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• According to the rule of activity of most users, we introduce LSA by using the historical data. For the attack, we give out twomethods to preserve user’s
privacy.

• We divide the regions in the map into different PLs according to the privacy requirement. We design algorithm to make the regions of high level to
be dummies at a high rate and the regions of low level at a low rate. The problem that the attacker can violate the privacy of a particular region by
analyzing the historical data is solved.

• We analyze the ability to preserve user’s privacy by entropy. The internal relation among the frequency of user’s LBS query, the division of regions in
the map, and the length of the interval of historical information collected is discussed.
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a b s t r a c t

The fusion of mobile devices and social networks is stimulating a wider use of Location Based Service
(LBS) and makes it become an important part in our daily life. However, the problem of privacy leakage
has become a main factor that hinders the further development of LBS. When a LBS user sends queries
to the LBS server, the user’s personal privacy in terms of identity and location may be leaked to the
attacker. To protect user’s privacy, Niu et al. proposed an algorithm named enhanced-Dummy Location
Selection (en-DLS). In this paper, we introduce two attacks to en-DLS, namely long-term statistical attack
(LSA) and regional statistical attack (RSA). In the proposed attacks, an attacker can obtain the privacy
contents of a user by analyzing LBS historical data, which causes en-DLS to be invalid for user’s privacy
protection. Furthermore, this paper proposes a set of privacy protection schemes against both LSA and
RSA. For LSA, we propose two protection methods named multiple user name (MNAME) and same user
name (SNAME). To solve the regional privacy issue, we divide the map into various regions with different
requirements on privacy protection. For this purpose, four levels of protection requirements (PLs) are
defined, and true location is protected by allocating a certain number of positions from the dummies
according to the location’s PL. Performance analysis and simulation results show that our proposed
methods can completely avoid the vulnerabilities of en-DLS to both LSA and RSA, and incur marginal
increase of communication overhead and computational cost.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

With the development of mobile computing and network
technology, mobile phone has become a necessity in people’s life.
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Besides satisfying the need of daily communications,mobile phone
also provides many convenient services for human being [1]. With
the development of smartphones, Global Positioning System (GPS)
has been solidified in themost smartphones and provides function
for mobile service provider to position the smartphone. America
E-911 document has pointed out that mobile service providers
should provide location recognition service in 125 m in order that
the owner ofmobile phone can obtain timely rescue and helpwhen
she is in danger, such as fire or hijacked [2].
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Recently, many Location Based Service (LBS) applications come
into being. In spite of various benefits brought by LBS, the intrinsic
privacy leakage problem cannot be ignored due to the openness of
wireless networks [3]. At present, privacy leakage issues become
the main obstacle to the wide application of LBS services.

As stated in [4], location privacy is ‘‘the ability to prevent others
from obtaining the current or past location of the user ’’. For privacy
preserving in LBS service, there are several challenges:

• High Precision: The user’s identity and location should be
protected. Meanwhile, the precision of LBS service should be
ensured.

• Low Overhead: The communication, computation and storage
ability of the user terminal is limited. Thus, the communication
overhead, the computational cost, and the storage overhead
should be low in preserving the user’s privacy.

• Privacy: LBS server itself may be an attacker. It can obtain the
user’s real location and historical data directly.

The main solutions to protect user’s privacy can be divided into
obfuscation and anonymity according to the technology used. In
anonymity, using dummy is efficient since it need not a trusted
third party to preserve privacy and it attracts many scholars’
attention. Among them, Niu et al. proposed enhanced-Dummy
Location Selection (en-DLS) based on the probability of sending
LBS queries from a location in the history by users [5]. It solves
the problem of privacy leakage in a single LBS query. In [6],
Niu et al. proposed Caching-aware Dummy Selection Algorithm
(CaDSA) and enhanced-CaDSA which use caching to improve the
privacy of user. En-DLS has the following characteristics:

• Side information: In en-DLS, side information refers to the
terrain information in the city. The dummies are not selected
from the rivers or mountains in the city, but carefully selected
based on the historical query probability in the locations. The
problem of reducing in protection caused by side information
is solved.

• Cloaking area: To overcome the disadvantage of k-anonymity,
in en-DLS, the coverage area of the dummies is selected as large
as possible.

• Implementation issues: In en-DLS, accessing to the historical
queries is fully considered. Access Points (AP) based method is
proposed. The communication overhead is relational.

Although en-DLS solved the problem of privacy leakage in a
LBS query, it has vulnerabilities. In this paper, we introduce two
attacks to en-DLS, namely long-term statistical attack (LSA) and
regional statistical attack (RSA). The attacker can obtain user’s
privacy contents using historical statistics. For an attacker, after
compromising the LBS server, he can obtain a large number of
historical data. We introduce an attack named LSA to obtain
user’s real identity and location using these historical data. We
study based on LSA and put forward two methods to preserve
privacy namedmultiple user name (MNAME) and same user name
(SNAME). Besides LSA, the attacker can obtain the historical LBS
applications from a particular region. Furthermore, the attacker
can obtain a lot of information about the user from the region
through statistics. For this problem,we propose amethod to divide
the regions in the map into different privacy levels (PLs). Then, we
delete some dummy locations in en-DLS and select some locations
from high PL regions to protect the privacy of the regions. We
take entxu2007preventingabbas2013collusionropy as the metric
to analyze the ability of the proposed methods. The performance
analysis and simulation results show that the proposed methods
can effectively preserve user’s privacy against LSA and RSA. The
main contribution of this paper includes the following aspects:

• According to the activities of most users, we introduce LSA. For
the attack, we give out two methods to preserve user’s privacy.
• We divide the regions in themap into different PLs according to
the privacy requirement. We give out an algorithm to make the
regions of high PL to be dummies at a high rate and the regions
of low PL at a low rate. The problem that the attacker can violate
the privacy of a particular region by analyzing the historical data
is solved.

• We analyze the ability of preserving user’s privacy by entropy.
The relation among the frequency of user’s LBS query, the
division of regions in the map, and the length of the interval
of historical information collected is discussed.

The rest of this paper is organized as follows. Section 2 gives out
somepreliminaries andmotivation of this paper. In this section,we
give out LSA and RSA. In Section 3, we propose methods to resist
LSA and RSA. In Section 4, we discuss the security and performance
of the proposed methods. Section 5 presents the simulations. In
Section 6, we review the related work. Conclusion and future work
are in Section 7.

2. Preliminaries

In this section, we first introduce the privacymetrics and attack
model. Then, we give out the motivation of our solution.

2.1. Metrics for privacy

To measure the ability of preserving privacy, we need some
metrics. There are five kinds of metrics currently [7]. They
are uncertainty-based metric, ‘‘clustering error’’-based metric,
traceability-based metric, k-anonymity metric, and distortion-
based metric. In this paper, we use uncertainty-based metric to
measure privacy in communication system. In [8], the author put
forward to measure the ability of an attacker by differentiating
the real locations from the anonymous set. The author pointed out
k-anonymity is really achieved if the attacker cannot distinguish
the real location from the k−1 locations in the same transmission.
In [5], the author proposed that the direct method to measure the
privacy preserving ability in k-anonymity is to use the k. The larger
k denotes the higher ability to preserve privacy. However, there are
some disadvantages in this measurement. For example, the k − 1
dummies may be selected in the rivers, lakes, mountains, or in the
impossible positions to reach in the path for the limited of speed.
The attacker can easily distinguish them as unlikely LBS query
positions from the real location. Therefore, simply using k as the
metric cannot express the ability of privacy protection accurately.
Besides k, entropy is widely used to measure the ability [5,6,8–10].
Entropy is first used to measure privacy in [11]. As we all know,
entropy is often used to measure the uncertainty of a system. In
privacy protection, entropy can be used to measure the degree of
uncertainty of a location belonging to a user. In k-anonymity, from
the point of view of the attacker, in the anonymous set consists of
the real location and k − 1 dummies, the probability of a location
to be the real one is pi. In the anonymous set, the sum of all
probabilities pi is one. Thus, the entropy H of identifying a real
location in the candidate set is

H = −

k
i=1

pi · log2 pi. (1)

When all the k locations in the set have the same probability,
the maximum entropy is achieved, where the probability pi is 1/k
for all the locations and the maximum of H is log2 k.
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Fig. 1. Structure of LBS system.

2.2. Adversary model

In this paper, we assume that the users’ accesses to the LBS
are sporadic, which means the period between two successive
LBS application cannot be neglected. As in [5], in this paper,
we assume that the format of user’s applying information is
⟨(x, y), I, r, others⟩. Among them, (x, y) refers to the location of
the user. I indicates the interest of the user, that is the type of LBS
requests. The range is r . Others include user’s identity and other
information.

The goal of the attacker is to obtain the user’s privacy
information, including name, interest, and location. An attacker
could monitor around to obtain user’s applying packets and obtain
private information sent by the user. An adversary may also
monitor a user to crack the points of interest (POIs) sent by LBS
server to the user. Then he can infer the user’s identity, location,
interest, etc. An attacker can also directly compromise the LBS
server to obtain the historical data of users. In this paper, we
assume LBS is the attacker. For commercial purposes, he attempts
to obtain information related to user’s privacy. He interests in
user’s real location and type of LBS query. He cannot only obtain
current user’s LBS query, but also the historical data of the user. He
also knows the privacy protection mechanism.

2.3. Motivation and new approach

When a user sends a LBS query by his smartphone, the location
of the smartphone is first determined by GPS service. Then, the
smartphone forwards the user’s identity, location, interest, and the
range of the query to the LBS server either directly or in-directly
through anonymizer. At last, LBS server will reply according to the
user’s query and feedback POIs as shown in Fig. 1.

As stated above, the attacker can obtain the same information
of users as LBS server. In traditional privacy preserving method,
k − 1 dummies are selected randomly to confuse the attacker
and protect the real location. However, in [5], the author found
that because of the different layout of terrain and living area, the
probabilities of applying LBS service in the regions are different.
For example, in some city, there are rivers or mountains. Users can
hardly be in these regions to apply LBS service. So the traditional
method to select k − 1 dummy locations cannot protect the real
location efficiently because of the side information. For example,
when k is 20, if 14 dummies in 19 dummy locations are selected
in the regions with low probabilities of applying LBS service, the
attacker can easily filter out the 14 dummies. In [5], the author
quantified this problem using entropy and proposed DLS which
selects k − 1 dummies from the grids with the same or similar
probabilities. The DLS algorithm is shown in Fig. 2.

The author simplified the regions in the city to a grid. Based on
the historical data, the author used different shades in the grids
to indicate different probabilities of user’s applying LBS services in
the regions. Blank squares represent users never or rarely send LBS
queries from the regions in the past. In the figure, candidate cells
Real User

0

Fig. 2. DLS algorithm.

Fig. 3. Attack through using the historical data.

to be selected as dummies which has similar probability as the real
location are marked with

√
.

Based on DLS, the author proposed en-DLS which makes the
cloaking area of dummies as large as possible.

Although en-DLS solves the problem of privacy leakage in a LBS
query, it has the following vulnerabilities. Refer to Fig. 3, assume
Bob often sends LBS queries in his home. The real location will
be disclosed to the attacker due to the accumulation of historical
data. It is because in en-DLS, for every LBS application, dummies
are decentralized, whereas the real locations are concentrated
relatively. The attacker can obtain the user’s real location from the
historical data. Moreover, he can obtain the privacy contents about
the user.

In en-DLS, assume k is 20. Then, k − 1 is 19. When a user
applies LBS, 19 dummy locations will be carefully selected to
protect the real location. This method can efficiently protect
user’s privacy in one service. However, considering the behavioral
pattern in people’s daily life,most activity placeswhere a user stays
mainly concentrate in the home, the place of work, and the fixed
entertainment place (such as fixed cinema or cafe). So, an attack
is proposed as follows. An attacker first captures and analyzes
a user’s historical data. Through looking for the LBS request of
the particular user in a certain period of time, even if every
request is protected by 19 carefully selected dummy locations, the
attacker is still able to obtain the main locations of LBS requests
by analyzing the historical data after the amount of privacy data
are accumulated to a certain extent. Then, the attacker can deduce
the user’s identity, the place of work, personal interest, and other
privacy contents from the obtained data.
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Assume the attacker has obtained the historical LBS application
data of user S. The time interval of the first LBS request to the
last LBS request of S in the data is t . S sends LBS queries in the
frequency of q. The map is divided into r × r grids. The en-DLS
in [5] is adopted. Each time the user applies LBS service, there will
be k−1 selected dummies. For simplicity, we assume that the user
only applies LBS service at home. Assume there are m grids that
have the same probabilities as the location of S and can be selected
as dummies. Then there is the following relationship. Every time
S sends a LBS query, any of the m grids has probability pm to be a
dummy location.

pm =
Ck−2
m−1

Ck−1
m

=
k − 1
m

. (2)

In the time interval t , user S has applied LBS services for n times.

n = t · q. (3)

In these applications, k× n locations are generated. Among the
locations, the number of real location is n and the location is user’s
home. The rest of (k − 1) × n locations are dummies. In m, every
grid has nd times to be dummies in (k − 1) × n.

nd = n × pm =
n × (k − 1)

m
(4)

n − nd = n ×


1 −

k − 1
m


. (5)

We assume that every time user S applies LBS service, there are
enough grids to be dummies. That is to say,m is far large than k−1.
Assume k− 1 > 0. We can conclude that pm < 1 and nd < n. After
calculation, we get:

lim
m→∞

pm = lim
m→∞

k − 1
m

= 0. (6)

We draw the following conclusion: the bigger the m, the more
is n-nd. That is to say, as long as m is large enough, the times of
every grid in m to be dummy location will be close to 0. Because
n is the times of user S applying LBS service and it is a constant.
So, as long as n is large enough (that is to say the user’s historical
data of LBS application is enough), we can conclude that the times
of LBS application in real location will be far more than in any
dummy location. This shows that if the real locations of the user
are relatively concentrated, the locations of dummies are relatively
decentralized because of their randomness and the dummies can
be ignored by the attacker. So the real location cannot be protected
by these dummies efficiently. It needs to be explained that in this
paper, we assume the frequency of user applying LBS service q as a
determined value. In reality, user applies LBS service in a random
manner. For simplicity, in the latter part of this paper, qwill also be
regarded as determined. Analysis on the reality of a random q can
be the work of future. In the above method, attackers can obtain
privacy contents by analysis of historical data. In this paper, we call
this kind of attack long-term statistical attack (LSA).

Below, we will illustrate the attack by experiment.
Fig. 4 is a statistical map of user Bob applying LBS services

in a month. Bob applies LBS service about 3 times a day. The
map is divided into 10 × 10 size of grids. Each point in the grid
represents the LBS server received one LBS application from the
location. In these applications, some applications are from real
locations, others are from selected dummies. Among them, the
number of Bob’s real LBS applications is 90. Every time Bob sends a
real application, 19 dummy locations will be generated at random.
To illustrate the problem, we select dummies at random in the
experiment. The approach to select dummies according to en-DLS
in [5] is similar as this.
Fig. 4. Long-term statistical attack.

Fig. 5. User’s real trajectory.

As we can see from the figure, the majority of user’s applying
locations are in three grids. The three grids are respectively
corresponding to Bob’s home, company and cafewhere Bob spends
his leisure time. According to Fig. 4, the attacker can obtain Bob’s
real locations by statistics and then infers Bob’s privacy, such as
identity, place of work and personal habit.

Fig. 5 is the real applying locations of a user in a day. The user
applies LBS service every 30 s. Fig. 6 is the results of generating 19
dummies for every real application. From the figure, we can see
although dummies are added, the locations where the user’s real
LBS applications concentrate cannot be protected efficiently.

Besides LSA, there is another vulnerability in en-DLS in privacy
protection. The attacker can collect and analyze LBS queries in a
particular region according to the historical data. If the region is
corresponding to Bob’s home and in a long period, the applications
from this region are mainly about health [12], the attacker can
deduce that the user in that region has problem with his health
even if the method in [5] is used. If Bob lives alone, the attacker
can obtain that the user who lives in the region is Bob by social
engineering and he can knowBob has health problem. The attacker
can sell this information to commercial institutions and Bob
will be rather baffling to be sent a large number of heath care
advertisement. Bob will feel his privacy has been violated. If Bob
lives with his family, even if it is unable to accurately determine
who has health problem and unable to determine the identity
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Fig. 6. Results with dummies selected at random.

of the user, the attacker can also draw the conclusion that there
is someone has health problem in that family. Thus, the family’s
privacy has been violated.

Another example is in a secret department (such as government
agency, military industrial enterprise) there are a large number of
employees. The attacker analyzes the LBS queries in the historical
data from the region. Assume in a certain period of time, at 5:00 in
the afternoon, most of the staff in the department go off work and
they apply traffic information through LBS service. Even dummies
are taken, through historical data analysis, the attacker can know
that at 5:00 in the afternoon there aremany userswho apply traffic
service. Then, the attacker can conclude that the department stops
working at 5:00 in the afternoon. If in a period of time, the attacker
obtains from the historical data thatmost users send traffic queries
at 6:00 in the morning, he can easily conclude that in the period
of time, the department works overtime at night. He can also
speculate that in this period of time, the department is engaged
in an important secret project. According to the similar traces, the
attacker can obtain more or less information associated with the
work of the department. Then, the secrets of the department will
be violated.

On the other hand, if the map is divided into many grids,
using dummy to achieve privacy preservation may lead to the
sensitive region has less probability to be dummies of other LBS
queries. Therefore, less application will be sent from the region.
Through historical data analysis, the attacker can easily obtain real
application from the region.

Based on the method in [5], LBS server is the attacker. The map
is divided into r × r grids. Assume in grid A, only user S applies LBS
service. In the time interval of t , from the view of the attacker, user
S in grid A applied LBS service for s times. s = sreal + sdummy, where
sreal denotes the times of real LBS applications from the user in A in
the time interval of t and sdummy denotes the timeswhich A is taken
as dummy of other LBS applications in t . Assume there arem grids
which has same or similar probability as A. That is to say, when S in
A applies LBS service, m locations are available for selection to be
dummies. In turn, when a user in any of them locations applies LBS
service, Amay be a dummy. Assume there are n users in all of them
locations and the frequency of the LBS application from every user
is q. When a user applies LBS service, k−1 dummies are generated.
Then, in the period of t , the number of total LBS applications in the
m locations is n × t × q. In one application, the probability of A to
be a dummy, pA, is:

pA =
Ck−2
m−1

Ck−1
m

=
k − 1
m

. (7)
Fig. 7. Regional statistical attack.

In the period of t , the total times of A to be dummyof others, sdummy,
is:

sdummy = pA · n · t · q =
ntq(k − 1)

m
. (8)

We can see from (8) that bigger is m, smaller is sdummy. If sreal
is big enough, the LBS applications from A can be regarded as real
application. Because LBS server is the attacker, he can easily obtain
k and compute sdummy from (8). If he obtains that in a particular
region, s is far greater than sdummy, he can conclude that in the
region there are a large amount of real applications. If the interests
of most applications happen to be the same, he can associate the
interest with the region. In this paper, we call this kind of attack
regional statistical attack (RSA).

Below, we will illustrate the attack by experiment.
Fig. 7 depicts LBS applications in a particular district at 5:30

p.m. Every point in the figure denotes a real LBS application in
the location or a dummy. The grid where more points gathered
is a company. The employees of the company stop working at
5:30 and they apply LBS service for bus information at that
time. Each time a real application is sent, 19 dummies will be
generated. From the figure, we can see that the LBS applications
aremainly concentrated in the region. The attacker can analyze the
historical data. If in the historical data, at 5:30 p.m. LBS applications
about bus information are often sent from the region and the
attacker obtains by social engineering that in the region there is a
company, he can easily conclude that the company stopworking at
5:30 p.m.

3. Enhanced K -anonymity method

In this section, we propose methods to defend against LSA and
RSA.

3.1. Method to defend against LSA

Since user’s historical data can be used for LSA by attackers, we
propose two methods to resist the attack.
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3.1.1. MNAME
In this method, a user stores several user names. Every time LBS

service is applied, the user selects one name from the user name set
as current user name and sends it to LBS server. In the process of
generating these names, uncommon user name should be avoided.
The advantage of this method is that privacy protection does not
depend on the third party. Since the LBS applications from a user
are sporadic, it is hard for an attacker to link two user names to one
user. Therefore, mix zone is not needed. This method can preserve
privacy efficiently combined with the dummy selection method
in [5].

3.1.2. SNAME
In this method, every time a user applies LBS service, the query

is changed by the anonymizer and sent to LBS server by the
anonymizer. The anonymizer changes every user name to the same
one and then sends the query to LBS server. Assume the number of
users of the anonymizer is m. As long as m is big enough, LSA can
be defended.

3.2. Method to defend against RSA

We propose a method to defend against RSA.
We divide the regions in the map into 4 PLs according to the

privacy requirement of the grid.
The first level regionmainly includes some secret departments.

In this kind of region, the leakage of privacy may infringe on the
interest of the department.

The second level region mainly includes the region which can
disclose user’s personal privacy, such as someone’s residence etc.
From the LBS applications in this kind of region, the attacker can
easily confirm the user’s identity and the information related to
the region.

The third level region mainly includes the region where there
are less people. In this kind of region, privacy is easily violated.

The fourth level region mainly includes the region where there
are more people, such as business zone etc. In this kind of region,
the possibility of privacy leakage is less.

For the third level region, we will illustrate the problem by
an example. In a remote factory, there are two employees. One
employee is the attacker and he can obtain the LBS historical data
of the region. Although the en-DLS in [5] has less probability in
selecting this region as dummy of others, if LBS applications are
often sent from the region and the interest of the application is
the same, the attacker can conclude that these LBS applications are
from the other employee and he can obtain the interest type of the
applications. Therefore, in the region where there are less people,
the probability of privacy leakage is bigger than the region with
more people.

On the contrary, for the fourth level, because in the region,
there are more LBS users, the real identities and locations will be
protected well by the LBS users who apply LBS service at the same
time. Therefore, in the regionwhere there are often a large number
of LBS users, the probability of privacy leakage is less.

For the above four level region, based on en-DLS, we propose
method to resist RSA. In the k − 1 dummies, we delete some
dummies according to a certain proportion. We make the first
level region has a high probability to be a dummy, whereas the
fourth level region has a low probability. The advantage is that
there will be a lot of LBS queries from the region of high privacy
requirement. Then, the attacker cannot distinguish which one is
the real application. The rest of dummies are selected by en-DLS.

The algorithm is as follows.
In Algorithm 1, we select k − 1 dummy locations according

to en-DLS firstly. Secondly, in these k − 1 dummies, we delete
some dummies as a proportion of 1/λ. Then we construct regional
Algorithm 1: Statistical Attacks Resilient Algorithm
Input: k-anonymity k, PL i, proportion λ, collection of user

name U, temporal set M
Output: an optimal set of dummy locations R

1 Select dummies as en-DLS and output is R;
2 Delete (k − 1)/λ dummies from R;
3 Choose w1 regions from PL 1 regions at random and add
them into M;

4 Choose w2 regions from PL 2 regions at random and add
them into M;

5 Choose w3 regions from PL 3 regions at random and add
them into M;

6 Choose w4 regions from PL 4 regions at random and add
them into M;

7 Choose (k − 1)/λ dummies from M at random and add them
into R;

8 Choose a user name in U at random and use it as user name
in all locations in R;

9 Output R;

anonymous set M. First, we select w1 regions at random from PL 1
regions and put them inM. Second, we selectw2 regions at random
from PL 2 regions and put them inM. Third, we selectw3 regions at
random from PL 3 regions and put them in M. Fourth, we select w4
regions at random from PL 4 regions and put them in M. A typical
proportion isλ = 4 andw1:w2:w3:w4= 8:6:4:1. Then,we choose
(k − 1)/λ dummies from M and add them into set R. Next, we
choose a name at random from user name set U and combine the
user name with the dummies. At last the k locations will be sent to
LBS server. In this algorithm, MNAME is adopted to resist LSA.

4. Analytic results

4.1. Security analysis

In our methods, the attack to the communication between the
user and the LBS server, such as eavesdropping, can be defended
by encryption. Next, we mainly focus on the attack in which the
LBS server is the attacker. He hopes to obtain some contents about
privacy by using historical data.

Entropy is an effective metric to measure the ability of privacy
protection. In this section, we use entropy to measure the privacy
preserving ability of the proposed method.

First, we analyze the method which uses MNAME in resisting
LSA. Assume every user in the system stores m user names. User S
also stores m user names. In every LBS query, the probability that
a user name is used by the user is ps.

m
s=1

ps = 1. (9)

Assume that S uses user name u to send a LBS query and there
are r users in the same LBS service who have u in their user name
set except S. Assume the frequency of LBS application from these
r users is q. Assume the time interval between the LBS application
from S and next application from S is t . Then in t , every user who
has user name u has applied LBS service for q × t times. Among
this applications, the times of applications which use u as the user
name is ps × q × t . For every application, k − 1 dummies will be
generated. Then in t , u is used as the user name of an application
for k× r×ps ×q× t+k times (the applications from S is included).
Among them, the real application from S is 1 times. That is to
say, between the two applications, the entropy which the attacker
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distinguishes real location of S from the anonymous set in time
period of t is:

H = −

k×r×ps×q×t+k
i=1

pi · log2 pi. (10)

If a user does not use uncommon user name, r will be big. The
higher is the frequency of user’s application, the bigger is q and the
real location will be protected against LSA efficiently.

Below, we will discuss the problem in using SNAME to defend
against LSA. Assume S is a user who applies LBS service. Assume
there are r users using the same anonymizer and the frequency of
application of these r users is q. Assume the time interval between
the LBS application from S and next application from S is t . Then,
in the time interval of t , every user using the same anonymizer
applies LBS service for q × t times. The user name of these users
are same as S which is u and in every application, k − 1 dummy
locations will be generated. Then, in t , the number of applications
using u as the user name is k × r × q × t + k (S’s application is
included). Among them, the real application from S is only 1 times.
That is to say, between the two applications, the entropywhich the
attacker distinguishes real location of S from the anonymous set in
time period of t is:

H = −

k×r×q×t+k
i=1

pi · log2 pi. (11)

At last, we will discuss the security of the method to defend
against RSA according to Algorithm 1. Assume in grid A, only S
applies LBS service and the time interval between the application
from S and next application from S is t . Assume in t , r users
apply LBS service. For each user’s application, k − 1 dummies
are generated. Among the k − 1 dummies, k − k/λ dummies are
generated according to en-DLS. The remaining k/λ dummies are
used to preserve the privacy of high PL regions. Letw = w1+w2+

w3 + w4 and assume the PL of A is i. The number of PL i regions in
the map is vi. According to Algorithm 1, wi regions will be chosen
from vi at random and be added into M. Thus, the probability of
adding A into M, pSM is:

pSM =
wi

vi
. (12)

Let g = k/λ. In M, the probability that A is chosen to be a
dummy location, pSD is:

pSD =
Cg−1

w−1

Cg
w

=
g
w

=
k

λw
. (13)

According to these, we can conclude in one application, the
probability that A is chosen to be a dummy location of other
applications, pSR is:

pSR = pSM · pSD =
kwi

λvi(w1 + w2 + w3 + w4)
. (14)

Between the two applications of S, there are r users applying
LBS service. Then, the times that region A becomes dummies of
other applications, sdummy is:

sdummy =
rkwi

λvi(w1 + w2 + w3 + w4)
(15)

H = −preal · log2 preal − pdummy · log2 pdummy. (16)

According to the analysis in Section 2, we can know for LBS
server, in the applications from region A, s = sreal + sdummy. The
privacy in the region depends on sdummy. Therefore,we canpreserve
privacy by ensuring that sdummy is more than sreal. In formula (15),
sdummy is inversely proportional to vi and proportional to r . The
bigger is wi, the bigger is sdummy. In practice, we can protect the
privacy of the regions by adjusting wi and vi. vi should be small
and wi should be big. That is to say, the regions with a high PL
will be given more protection, such as some secret departments
and important residence of people. On the other hand, with the
popularity of LBS service, the frequency of LBS application will be
higher and higher. Thus, a big r can be ensured. Therefore, the
method proposed in this paper can solve the problem of RSA along
with the popularization of LBS.

In Table 1, we compare the entropy of the proposed method to
the method which chooses dummy at random and the methods
in [5,13].

In Table 1, only themethod in this paper considers LSA and RSA.
Therefore, from the point of view of statistics, the entropy of the
proposedmethod in this paper is bigger than log2 k. The entropy of
the method which chooses dummy at random is less than log2 k
since the method has vulnerabilities in choosing dummies. For
CirDummy and GridDummy, when side information is considered,
the entropy is lower than log2 k. For en-DLS, when statistical
attacks are not considered, the entropy is log2 k, whereas when
statistical attacks are considered, the entropy is less than log2 k.

4.2. Performance analysis

In the following, we will analyze the performance of the
proposed methods and indicate that they have strong practicality.
We compare the performance of the proposedmethods with other
methods.

4.2.1. Utility
In our methods, for every LBS query, real location is sent

with dummies. In MNAME and SNAME, only the user’s identity
is changed. The accuracy of the location has not been affected.
Therefore, the reported locations can still give reasonable query
answers to the user. In Algorithm 1, only the dummy locations are
changed. The accuracy of the real location has not been affected.
So, the LBS server will still give reasonable answers. In short, the
utility of the proposed methods is still reasonable as en-DLS.

4.2.2. Communication overhead
Compared with other schemes, MNAME proposed in this paper

will not bring extra communication overhead. The LBS application
sent from the user includes a real location and k − 1 dummies
and the communication overhead is O(k). The communication
overhead of the information sent from LBS server is related to the
returned POIs and k. Assume the return POIs are m. Then the
communication overhead of LBS server is O(ka ×mb), where a and
b are constant.

In SNAME, an anonymizer is needed. The communication
overhead is divided into the overhead from the user to the
anonymizer, the overhead from the anonymizer to LBS server, the
overhead from LBS server to the anonymizer, and the overhead
from the anonymizer to the user. In them, the communication
overhead from the user to the anonymizer only includes the
encrypted real user name, location, interest, etc. So, the overhead
is a constant. The communication overhead from the anonymizer
to LBS server includes the real location and k − 1 dummies with
user name changed. The overhead is O(k). The communication
overhead from LBS server to the anonymizer is related to the
returned POIs and k. It is O(ka×mb), where a and b are constant. The
communication overhead from the anonymizer to the user only
includes the POIs for the real application. So it is O(m).

In the method to defend against RSA, some dummies occupy
the position of original dummies to provide privacy protection for
high PL regions. Therefore no extra communication is needed. The
main communication overhead is from distributing the PL of the



Y. Sun et al. / Future Generation Computer Systems 70 (2017) 48–58 55
Table 1
Comparison of security of the methods.

Proposed method Random CirDummy GridDummy en-DLS

Entropy > log2 k < log2 k < log2 k < log2 k log2 k
Side information Y N N N Y
Resist LSA Y N N N N
Resist RSA Y N N N N
regions in the map. The information of PL is not often updated.
It may be updated once a month or once a year. So, this part of
communication overhead can be ignored in theoretical analysis.

In Table 2, we compare the communication overheads of
the proposed methods to the method which chooses dummy at
random and en-DLS. In the table, C denotes a constant.

4.2.3. Computational cost
The computational cost mainly includes the encryption and

decryption of locations.
In MNAME, a user chooses a user name at random and

generates dummies. To prevent the attacker from eavesdropping,
the transmitted information should be encrypted and the results
will be sent to the LBS server. The computational cost of the
user is O(k). After the information arrives at LBS server, the
server encrypts the returned POIs and sends to the user. The
computational cost of LBS server is O(ka × mb), where a and b are
constant. The user obtains the encrypted POIs. Then he decrypts
the POIs. The computational cost is O(ka × mb).

In SNAME, when a LBS query is sent, the user’s computational
cost includes the encryption of real user identity and real location.
The cost is O(C). The anonymizer generates k−1 dummy locations
and sends the results to LBS server. The computational cost is
O(k). After LBS server obtains the application, POIs are generated.
Then the POIs are encrypted and sent to the anonymizer. The
computational cost of LBS server is O(ka × mb). The anonymizer
decrypts the POIs. Then the anonymizer encrypts the results and
sends them to the user. The computational cost is O(ka ×mb

+m).
After the user receives the m encrypted POIs, he decrypted them
and gets the last results. The computational cost is O(m). Therefore,
the total computational cost of the user is O(C +m). The total cost
of the anonymizer is O(ka × mb

+ m + k).
In the method to defend against RSA, the original dummies

are only substituted by the dummies selected according to the PL.
Therefore, only the computation of selecting dummies is added.
Since the computation cost of selecting dummies is very small, this
computation cost is ignored in performance analysis.

In Table 3, the computational costs of the methods are
compared.

4.2.4. Storage overhead
In MNAME, for mobile devices, the storage of user name set

is added. The storage overhead is related to number of the user
name stored. It is O(n), where n is the number of the user name
stored. In SNAME, because an anonymizer is used, extra storage
overhead is not needed for the mobile user. The storage overhead
of the anonymizer is related to the number of the users to apply LBS
service. In the method to defend against RSA, users need to obtain
and store the PLs in the map. The storage overhead is O(r × r).
Since the PLs will not often be updated, the storage overhead is a
constant.

5. Experiments and results

Below, wewill verify the performance of the proposedmethods
by experiment. The experiment focuses on the ability of privacy
protection of the methods, user’s communication overhead, and
user’s computational cost.
Fig. 8. Entropy vs. k.

5.1. Experimental settings

The machine which we do our experiment is a computer with
Intel Pentium CPU G630 2.7 GHz and 8.0 GB RAM. The operation
system of the computer is Win7 64bit. Our experiment is under
Matlab 2012b. In our experiment, the map is divided into grids of
1000×1000. 10000 users are randomly distributed into the grids.
The POIs in the map are totally 1000.

5.2. Simulation results

5.2.1. Entropy
In MNAME, there are 1000 user names for all users. Assume

that every user chooses 5 names as user name set from the user
names. The frequency of user’s LBS application is 1 per hour. In
Fig. 8, we compare the entropy of our method to the others which
use dummy in preserving privacy.

In Fig. 8, en-DLS is themethodwhich is proposed in [5]. Random
is the method that selects dummies at random. CirDummy and
GridDummy are the virtual circle and virtual grid proposed in [13].
MNAME is the method proposed in this paper. From Fig. 8, we can
see the entropy of MNAME is the biggest. It is bigger than log2 k.
The reason is that MNAME considers LSA and uses multiple user
names. The LBS queries from others which using the same user
name protect the user’s real query.

In the figure, only MNAME is investigated. The entropy of
SNAME is related to the users in the same anonymizer. It is omitted.

Next, we will investigate the entropy that the attacker
distinguishes real application from a particular region. Assume the
PL of the region is 1. λ = 4 and w1 : w2 : w3 : w4 = 8 : 6 : 4 : 1.
In the map, there are totally 100 regions whose PL is 1.

In Fig. 9, random is the method which selects dummies at
random. REGP is the method to defend against RSA which is
proposed in this paper. From the figure, we can see the method
proposed in this paper has a bigger entropy than the method that
selects dummies at random. The entropy of the randommethod is
about 24.9% of REGP.
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Table 2
Comparison of communication overhead of the methods.

MNAME SNAME Random en-DLS

From user to LBS O(k) – O(k) O(k)
From LBS to user O(ka × mb) – O(ka × mb) O(ka × mb)

From user to anonymizer – O(C) – –
From anonymizer to LBS – O(k) – –
From LBS to anonymizer – O(ka × mb) – –
From anonymizer to user – O(m) – –
Table 3
Comparison of computational cost of the methods.

MNAME SNAME Random en-DLS

User O(ka×mb
+k) O(C + m) O(ka×mb

+k) O(ka×mb
+k)

LBS server O(ka × mb) O(ka × mb) O(ka × mb) O(ka × mb)

Anonymizer – O(ka×mb
+m+k) – –
Fig. 9. Entropy vs. k for regions.

5.2.2. Communication overhead
Fig. 10 describes the relationship between k and communica-

tion overheads of users. The overhead of sending a 2D location is
about 8 bytes. In the figure, random is themethod that selects dum-
mies at random. MNAME and SNAME are themethods proposed in
this paper. In the figure, the communication overheads of random,
en-DLS, and MNAME are similar. In random, en-DLS, and MNAME,
dummies are generated in the user side. Therefore the communi-
cation overhead increases with the increase of k. In SNAME, users
only need to send real location to the anonymizer. So, the commu-
nication overhead is a constant.

5.2.3. Computational cost
In Fig. 11, the computational costs of users mainly include the

encryption and decryption of locations and returned POIs. In the
figure, the computational costs of random, en-DLS, and MNAME
are similar. Since in these three methods, dummies are generated
at the user side and information is encrypted and decrypted at
the user side, the computational cost is higher than SNAME. The
computational cost of random, en-DLS, andMNAME increaseswith
the increase of k. In SNAME, anonymizer is adopted to preserve
privacy. Therefore, the computational cost only includes the cost
of encryption and decryption of real location and returned POIs.

6. Related work

In this section, we review some researches on user’s privacy
preservation for LBSs.
Fig. 10. Communication overhead of users.

Fig. 11. Computational cost of users.

It is of great significance to ensure user’s privacy and security
when delivering high-precision location services to users. Many
solutions have been documented in the literature. These solutions
can be divided into two categories according to the technology
used. They are obfuscation and anonymity [14]. In applying LBS
service, obfuscation does not send real location to the LBS server,
but conceals the real location [15–18]. This kind ofmethodsmainly
include adding noise and sending the similar location to the
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LBS server. In [14], the author puts forward to collect locations
and interests from the encounter LBS users and to conceal the
real location by using historical data of different users. Although
this kind of methods can preserve privacy in some degree, the
precision of LBS service is not high due to the locations sent
are not accurate. Different from obfuscation, anonymity methods
[4,19,20] are designed to make the user’s real location cannot
be distinguished from the sent locations by LBS server, so as to
protect the real location. Themain technologies used in anonymity
methods include pseudo name, k-anonymity and others. In [4], the
author proposes mix zone. In mix zone, users are protected by
pseudo name. But this method lacks practicality and it is hard
to be applied in reality. On the other hand, k-anonymity is the
main method in the field of privacy preservation currently. It is
first used in protecting the data in database [19]. It is used in
protecting location privacy by Gruteser and Grunwald [8]. In order
to achieve k-anonymity, there are two main methods: Cloaking
and Using Dummy. In Cloaking, there is an anonymizer. The
anonymizer extends the real location into a big Cloaking area to
ensure that in the area there are at least k users sending LBS query
at the same time. Then the anonymizer sends the whole Cloaking
area to LBS server. However, in [21], the author points out the
weakness in Cloaking. Another method to achieve k-anonymity
is to send the real location with k − 1 dummies so as to make
the LBS server cannot distinguish which one is the real location.
Ideally, the probability of every location to be the real location
is 1/k. In [22], the author studies the trilateral trade-off between
privacy, service quality, and bandwidth. The author points out
dummy-based location privacy-preserving mechanisms offer the
best protection for a given combination of quality and bandwidth
constraints. In [23], Kido et al. realize k-anonymity using dummies.
They generate the dummy locations by random moving. The
author in [13] designs two schemes for selecting dummies. They
are CirDummy and GridDummy. In CirDummy, dummy locations
are generated based on a virtual circle, whereas in GridDummy,
dummy locations are generated based on a virtual grid. The dummy
locations in thesemethods are carefully selected to ensure that the
Cloaking area is big enough. In [5], the author notices that the effect
of side information on user’s privacy disclosure, especially for
the terrain constraints in the city. The author proposed Dummy-
Location Selection (DLS) scheme. When a user sends a LBS query,
dummies are selected in the locations that have similar query
probability as the real location. In order to increase coverage area of
DLS, en-DLS is proposed. In en-DLS, the cloaking area is big enough
at the same time big entropy is achieved.

According to the anonymizer is used or not, privacy protection
methods at present can be divided into trusted third part (TTP)
schemes and trusted third part free (TTP-free) schemes [24]. In
TTP schemes, user’s privacy protection is realized by a trusted
third party which is called anonymizer. The anonymizer receives
application from the user and protects the application by using
Cloaking or other methods. Then the protected application will
be send to the LBS server by the anonymizer. The disadvantage
is the anonymizer can be the bottleneck of the system and
it can be the main target of attacks. Once the anonymizer is
compromised, all the mobile users using the anonymizer may be
faced with security threats, namely single point of failure. Privacy
preserving schemes using anonymizer include the methods in
[24–28]. Schemeswhich do not use anonymizer are known as TTP-
free schemes. In these schemes, the privacy preservation of mobile
devices does not depend on the trusted third party. Users generate
privacy preserving information rely on the smart mobile devices
on their own and the results will be sent to LBS server directly. This
kind of methods mainly includes the methods in [5,9,10,23,29,30].

In addition, according to the frequency of a user request to
LBS server, the problem of privacy protection can be divided into
sporadic privacy protection and continuous privacy protection. In
sporadic privacy protection, the period between two LBS queries
from a user cannot be neglected. For example, a user sends LBS
query to obtain the restaurant address nearby. The next LBS query
may be applied a long period after current query. In continuous
privacy protection, users send LBS queries continuously. For
example, moving cars on the road send continuous LBS queries
to LBS server to obtain current traffic information. In this kind of
LBS service, the trajectory of users can also reveal users’ privacy.
Therefore, in this kind of privacy protection, not only user’s
location should be preserved, but also the trajectory needs to
be protected. Schemes of continuous privacy protection mainly
include the schemes in [18,31–34].

7. Conclusion

In this paper, we first presented the vulnerabilities existing in
en-DLS. The attacker can violate a user’s privacy by LSA and RSA
using historical data. Then, we gave out methods to defend against
these two attacks. For LSA, we proposed MNAME and SNAME. For
RSA, we proposed to divide the regions in the map into differ-
ent PLs. We replaced some dummies with the locations of regions
according to the PLs. Furthermore, we analyzed the privacy pre-
serving ability of the proposed methods by using entropy. In the
analysis, we gave out the relation in the entropy, the frequency of
LBS application, and the duration of historical data obtained by the
attacker. The results of simulation showed that the methods pro-
posed in this paper protect user’s privacy against historical statisti-
cardagna2007locationardagna2007locationduckham2005formal
attack with high performance. The future work mainly focuses on
the randomness of user’s application and the drastic changing of
LBS applications in different time in a day.
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