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Abstract: Recent trends show that Internet traffic is increasingly dominated by content, which is
accompanied by the exponential growth of traffic. To cope with this phenomena, network caching is
introduced to utilize the storage capacity of diverse network devices. In this paper, we first summarize
four basic caching placement strategies, i.e., local caching, Device-to-Device (D2D) caching, Small cell
Base Station (SBS) caching and Macrocell Base Station (MBS) caching. However, studies show that
so far, much of the research has ignored the impact of user mobility. Therefore, taking the effect of
the user mobility into consideration, we proposes a joint mobility-aware caching and SBS density
placement scheme (MS caching). In addition, differences and relationships between caching and
computation offloading are discussed. We present a design of a hybrid computation offloading and
support it with experimental results, which demonstrate improved performance in terms of energy
cost. Finally, we discuss the design of an incentive mechanism by considering network dynamics,
differentiated user’s quality of experience (QoE) and the heterogeneity of mobile terminals in terms
of caching and computing capabilities.

Keywords: caching; computation offloading; human mobility

1. Introduction

The ever-growing number of smart phones is producing explosive amounts of traffic in order
to support a wide plethora of multimedia services. A recent Cisco report estimates that global
mobile traffic will exceed 24.3 exabytes monthly in 2019 [1,2]. However, due to the centralized nature
of mobile network architectures, it is challenging to cope with the rapidly growing mobile traffic
along with the limited capacity of the backhaul link. In order to overcome this issue, paradigms
called “content-centric networking” (CCN), “named data networking” (NDN) and “content delivery
networks” (CDN) [3,4] have been proposed to handle content-dominated Internet traffic for the radio
access networks (front-haul) and the core networks (back-haul).

Furthermore, alongside the use of diverse network resources [5,6] in terms of communications,
caching and computing are becoming the emerging techniques to meet the increasing demand of user
QoE (Quality of Experience) in the next generation 5G networks [7–11], especially for the Internet of
Things [12,13] and healthcare systems [14]. In this paper, we consider a heterogeneous [15] cellular
network, which consists of a Macrocell Base Station (MBS), Small cell Base Stations (SBS) (also called
small cell BS; also called as pico, pico- or femto-cells as per the size of the cell) and user terminals.
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The caching and computing capabilities of SBSs and user terminals will facilitate content sharing and
computation offloading.

To illustrate, viral on-line videos are the kind of content that mobile user repeatedly access,
which leads us to an assumption that this content could be cached and shared at the edge of
the network [16–18]. Typically, content caching at the edge of the network can be classified into
two categories, i.e., SBS caching (or femto-caching) [19] through femto-cell access points and
Device-to-Device (D2D) caching assisted by user terminals [20]. The SBS can be used for content
caching, since it is characterized by a high storage capacity and transmission range, and SBS-assisted
cache placement has been discussed in previous studies [21]. In addition, by using D2D links, user
terminals in the proximity can share cached content without communicating through the MBS in order
to reduce communication cost and delay [22]. With the increase of the hardware performance of mobile
devices, mobile devices potentially have the storage and computing capacity required for this type
of content sharing [23,24]. Various studies discuss cache placement on mobile devices in the D2D
networks [25,26].

The problem of caching placement to maximize the probability that the user can access content in
a wireless system where both SBSs [19] and user terminals [27,28] have caching capability has been
studied. However, most existing studies of caching networks ignore user mobility. Instead, it has been
commonly assumed that mobile users are always at a fixed location [29].

In this paper, we investigate the impact of the user mobility on the performance of caching and
computation offloading in 5G ultra-dense cellular networks. Then, we propose a joint Mobility-aware
and SBS density caching placement scheme (MS-caching), taking into account the impact of user
mobility and SBS distribution on the caching placement. Moreover, we addressed the SBS and mobile
devices’ computing power, and we summarize four computation offloading modes in 5G ultra-dense
cellular networks and propose a hybrid computation offloading strategy. Finally, we discuss an
incentive mechanism to encourage content sharing and computation offloading between users with
heterogeneous mobile devices. In summary, the contributions of this article include:

• We propose a novel caching placement strategy named MS caching. Then, we discuss the impact
of the user mobility and the density of SBS on the content caching.

• We discuss the differences and relationships between caching and computation offloading and
present a hybrid computation offloading based on MBS computation offloading, SBS computation
offloading and D2D computation offloading.

• Considering the selfishness of mobile users, we suggest an incentive design based on network
dynamics, differentiated user’s QoE, and the heterogeneity of user terminals in terms of caching
and computing.

The remainder of this article is organized as follows. In Section 2, we present caching in 5G
ultra-dense cellular networks followed by the computation offloading in 5G ultra-dense cellular
networks in Section 3. Next, an incentive mechanism for both caching and computing is discussed in
Section 4. Finally, Section 5 concludes the article.

2. Caching in 5G Ultra-Dense Cellular Networks

In this section, we present the strategy of caching placement by considering the user mobility and
SBS density. We assume that each user will randomly request files from one content library containing
l files F = {F1, F2, · · · , Fl}, and the files are sorted according to popularity, i.e., ranking from the most
popular (F1) to the least popular (Fm). Let |Ff | denote the size of Ff . In addition, it is assumed that the
popularity of a content requested by a user follows a Zipf distribution with parameter γ. i.e.,

q f =
f−γ

∑m
i=1 f−γ

, f = 1, 2, · · · , l (1)
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where γ stands for the uneven distribution of popularity in these content. As shown in Figure 1, the
user can obtain the requested content mainly via four ways listed as follows:

• Local caching: When the user requests content, he or she will firstly examine whether or not such
content is cached locally. Once such content is confirmed in the local storage, the user will get
access to it without any delay.

• D2D caching: If the content requested by the user is not cached locally, the user will seek such
content among the devices within the range of D2D communications. If there exists one user
caching such content, the content will be transmitted to the target user via D2D communications.

• SBS caching: Besides D2D caching, if the required content is cached by one SBS, it will be
transmitted to the user by the SBS.

• MBS caching: If the content requested by the user cannot be accessed in the aforementioned ways,
such a request will be forwarded to the MBS, and the content will be delivered to the user by
cellular network connection.

T1T2T3

Figure 1. Illustration of the protocol for content access.

2.1. System Model

Given the example in Figure 1, Rachel obtains the requested content by one of the means mentioned
above when she moves to different locations starting from time T1 to T3. Due to user mobility, the
D2D caching is limited by its short distance range, which presents us with the challenge of how to
prepare an optimal cache placement strategy, i.e., content caching at the SBS and the user terminal,
and how to maximize the chance to access such content.

Now, let us look at the SBS cache placement. Let R denote the transmission radius of the SBS; CH
denotes the cache capacity of each SBS, i.e., the maximum number of files it can store. Following the
model in [30,31], the SBS spatial distribution is in accordance with Poisson Point Processes (PPPs), and
its density is ρ. In terms of cache placement on the SBS, we can describe it as follows: set ωi as the
probability of caching a file Fi in the SBSs. Since the SBSs follow PPPs, the probability of at least one
SBS caching the content Fi can be calculated as follows:

PS
i = 1− e−ρωiπR2

(2)

Thus, the total probability that a user can get the content from the SBS becomes:

PS =
l

∑
i=1

qiPS
i (3)

If we maximize the probability that the user obtains the content requested under the condition of
the storage capacity of SBS, the SBS density-aware caching placement can be obtained as follows:
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maximize
ωi

PS

subject to
l

∑
i=1

ωi|Fi| ≤ CH

0 ≤ ωi ≤ 1, i ∈ {1, . . . , l}

(4)

For user terminals, we assume that there are Nu mobile devices in this network. Additionally,
D = {D1, D2, . . . , DNu} represents the set of mobile devices. Communication can only be conducted
when the shortest distance between any two mobile devices of users is RD2D. Define the inter-contact
time Ti,j between any two users Di and Dj as follows:

Ti,j = min{(t− t0) : ||Lt
i −Lt

j || < RD2D, t > t0} (5)

where t0 stands for the moment when the user device Di just the left communication range RD2D of
the user device Dj for the last time. Lt

i and Lt
j stand for the locations when the users Di and Dj are

in the moment t. Following the model in [32], the inter-contact time between any two users Di and
Dj complies with an exponential distribution with a parameter of λi,j, which is named as the contact
rate of the mobile device i and the mobile device j. Let CU denote the cache capacity of each user.
Let xj, f denote whether the user j caches content Ff . Let Tf denote the deadline to feedback requested
content. Thus, within Tf , the probability that the user i obtains the content f via D2D can be calculated
as follows:

PM
i, f = 1− (1− xi, f )exp

− ∑
j∈D\{Di}

xj, f Tf λi,j

 (6)

Thus, the total probability for the user to get the the content through D2D communication becomes:

PM =
1

Nu

Nu

∑
i=1

l

∑
i=1

q f PU
i, f (7)

If we maximize the probability that the user obtains the content requested under the condition of
the storage capacity of mobile devices, the optimal mobility-aware caching placement can be obtained
as follows:

maximize
xj,f

PM

subject to
l

∑
f=1

xj, f |Ff | ≤ CU

xj, f ∈ {0, 1}

(8)

Through joint optimization of PM and PS, the MS caching strategies can be obtained.

2.2. Simulation Results and Discussions

In this subsection, we evaluate the probability that users can get contents via simulation results. We
compare MS caching with two different caching strategies: popular caching [33] and random caching [20].

• Popular caching: The popular caching strategies on SBSs and on mobile devices of users are
as follows: (1) caching strategy on SBSs: most popular content should be stored on each
SBS; (2) caching strategy on mobile devices: most popular content should be cached on each
mobile device.
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• Random caching: The random caching caching strategies on SBSs and on mobile devices of users
are as follows: (1) caching strategy on SBSs: content should be stored at random on each SBS;
(2) caching strategy on mobile devices: content should be cached at random on each mobile device.

As for the simulation settings, for simplicity, assume the content size is the same and the value
is |F|. The size of content library l = 30, and the Zipf distribution parameter γ = 0.8. The deadline
Tf = 60 s. The density and transmission range of SBSs are ρ = 50/π5002 and R = 50 m,
respectively [34]. The system comprises Nu = 60 mobile device, and the contact rate λi,j between user
Di and user Dj complies with Gamma distribution Γ(4.43, 1/1088) [35]. The caching capacity of SBS
and the user terminal is CH = 8 and CU = 2, respectively. For the optimization problem, we utilize the
optimization toolkit CPLEX and CVX to solve it. The result is as follows:

• SBS density-aware caching placement: We have provided the relationship between the SBS density
and the probability that the user can obtain the requested content. The SBS density-aware caching
placement is compared to the popular caching strategy and the random caching strategy, as
shown in Figure 2a. When only the SBS is considered, the SBS-assisted cache placement exhibits
higher offloading probability than the popular caching and the random caching.

• Mobility-aware caching placement: The user’s mobility is closely related to the probability for the
user to access the content. The λ is the average contact rate of user devices. Similarly, with the
analysis of SBS-assisted caching placement, Figure 2b compares the mobility-aware caching with
the popular caching and the random caching. As shown in Figure 2b, the mobility-aware cache
placement strategy demonstrates better performance than the random caching placement and the
popular caching placement.

• MS caching placement: If we take into account the user mobility and the SBS density, a more
advanced cache strategy named MS caching placement can be designed as demonstrated. In
Figure 2a,b, we compare the performance of the proposed MS caching placement with other
strategies. Since both the SBS density and the user mobility are considered, the MS caching
placement obtains the highest probability that users can obtain the contents.
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Figure 2. Illustration of the result of caching placement. (a) The impact of ρ on the probability that
users can get content; (b) the impact of λ on the probability that users can get content.

In Figure 2a, based on the comparison of MS caching, popular caching and random caching, we
can obtain the following: (i) as for the density of the SBSs, we cache popular content in a low density
region of the SBS, while relatively unpopular content is cached in a high density region to achieve both
caching efficiency and a balanced distribution of content; (ii) as for user mobility, the user appears in
more locations when his/her mobility is very high, which provides more chances for other users to
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retrieve the cached content. Thus, a user with high mobility is suggested to cache diverse content, or
vice versa, a low mobility user caches popular content.

Based on the above discussions, here, we provide an example of content caching when user’s
mobility and SBS density are considered. As shown in Figure 3, we differentiate the user mobility in
low mobility and high mobility cases. In Figure 3, Rachel sends a request to a file K deadline Tf since
D2D-caching and SBS caching are not available. We assume that the MBS knows the users’ mobility
trajectory in the network. If the user mobility is quite low at that moment, the MBS considers the
probability for Rachel to meet another user (e.g., Tommy in Figure 3a carrying the file within Tf ) is
low. Then, The MBS transmits the file K to the SBS closest to Rachel through a back-haul link, and
SBS delivers the cached file to Rachel. Figure 3b shows the scenario of high mobility, where the MBS
predicts that at least one user will likely come into the vicinity of Rachel within Tf according to the
mobility status in the network. In response to Rachel’s request for the file K, she would wait for the
D2D opportunity in order to avoid using a more expensive communication channel (e.g., through
femtocell caching). After a short while, Tommy moves to the D2D communication range and sends
the file K to Rachel. In the opposite case that Rachel still fails to obtain the requested content while the
deadline is soon to expire, the MBS will still utilize the traditional SBS caching.

  
Cannot contact with 

Rachel with Tf 

  Cannot contact with 
    

Rachel with Tf 

otot

Rachel

Low Mobility 

  
  

High Mobility 

Rachel

Tommy

Tommy

Macrocell BS

Small cell BS

Request file K with Tf
Request file K with TfCaching file 

K in SBS

Macrocell BS

Caching file K in 

user terminal

Figure 3. Illustration of the content caching placement. (a) Case of low user mobiliity; (b) Case of high
user mobiliity.

3. Computation Offloading in 5G Ultra-Dense Cellular Networks

Mobile cloud computing has been widely studied. Traditional mobile cloud architecture is based
on a centralized cloud. For example, in [36] a cloud-assisted drug recommender system is proposed to
provide online medical recommendation based on a centralized cloud. However, with the densification
of SBSs to cope with ever-growing data traffic, the weakness of this structure is exposed with higher
load and more backhaul delay [37]. As one more consequence, communication cost is also increased
to offload computing-intensive tasks to the cloud and return the processed result [38]. To solve
the problem, previous work also considered the computing capability of the user terminals and the
SBSs [32]. In [37,39–41], offloading of the computation task to a mobile-edge cloud is investigated with
the consideration of delay and energy cost. By comparison, we address the computation offloading
issue by means of using the SBS and the user terminal in the 5G ultra-dense cellular networks while
the user’s mobility is considered.
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3.1. Caching vs. Computation Offloading

In this section, we discuss the essential similarities and differences between caching and
computation offloading. Content caching is generally provided by the server where the requested
content originates from; content is cached during non-peak periods at the MBS, the SBS or the
user terminal in order to save the bandwidth in critical time. During “rush hour”, corresponding
contents are preferred to deliver to the user via SBS or other user terminal. Furthermore caching and
computation offloading are correlative; for example, when the user requests for popular videos, the
user terminal or SBS will transmit such content to the user, but the content is found not satisfactory in
terms of video quality or the format specially required by the user. The user needs to transcode the
original format to the one that satisfies the user. Thus, the task will be offloaded to SBS and/or other
user terminals to speedup the computation. Table 1 provides the main differences between caching
and computation offloading.

Table 1. Caching vs. computation offloading.

Caching Computation Offloading

No feedback, one-way cache and fetch. Need the feedback of the computation result.

The popularity of the cached content is
typically high.

The popularity of cached computation result
can be understood as 0, since it usually only
serves one particular user.

The size of shared storage is
relatively large.

The shared space to store the computation
result is relatively small.

3.2. Computation Offloading

In this section, we have summarized the methods of mobile-edge computing offloading assisted
by MBS, SBS and the user terminal [37–39]. The edge cloud is called the MBS cloud, when it
consists of the computing resources deployed in MBS. Similarly, the edge cloud powered by SBS’s
computation resources is called the SBS cloud. By comparison, the edge cloud via D2D links is called
the mobile cloud.

• MBS computation offloading [39]: A user can offload the computation task to an MBS through a
cellular network link. In the research area of mobile cloud computing, when the computation
is performed in a cloud environment, the results will be fed back to the user from the cloud via
the MBS.

• SBS computation offloading [37]: The computation task is offloaded to an SBS. After SBS completes
the computing, the results will be fed back to the user.

• D2D computation offloading [38]: A user terminal can offload the computation task via a D2D
link to other mobile devices within the D2D range. Upon the task completion, the results
can be transmitted back to the user terminal, if the mobile devices are still within the D2D
communication range.

There are some advantages and disadvantages to the the above methods. The MBS computation
offloading brings the highest communication cost, but provides the largest coverage [38]. The D2D
computation offloading has the lowest cost, but it is difficult to ensure the completion of tasks by taking
into account the user mobility. The SBS computation offloading falls somewhere in between. Taking
into account the advantages and disadvantages of the above three methods, we have proposed a hybrid
computation offloading. In the context of the a computation offloading, we name the user terminal that
has been assigned the computation task as a computation node and the user terminal processing the
computation task as a service node. When the computation node and the service node are within range
of the D2D communication, the computation node offloads the computational task to the service node.
After a period of time, the service node finishes the assigned task; at this moment, the computation
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node and service node are possibly out of the range of D2D communication because of user mobility.
Thus, in some cases, the service node might be required to cache the computing results for a long
time until it again comes into the vicinity of the computation node. On the other hand, if a higher
storage capacity and a larger transmission radius of the SBS are available, the computing results can be
returned back to the computation node in three manners after the computational task is processed at
the service node:

• D2D computing result feedback: After the computational task is processed at the service node, the
computing results will be returned directly back to the computation node if the service node and
the computation node are still within the range of the D2D communication.

• SBS computing result feedback: After the computational task is completed at the service node, the
service node will offload the computing results onto the SBS if the computation node is out of the
range of the D2D communication. Then, the SBS will transmit the results to the user if it is within
the communication range with the computation node.

• MBS computing result feedback: When the result of the computing task has not been transferred to the
user before the deadline, namely when the user and the SBS are still not within the communication
range, the SBS will upload the results to the MBS, and then, the final results will be passed back to
the user.

As shown in Figure 4, Rachel (i.e., the computation node) first divides the computation task into
three sub-tasks. Within her D2D communication range, there are three users that can work as service
nodes, i.e., Tommy, Eva and Suri. Then, Rachel offloads the three sub-tasks to them via D2D links. When
a service node (e.g., Eva) finishes the computation sub-task, it possibly loses D2D connections with
Rachel due to the user mobility. Figure 4 gives three modes for the computation result feedback, i.e.,
the D2D computing result feedback, the SBS computing result feedback and the MBS computing result
feedback. After the Tommy’ sub-task completion, Tommy is still within Rachel’s D2D communication
range, and the D2D computing result feedback is used. When Eva’s sub-task is completed, Eva cannot
connect with Rachel via the D2D link; however, an SBS between Eva and Rachel is available. Then, the
SBS computing result feedback is used. The worst case is the MBS computation result feedback. Given
Suri as an example, he moves far away, and the cellular network link is the only way to feed back the
computation result. Based on the above discussion, we can see that the hybrid computation offloading
achieves a flexible tradeoff among D2D computation offloading, SBS computation offloading and MBS
computation offloading.

We consider four kinds of energy consumptions corresponding to four operations during mobile
edge computation, i.e., local computing, mobile offloading, edge cloud computing and downloading of
computation results from the edge cloud to mobiles. Here, we mainly consider the energy consumption
for the mobile terminal. For the four kinds of computation offloading, they have the same local energy
consumption. Additionally, edge cloud computing and downloading of computation results do not
consume user terminal’s energy. Thus, the major energy consumption of the task is up to mobile
offloading. We consider that a user has computation task Q, which can be decomposited into n
sub-tasks. That is: Q = ∑n

i=1 xi. Next, we build up the model to calculate the energy cost of the mobile
device. Let PM

t (r), PS
t (r) and PD

t (r) denote the transmission power for the user terminal in terms of the
communication via MBS, SBS and D2D, respectively. Let h denote the channel gain and σ2

0 denote the
variable of complex white Gaussian noise. Then, the channel capacity of the user terminal and MBS can

be obtained CM = B log(1+ PM
t (r)h

σ2 ), where B is the channel bandwidth. Likewise, the channel capacity

of the user terminal, SBS and D2D can be obtained CS = B log(1 +
PS

t (r)h
σ2 ), CD = B log(1 +

PD
t (r)h

σ2 ).
Thus, when obtaining the distance (denoted by r) between the user and MBS, the mobile energy cost for
task offloading to the MBS edge cloud is EM = ∑n

i=1[
xi

CM ( 1
η PM

t (r) + Pc)], where Pc represents the circuit
power consumed at the use terminal. Similarly, with the distance between SBS and the user, the mobile
energy cost for task offloading to the SBS edge cloud can be calculated as: ES = ∑n

i=1[
xi
CS (

1
η PS

t (r) + Pc)].
With higher small cell density, the user has more chance to offload the task onto a small cell with a closer
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distance and less energy cost. For the case of D2D, if the distance between two adjacent users is known,
the D2D energy cost for the task offloading is ED = ∑n

i=1[
xi

CD (
1
η PD

t (r) + Pc)]. With the increasing
of user mobility, the user terminal with a shorter distance will be found for task offloading, which
decreases the energy cost. In order to produce optimal performance, the location of task offloading is
strategically selected in the hybrid cloud, which exhibits the lowest energy cost. According to [37,39],
we set the total task amount Q = 10 Mbytes and n = 10. Let B = 1 MHz, σ2 = 10−9 W, h = 10−5. Set
the maximum transmit power of the user terminal Pmax = 1 W, and the circuit power Pc = 115.9 mW.
The result as shown in Figure 5.

TommyTommy

  

  

  

  

mmy   

Suri

Eva

Rachel

Figure 4. Illustration of the hybrid computation offloading: (a) Device-to-Device (D2D) computing
result feedback; (b) Small cell Base Station (SBS) computing result feedback; (c) Macrocell Base Station
(MBS) computing result feedback.
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Figure 5. Illustration of the computation offloading energy cost. (a) Comparing the energy cost of
MBS, SBS and hybrid computation offloading; (b) comparing the energy cost of MBS, D2D and hybrid
computation offloading.

In Figure 5, we evaluate the performance of the MBS computation offloading, the SBS computation
offloading, the D2D computation offloading and the hybrid computation offloading in terms of
communication cost. With the increase of SBS density, the cost of the SBS computation offloading and
the hybrid computation offloading decrease since higher SBS density facilitates the computation result
offloading to the SBS, as shown in Figure 5a. Figure 5b shows the impact of the user mobility on the
energy cost. With the increase of the user mobility, both the D2D computation offloading and the
hybrid computation offloading exhibit lower energy cost. This is because the probability of the D2D
connections increases. The performance of the D2D computation offloading achieves optimization
when λ is equal to 0.00011. However, the energy cost increases again when the mobility is too high.
This is because the contact time of the D2D connection is too short, which easily causes the failure
of the computation result feedback. In comparison, the hybrid computing offloading combines the
advantages of the other three computation offloading schemes and produces the lowest energy cost.

4. Incentive Design for Caching and Computation Offloading

As already mentioned, the main target of caching and computation offloading in 5G ultra-dense
cellular networks is to reduce traffic load and encourages the D2D communications among users.
However, the intrinsic selfish feature of user terminals constitutes the biggest obstacle for content
caching and computation offloading in practical situations. For example, most users intend to store
their favorite files, which at the same time might be also cached by many other users. This fact could
result in replicated caching and insufficient use of the accumulative storage space of the network
nodes cumulatively. As for computing, most users like to count on others to help them to execute the
computation tasks while being reluctant to share computing capacity with others.

In order to solve the problem, this paper designs an incentive mechanism based on the following
three kinds of heterogeneities: (1) the heterogeneity of the user devices, namely each user terminal’s
storage and computing capabilities are different, which makes some users willing to cache contents
and earn incentives through content sharing, while other users prefer to provide computing service
to others, and the earned incentive can be used to request cached contents; (2) the heterogeneity of
user requirements in terms of user’ QoE, namely each user’s demand for computing and caching and
his/her preference for content are different; (3) the heterogeneity of network conditions, namely the
user mobility within the region and the density of the SBSs are different.

Similar to the incentive mechanism for crowdsourcing, more incentives lead to a higher user’s
QoE. There are two main methods to earn the incentive: cache content and computing tasks for others.
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Moreover, the two can be transformed into each other; for example, user Bob’s mobile phone has large
storage capacity to cache more popular content, but its computing capacity is relatively weak; whereas,
user Suri’s mobile phone has great computing capacity, but weaker storage capacity. When both are
within the range of the D2D communication, user Bob may offload some content as requested by user
Suri and then get some incentive when the content is sent to Suri. Thereby, user Bob may offload
computational tasks to be processed onto user Suri, and user Suri can get some incentive, which can
pay for the “debt” for getting the content. Therefore, an incentive balance of content is achieved and
replaced by computation. We introduce an incentive mechanism to encourage various users with
heterogeneous mobile devices to exchange favors of content sharing and computation offloading.

Specifically, we can divide this incentive into two levels:

• Caching incentive: When the user B obtain content from the user A, the user B needs to pay an
incentive (e.g., virtual money), this incentive includes the cost of D2D communication between
B and A, the cost of storing content at the expense of the content value from the perspective of
the user A. Meanwhile, the user A can get these incentive. From the above, we can see that the
popularity of the content of the caching incentive, downloading times of users and caching time
are all related to these three aspects.

• Computing incentive: When the user A offloads computing tasks and transfers them to the user
B and then the user B helps the user A to proceed with the calculation, the user A will pay the
user B an incentive for the communication cost and the computing cost. At the same time, the
user B will obtain these incentives. The costs are relatively high due to the fact that the result of
computation is equivalent to the content, whose popularity is zero.

5. Conclusions

With the increasing capabilities of mobile terminals in terms of storage and computing, caching
of popular content on wireless devices enables content sharing through the D2D links. Even though
various works focus on caching placement in the 5G ultra-dense cellular networks, it is still a
challenging issue to jointly consider caching and computing by using the advantage of the user mobility.
In this article, we proposed an MS caching placement with the use of the SBS and the user terminal
while taking the effect of user mobility and SBS density into consideration for content caching. Then,
we designed a hybrid computation offloading scheme to achieve flexible tradeoffs among the MBS
computation offloading, the SBS computation offloading and the D2D computation offloading. Finally,
we discussed an incentive design in terms of caching and computing by considering the hardware
heterogeneity of the mobile devices, various user’s requirements on QoE and the heterogeneity status
of the network.

In future work, we will consider the social relationship of the user terminal in the D2D
communication. It can be concluded from the users’ social relationship that those with social
connections tend to have the same request for content; for example, one region may be divided
into different groups, such as an industrial group, a tourism group, a residential group, etc. Different
contents will be cached in different regions, and in the same region, the interchange of content may be
better achieved.

Acknowledgments: Humar would like to acknowledge that his work was partly performed in the scope of
the research program P2-0246—Algorithms and optimization methods in telecommunications, financed by the
Slovenian Research Agency. Min Chen’s work was supported by the National Science Foundation of China
under Grant 61572220. Meikang Qiu’s research is supported by NSF 1457506. Yixue Hao’s work is supported
by the Fundamental Research Funds for the Central Universities’, HUST: CX-15-055. The authors extend their
appreciation to Mojca Volk for her efforts on improving our work.

Author Contributions: Min Chen and Meikang Qiu defined the research theme; Yixue Hao carried out the
experiments; Di Wu developed the mathematical model; Jeungeun Song and Iztok Humar made critical revision
of the article. All authors have contributed to the production of the paper and have approved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2016, 16, 974 12 of 13

References

1. Zhang, Y.; Chen, M.; Mao, S.; Hu, L.; Leung, V.C. CAP: Crowd Activity Prediction Based on Big Data
Analysis. IEEE Netw. 2014, 28, 52–57.

2. Peng, L.; Youn, C.H.; Tang, W.; Qiao, C. A Novel Approach to Optical Switching for Intra-Datacenter
Networking. J. Lightwave Technol. 2012, 30, 252–266.

3. Fortino, G.; Russo, W.; Vaccaro, M. An agent-based approach for the design and analysis of content delivery
networks. J. Netw. Comput. Appl. 2014, 37, 127–145.

4. Fortino, G.; Russo, W. Using P2P, GRID and Agent technologies for the development of content distribution
networks. Future Gener. Comp. Syst. 2008, 24, 180–190.

5. Li, J.; Qiu, M.; Ming, Z.; Quan, G.; Qin, X.; Gu, Z. Online Optimization for Scheduling Preemptable tasks on
IaaS Cloud systems. J. Parallel Distrib. Comput. 2012, 72, 666–677.

6. Li, J.; Ming, Z.; Qiu, M.; Quan, G.; Qin, X.; Chen, T. Resource Allocation Robustness in Multi-Core Embedded
Systems with Inaccurate Information. J. Syst. Archit. 2011, 57, 840–849.

7. Ge, X.; Tu, S.; Mao, G.; Wang, C.X.; Han, T. 5G ultra-dense cellular networks. IEEE Wirel. Commun. 2016, 23,
72–79.

8. Volk, M.; Sterle, J.; Sedlar, U.; Kos, A. An approach to modeling and control of QoE in next generation
networks. IEEE Commun. Mag. 2010, 48, 126–135.

9. Lin, K.; Wang, W.; Wang, X.; Ji, W.; Wan, J. QoE-Driven Spectrum Assignment for 5G Wireless Networks
using SDR. IEEE Wirel. Commun. 2015, 22, 48–55.

10. Hossain, M.S.; Muhammad, G.; Alhamid, M.F.; Song, B.; Almutib, K. Audio-visual emotion recognition
using big data towards 5G. Mob. Netw. Appl. 2016, 1–11, doi:10.1007/s11036-016-0685-9.

11. Zheng, K.; Zhang, X.; Zheng, Q.; Xiang, W.; Hanzo, L. Quality-of-experience assessment and its application
to video services in LTE networks. IEEE Wirel. Commun. 2015, 1, 70–78.

12. Sterle, J.; Sedlar, U.; Rugelj, M.; Kos, A.; Volk, M. Application-driven OAM framework for heterogeneous IoT
environments. Int. J. Distrib. Sens. Netw. 2016, 2016, doi:10.1155/2016/5649291.

13. Sedlar, U.; Rugelj, M.; Volk, M.; Sterle, J. Deploying and managing a network of autonomous internet
measurement probes: Lessons learned. Int. J. Distrib. Sens. Netw. 2015, 2015, doi:10.1155/2015/852349.

14. Zhang, Y.; Qiu, M.; Tsai, C.; Hassan, M.M.; Alamri, A. Health-CPS: Healthcare Cyber-Physical System
Assisted by Cloud and Big Data. IEEE Syst. J. 2015, 1–8, doi:10.1109/JSYST.2015.2460747.

15. Qiu, M.; Sha, E.H.-M. Cost Minimization while Satisfying Hard/Soft Timing Constraints for Heterogeneous
Embedded Systems. ACM Trans. Des. Autom. Electron. Syst. 2009, 14, doi:10.1145/1497561.1497568.

16. Wang, X.; Chen, M.; Taleb, T.; Ksentini, A.; Leung, V.C.M. Cache in the Air: Exploiting Content Caching and
Delivery Techniques for 5G Systems. IEEE Commun. Mag. 2014, 52, 131–139.

17. Zheng, K.; Hou, L.; Meng, H.; Zheng, Q.; Lu, N.; Lei, L. Soft-Defined Heterogeneous Vehicular Network:
Architecture and Challenges. IEEE Netw. 2015, arXiv:1510.06579.

18. Lin, K.; Xu, T.; Song, J.; Qian, Y.; Sun, Y. Node Scheduling for All-directional Intrusion Detection in SDR-based
3D WSNs. IEEE Sens. J. 2016, doi:10.1109/JSEN.2016.2558043.

19. Shanmugam, K.; Golrezaei, N.; Dimakis, A.; Molisch, A.; Caire, G. Femtocaching: Wireless content delivery
through distributed caching helpers. IEEE Trans. Inf. Theory 2013, 59, 8402–8413.

20. Golrezaei, N.; Mansourifard, P.; Molisch, A.F.; Dimakis, A.G. Base-station assisted device-to-device
communications for high-throughput wireless video networks. IEEE Trans. Wirel. Commun. 2014, 13,
3665–3676.

21. Song, J.; Song, H.; Choi, W. Optimal caching placement of caching system with helpers. In Proceedings of of
the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015.

22. Lei, L.; Kuang, Y.; Cheng, N.; Shen, X.; Zhong, Z.; Lin, C. Delay-Optimal Dynamic Mode Selection and
Resource Allocation in Device-to-Device Communications. IEEE Trans. Veh. Technol. 2015, 65, 3474–3490.

23. Zheng, K.; Meng, H.; Chatzimisios, P.; Lei, L.; Shen, X. An SMDP-Based Resource Allocation in Vehicular
Cloud Computing Systems. IEEE Trans. Ind. Electron. 2015, 12, 7920–7928.

24. Lin, K.; Chen, M.; Deng, J.; Hassan, M.; Fortino, G. Enhanced Fingerprinting and Trajectory Prediction for IoT
Localization in Smart Buildings. IEEE Trans. Autom. Sci. Eng. 2016, 1–14, doi:10.1109/TASE.2016.2543242.

25. Ji, M.; Caire, G.; Molisch, A.F. Wireless device-to-device caching networks: Basic priciples and system
performance. IEEE J. Sel. Areas Commun. 2016, 34, 176–189.



Sensors 2016, 16, 974 13 of 13

26. Lin, K.; Song, J.; Luo, J.; Ji, W.; Hossain, M.; Ghoneim, A. GVT: Green Video Transmission in the Mobile
Cloud Networks. IEEE Trans. Circuits Syst. Video Technol. 2016, doi:10.1109/TCSVT.2016.2539618.

27. Malak, D.; Al-Shalash, M. Optimal caching for device-to-device content distribution in 5G networks. In
Proceedings of the 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, USA, 8–12 December 2014;
pp. 863–868.

28. Ji, M.; Caire, G.; Molisch, A. The throughput-outage tradeoff of wireless one-hop caching networks.
IEEE Trans. Inf. Theory 2015, 61, 6833–6859.

29. Ge, X.; Ye, J.; Yang, Y.; Li, Q. User Mobility Evaluation for 5G Small Cell Networks Based on Individual
Mobility Model. IEEE J. Sel. Areas Commun. 2016, 34, 528–541.

30. Chae, S.H.; Ryu, J.Y.; Quek, T.Q.S. Wan Choi Cooperative transmission via caching helpers. In Proceedings of
the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015.

31. Ge, X.; Yang, B.; Ye, J.; Mao, G.; Wang, C.-X.; Han, T. Spatial Spectrum and Energy Efficiency of Random
Cellular Networks. IEEE Trans. Commun. 2015, 63, 1019–1030.

32. Li, Y.; Wang, W. Can mobile cloudletss support mobile applications? In Proceedings of the 33rd Annual
IEEE International Conference on Computer Communications (INFOCOM’14), Toronto, ON, Canada,
27 April–2 May 2014; pp. 1060–1068.

33. Ahlehagh, H.; Dey, S. Video-aware scheduling and caching in the radio access network.
IEEE/ACM Trans. Netw. 2014, 22, 1444–1462.

34. Ge, X.; Tu, S.; Han, T.; Li, Q.; Mao, G. Energy Efficiency of Small Cell Backhaul Networks Based on
Gauss-Markov Mobile Models. IET Netw. 2015, 4, 158–167.

35. Passarella, A.; Conti, M. Analysis of Individual Pair and Aggregate Intercontact Times in Heterogeneous
Opportunistic Networks. IEEE Trans. Mob. Comput. 2013, 12, 2483–2495.

36. Zhang, Y.; Zhang, D.; Hassan, M.M.; Alamri, A.; Peng, L. CADRE: Cloud-Assisted Drug REcommendation
Service for Online Pharmacies. ACM/Springer Mob. Netw. Appl. 2015, 20, 348–355.

37. Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient Multi-User Computation Offloading for Mobile-Edge Cloud
Computing. IEEE Trans. Netw. 2015, doi:10.1109/TNET.2015.2487344.

38. Chen, M.; Hao, Y.; Li, Y.; Lai, C.; Wu, D. On The Computation Offloading at Ad Hoc Cloudlet: Architecture
and Service Models. IEEE Commun. 2015, 53, 18–24.

39. Tong, L.; Li, Y.; Gao, W. A Hierarchical Edge Cloud Architecture for Mobile Computing. In Proceedings of
the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications,
San Francisco, CA, USA, 10–15 April 2016.

40. Liu, Q.; Ma, Y.; Alhussein, M.; Zhang, Y.; Peng, L. Green Data Center with IoT Sensing and Cloud-assisted
Smart Temperature Controlling System. Comput. Netw. 2016, 101, 104–112.

41. Ge, X.; Huang, X.; Wang, Y.; Chen, M.; Li, Q.; Han, T.; Wang, C.-X. Energy Efficiency Optimization for
MIMO-OFDM Mobile Multimedia Communication Systems with QoS Constraints. IEEE Trans. Veh. Technol.
2014, 63, 2127–2138.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Caching in 5G Ultra-Dense Cellular Networks
	System Model
	Simulation Results and Discussions

	Computation Offloading in 5G Ultra-Dense Cellular Networks
	Caching vs. Computation Offloading
	Computation Offloading

	Incentive Design for Caching and Computation Offloading
	Conclusions

