental conditions (N1, N2)

Ni =
10

1 + exp(−a× hi + b)
, (i = 1, 2). (8)

Based on (8), we can model the interaction between the user
and the time-varying heterogeneous environment similar to the
interation between a cell and its environment.

III. ACCESS NETWORK SELECTION WITH
MULTI-ATTRIBUTE DECISION-MAKING

Once a mobile user decides to perform a handoff induced
by the cellular decision-making mechanism, it needs to further
determine the new access network. To address this issue, we
propose a simple and robust network selection algorithm by
exploiting advantages in the multi-attribute decision-making
theory [9] as follows.

1) We first organize all the potential QoS benefits that each
type of the user j’s application can potentially perceive
from the candidate networks into an information matrix:

X = [x (kj , aj,s)] (9)

where we set x(kj , aj,s) = satisfaction(kj , s) for any
kj ∈ cNetj(t), aj,s ∈ appS j,s and s ∈ S .

2) In addition, we normalize the matrix X as follows:x′(kj , aj,s) =
x(kj ,aj,s)√∑

kj∈cNetj(t)
x2(kj ,aj,s)

y(kj , aj,s) = wj,s × x′(kj , aj,s).
(10)

3) For each application aj,s, we evaluate the positive ideal
solution, I+, and the negative, I−, by:
I+
j =

{
max

kj∈cNetj(t)
y(kj , aj,s)|aj,s ∈ appSj,s, s ∈ S

}
I−
j =

{
min

kj∈cNetj(t)
y(kj , aj,s)|aj,s ∈ appSj,s, s ∈ S

}
(11)

4) Furthermore, the differences between any candidate net-
work kj and the positive ideal network characterized
by I+

j , and between kj and the negative ideal network
characterized by I−

j can be calculated as follows:
Zj(kj)

+ =
√∑

s∈S

∑
aj,s∈appSj,s

(
y(kj , aj,s)− I+

j (aj,s)
)2

Zj(kj)
− =

√∑
s∈S

∑
aj,s∈appSj,s

(
y(kj , aj,s)− I−

j (aj,s)
)2

(12)
5) Each candidate wireless network is ranked with an asso-

ciated score:

Scorej(kj) =
Zj(kj)

−

Zj(kj)+ + Zj(kj)−
(13)

6) Finally, the optimal network is chosen corresponding to
the maximum score among {Scorej(kj)}, i.e.,

k∗j = argmax
kj∈cNetj(t)

{Scorej(kj)} . (14)

IV. PERFORMANCE EVALUATION

To evaluate the performance of our proposed method, we
carry out comparative simulation experiments. We consider a
realistic traffic network scenario in the city of Bologna, where
vehicle flows are simulated in a well-known microscopic road
traffic simulator, Simulation of Urban MObility (SUMO),
and based on field detector datasets provided by the project
iTETRIS. We also assume that there exist four different types
of wireless networks, Net = {i|i = 1, 2, 3, 4}, each owning
Ci = 3 channels. The per-channel throughput of any network
is set as R1 = 1, R2 = 5, and R3 = R4 = 3 (Mbps).
We set the coverage radius of the networks 1 and 2 equal
to 300m, and that of the networks 3 and 4 to 200m. As
shown in Fig. 1, a large roundabout and its nearby traffic
region are assumed located in the overlapping area of these
heterogeneous wireless networks. In our simulations, we as-
sume that three different types of networking applications are
running on any vehicular communication terminal (a user), i.e.,
S = {voice, video stream, data stream}, the demand bounds
of which are set in Table I according to [3]. As for any user
j, we randomly and uniformly generate a set of applications
associated with each type s ∈ S, appS j,s, and the amount of
a user’s applications with each type s ranges within [1, 2], i.e.,
1 ≤

∣∣appS j,s

∣∣ ≤ 2. Additionally, we adopt γ = 0.8 for (7)
and a = 14, b = 7 for (8) throughout the simulations.
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Fig. 2. Simulation results (a) and (b) show the evolution of system state of the ASM associated with an individual user, its handoff decisions as well as the
experienced QoS over simulation time. Figures (c) and (d) compare the performance, in terms of global users’ mean QoS and fairness in network resource
allocation, of different approaches under different traffic situations based on the city of Bologna.

TABLE I
THE BANDWIDTH DEMAND BOUNDS FOR DIFFERENT APPLICATION TYPES.

Application type s voice video stream data stream
ps,max(Mbps) 0.0625 0.1250 0.4883
ps,min(Mbps) 0.0088 0.0293 0.1250

First, we simulate the traffic flows on the Bologna road
network with a certain period from 0s to 600s, and then
randomly select a mobile user moving in the heterogeneous
environment (See Fig. 1) for demonstration of the adaptive
attractor selection dynamics. From Figs. 2a and 2b, it can
be seen that the user reliably selects an adaptive attractor,
in which m2(t) overtakes m1(t), during an initial time stage
from the initialization to about 70s. After that, it is induced by
the environmental dynamics and randomness to switch to the
other attractor with m1(t) overtaking m2(t). Then it stays in
this attractor state from about 70s up to the end. Accordingly,
during the first stage, this user can keep wireless connection
with Network i = 1. It performs successive handoffs between
Networks 1, 2 and 4 when the system is in the attractor with
m1(t) overweighing m2(t). Driven by the attractor selection,
this user is enabled to improve its experienced QoS at the
beginning of the first stage; then, it robustly and adaptively
responses, i.e., by making handoffs, to the QoS degradation it
suffers from environmental fluctuations within an intermediate
short duration from about 40s to about 70s, such that it can
again improve the QoS level finally. The overall figures reveal
that the user induced by the bio-inspired mechanism can adapt
to environmental changes.

Next, we further compare our method (’proposed’) with
other conventional schemes, i.e., the best throughput-oriented
handoff scheme (’best throughput’), the stochastic handoff
scheme (’stochastic’) and the other based on Technique for Or-
der Preference by Similarity to an Ideal Solution (’TOPSIS’).
For the performance comparison, we simulate the traffic flows
on the Bologna road network under different traffic situations,
i.e., Situations 1, 2 and 3, which are associated with a normal,
a dense and a sparse traffic flow conditions, respectively. In
Figs. 2c and 2d, the performance of each compared scheme
is evaluated in terms of the average QoS of global users
that have accessed the heterogeneous environment and the
Jain’s Fairness Index [10] of network resource allocation. It
is obviously observed that our proposed method can achieve

better global QoS and fairness performance in the various traf-
fic situations when compared to the other three conventional
handoff paradigms, illustrating potential advantages of the bio-
inspired mechanism.

V. CONCLUSION

In this letter, we have studied the handoff decision-making
issue that is challenged by a time-varying stochastic hetero-
geneous environment. This work demonstrates the power of
a bio-inspired mechanism, inherent in the dynamics of cellu-
lar attractor selection, to design a handoff decision-making
framework that is capable of driving users to adapt their
heterogeneous accesses with an elegance and efficiency and to
handle the dynamic and stochastic nature, heterogeneity and
complexity of a heterogeneous environment.
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