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Enhanced Fingerprinting and Trajectory Prediction
for IoT Localization in Smart Buildings

Kai Lin, Min Chen, Jing Deng, Mohammad Mehedi Hassan, and Giancarlo Fortino

Abstract— Location service is one of the primary services
in smart automated systems of Internet of Things (IoT). For
various location-based services, accurate localization has become
a key issue. Recently, research on IoT localization systems for
smart buildings has been attracting increasing attention. In this
paper, we propose a novel localization approach that utilizes the
neighbor relative received signal strength to build the finger-
print database and adopts a Markov-chain prediction model to
assist positioning. The approach is called the novel localization
method (LNM) in short. In the proposed LNM scheme, the
history data of the pedestrian’s locations are analyzed to further
lower the unpredictable signal fluctuations in a smart building
environment, meanwhile enabling calibration-free positioning for
various devices. The performance evaluation conducted in a real-
istic environment shows that the presented method demonstrates
superior localization performance compared with well-known
existing schemes, especially when the problems of device
heterogeneity and WiFi signals fluctuation exist.

Note to Practitioners—This paper was motivated by the
problem of developing Internet of Things (IoT) localization
systems for smart buildings but it also applies to other IoT
applications that have location-based service ability. Existing
approaches to design such systems generally utilize the received
signal strength (RSS) from WiFi to build fingerprint for obtain-
ing user’s position. This paper suggests a novel technique,
named novel localization method (LNM), that uses neighbor
relative (NR) signal fingerprint and Markov chain for local-
ization in smart buildings. NR-RSS is used as the fingerprint
data to build radio map instead of absolute RSS. Meanwhile,
Markov-chain model is applied to conduct the mobile device’s
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trajectory analysis. In this paper, we evaluate LNM on different
mobile devices with various system parameters. Then we show
how the location of mobile device can be accurately computed
against device heterogeneity and environmental dynamics. Exten-
sive physical experiments suggest that LNM is feasible and
reliable although it has not yet been evaluated on non-Android
devices. In future research, we will address the design of IoT
localization that has a wide variety of smart objects equipped
with heterogeneous communication medium.

Index Terms— Fingerprint, Internet of Things (IoT), Markov
chain, mobile positioning, smart building.

I. INTRODUCTION

INTERNET of Things (IoT) incorporates concepts from
pervasive computing and enables interconnections of every-

day objects equipped with ubiquitous intelligence, which
becomes an integral part of the Internet [1], [2]. Thanks to
rapid advances in underlying technologies, IoT is opening
tremendous opportunities for novel applications that promise
to improve the quality of our lives [3]. IoT has gained much
attention from practitioners and researchers around the world,
and spawned a wide variety of smart automated systems, such
as smart buildings, smart homes, smart factories, and so on [4].

With the development of IoT, location-based service (LBS)
has become increasingly important and extensively used.
Designing effective and efficient location mechanisms for
LBS is critical to, yet extremely difficult in, IoT scenarios,
especially smart buildings. In a smart building, the widely
used global positioning system (GPS) [5] becomes impractical
because GPS signals cannot be transmitted through obstacles.
Moreover, varieties of electronic devices deployed in smart
buildings unavoidably produce considerable amounts of signal
interference, greatly increasing the difficulty of system design
for precise positioning in smart buildings.

Localization using the existing wireless communication
infrastructure is regarded as an effective method with great
potential. Recently, received signal strength (RSS) finger-
print approaches based on WiFi have gained popularity [6].
However, there are several glaring problems for traditional
RSS fingerprint approaches. First, real RSS fingerprints at
any locations always change with time. Besides, considering
the hardware differences of mobile devices (e.g., smartphones,
tablets, mobile robots, mobile smart objects), different mobile
devices may get different measurement data, even for the
exactly same RSS value. The noisy characteristics cause
the measured samples to greatly deviate from those stored
in the radio map. Second, in the process of matching, the
localization system [7]–[9] need to access the RSS fingerprint
database storing a great amount of data, which will take
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plenty of time. Although some systems [10], [11] adopt
clustering of map locations to reduce the computational
requirements, clustering algorithm also introduces error and
extra complexity. Moreover, localization matching requires
WiFi scanning, regarded as an energy-intensive process [12].
Since mobile devices are energy-constrained, it is critical
to reduce the WiFi scanning process. Finally, building the
fingerprint map requires an extensive and thorough site-survey
process. To address the issues of labor-intensive and time-
consuming calibration, the signal wave propagation model-
based techniques [13] are proposed to estimate the RSS values
at given locations. The main focus of these solutions is to build
mathematical or theoretic models instead of manually tagging
to calculate the RSS values of given locations.

In this paper, we propose a novel localization
method (LNM) based on neighbor relative RSS (NR-
RSS) and Markov-chain prediction algorithm, which mainly
utilizes fingerprint-based technology and Markov-chain
model to provide higher accuracy of localization with lower
calibration requirement.

By observation of actual RSS value measurement in smart
building environments, we find that NR-RSS, the differ-
ence of RSS between neighboring locations, compared with
the absolute RSS (ARSS) values, is more robust to device
heterogeneity and environmental dynamics. Therefore, we
adopt NR-RSS instead of ARSS as fingerprint to build the
radio map. Although the localization accuracy is significantly
improved, it incurs extra computational overhead and the
power consumption in each localization process, which is
still a considerable burden for mobile devices. To solve these
problems, we introduce Markov-prediction model (MPM)
to assist positioning. MPM can be utilized for all moving
objects equipped with smart devices such as the pedestrian
carrying mobile devices, vehicles, and robots. Each position
shift produced by movement has a certain probability (degree
of purposiveness). Through statistics of the probability of
movement, Markov process of object can be constructed for
localization. To acquire the probability, mobile devices need
accumulate enough history localization data during NR-RSS
localization. In this way, the frequency of NR-RSS localization
process is reduced, thereby the power consumption of mobile
devices and computational requirements are also significantly
lowered.

This paper makes the following contributions, addressing
the issues mentioned above.

1) We analyze the changes of RSS at a region over time.
Based on observations and records, we find that although
the ARSS values at a region constantly change, the
NR-RSS values of two locations do not vary much.

2) We make use of the Markov-chain model to assist
matching the NR-RSS fingerprints at the localization
phase.

3) We design a novel localization system for smart build-
ings that solves the matching problem caused by hetero-
geneous devices.

4) We have implemented our algorithm and evaluated it in
a realistic environment scenario using different types of
smartphones.

The rest of this paper is organized as follows. We present
related work in Section II and analyze current fingerprint-
based localization approaches in Section III. In Section IV,
we introduce MPM and its application in our algorithm
in detail. Section V describes the system architecture and
the workflow of the proposed approach. In Section V,
we evaluate the performance of our system through real-world
experiments. Section VI draws conclusion from this work.

II. RELATED WORK

Recently, wireless localization has become a focused
research topic in the IoT context and a variety of solutions
have been proposed. The IoT indoor localization approaches
can generally be divided into two categories: passive method
and active method [14]. In the passive localization approach,
the tracked person (even a smart object) does not carry any
electronic device and actively participate in the positioning
process. In the active localization case, tracked person (even
smart object) carries a physical electronic device, which can
collect and process some information and send the results to
a localization server for further processing. Relatively mature
localization systems may be classified into three categories
according to the system requirements and the used techniques:

1) location-sensor-infrastructure-based systems;
2) wave-propagation-modeling-based systems;
3) location-fingerprinting-based systems.
Location-sensor-infrastructure-based techniques typically

rely on special-purpose infrastructures installed on walls or
ceilings. Early work utilizing ultrasound [15] or short-range
infrared [16] promised fine grained localization accuracy.
Priyantha [17] proposed a method that uses radio and acoustic
transmission and exploits time difference of arrival (TDOA)
in the space. Radio frequency identification [18] technique
is also extensively used. Topical systems explore multiple-
input, multiple-output techniques using commodity access
points (APs) and angle of arrival (AOA) to localize accu-
rately [19]. TDOA and AOA are the most common methods
used in an ultra-wideband localization system. Although these
techniques provide high accuracy, their large-scale deployment
is problematic due to the high deployment cost. Among the
diverse approaches for indoor localization, the RF-signal-
fingerprint-based approach is a significant portion of research
work. Recent work proposed some novel forms of fingerprints
such as FM Radio [20] and light color, while RSS fingerprint
is more practical and widely applied, since the IEEE 802.11
APs are pervasively deployed nowadays. The fingerprint-based
localization techniques are considered more attractive because
of their advantages of low deployment cost and robustness
in environment with interferences. However, building a fin-
gerprint map would incur considerable cost and complexity.
Moreover, the static radio map is vulnerable to environmental
dynamics and device heterogeneity. Some works have focused
on the effective method of constructing the fingerprint data-
bases [21]. Others attempt to improve the localization accuracy
of the RSS fingerprint mechanism. To reduce the calibration
effort, some researchers focus the signal-wave-propagation-
model-based techniques. These systems build mathematical or
theoretical models instead of manually tagging to calculate
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the given location RSS values [22]–[24]. Wang et al. [25]
proposed a positioning technique based on a wave propa-
gation model, expressing the mathematical relation between
the distance from the transmitter to the receiver and RSS.
The positioning system in [26] merges a wave propagation
model using a polynomial regression and a reference points
database. The computed location is shrunk to the knowledge
of topology, effectively giving the final location. Model-based
techniques do not require the training phase, but their localiza-
tion accuracy is comparatively low. Today, mobile technology
comprises highly sophisticated devices like smartphones with
different inertial sensors. Therefore, there are plenty of studies
describing the positioning system based on inertial measure-
ments [27]. However, the major flaw of this kind of system
is that the estimation error grows with time due to the typical
drift of the inertial measurements [28]. For this reason, inertial
measurements methods usually combine with other techniques
to obtain higher accuracy.

III. PRELIMINARY OF FINGERPRINTING-BASED

LOCALIZATION

A. Fingerprinting-Based Localization

In this section, we present the typical fingerprint-based
IoT localization algorithms for smart buildings and analyze
their shortcomings and limitations. Currently, most localiza-
tion approaches adopt fingerprint matching scheme as the
basic method for location estimation. The fingerprint-based
localization mainly consists of two phases.

1) Phase 1 is called offline phase, or training phase.
In this phase, the fingerprint maps of interest region are
built using empirical measurement operations or a signal
propagation model. The information on all positions
and their corresponding RSS are collected to build the
fingerprinting radio map in a database.

2) Phase 2 is called online phase, or localization phase. The
mobile devices measure the RSS at an unknown position.
Then, the measured RSS is matched with the fingerprint
radio map in the database, and the best matching position
information is identified.

These fingerprint-based localization systems usually take
ARSS values as the fingerprint. The main challenge is the
fact that the techniques are vulnerable to environmental
dynamics and heterogeneous devices. To maintain the local-
ization accuracy, the training process needs to periodically
update the radio map, implying a huge overhead to be
performed.

B. Neighbor Relative RSS

For fingerprint-based localization systems, the construction
a robust and precise radio map is crucial. But there are two
major issues limiting the accuracy of radio map. The first one
is that the RSS value of an AP may vary with the environment
and time. The other one is that, due to the heterogeneity
of devices, RSS measurement data may obviously vary even
when the actual signal strength remains the same. To overcome
challenges, NR-RSS, the difference of RSS between neighbor
locations, is adopted instead of ARSS to build fingerprint.

Fig. 1. Floor plan of localization environment.

As the environmental dynamics at close positions are con-
sidered almost the same, the influence of environment on
RSS values at the positions is nearly identical, these RSS val-
ues tend to change synchronously. Besides, for a certain
device, deviation of RSS values caused by device is approx-
imately identical. Based on the characteristics, the influence
of environmental dynamics and device heterogeneity can
be almost eliminated through utilizing NR-RSS. Therefore,
compared to ARSS, NR-RSS is more robust to device hetero-
geneity and environmental dynamics.

We compute the difference value of the two points
RSS values at time i , namely, the NR-RSS

NR-RSSi = RSSA
i − RSSB

i (1)

where RSSA
i and RSSB

i stand for the RSS values of
points A and B, respectively, at a certain time instant i .
RSSA

i and RSSB
i can be represented in the following form:

RSSA
i = (

MRA
1 , MRA

2 . . . , MRA
n

)

RSSB
i = (

MRB
1 , MRB

2 . . . , MRB
n

)
. (2)

Here MR j is the mean RSS value from j th AP, which
are measured by surveying users. Moreover, ARA

j and ARB
j

denote the mean measured RSS without environment and
device influence at points A and B, respectively. Besides,
�d is the RSS variation caused by measurement device and
�e represents the RSS variation that the environment causes.
We can derive the following equations:

MRA
j = ARA

j − �d
A
j − �e

A
j

MRB
j = ARB

j − �d
B
j − �e

B
j (3)
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. (4)

As points A and B are quite close, the difference between
�e

A
j and �e

B
j is negligible. Similarly, the same device is

used to measure the RSS values at points A and B, and
�d

A
j and �d

B
j are regarded identical. Therefore, at a certain

time instant i , NR-RSSi = RSSA
i −RSSB

i is calculated through
the following equation:
RSSA

i − RSSB
i =

((
ARA

1 − ARB
1

)
,
(
ARA

2 − ARB
2

)
, . . . ,

(
ARA

n − ARB
n

))
(5)

where ARA
j − ARB

j is always stable, enabling the stability of

NR-RSSi.
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Fig. 2. Fluctuation of RSS value at locations A, B, and C. (a) Fluctuation
of RSS value at location A. (b) Fluctuation of RSS value at location B.
(c) Fluctuation of RSS value at location C.

Unlike typical fingerprint-based localization systems,
we introduce a novel technique adopting NR-RSS to overcome
the mentioned weakness. To verify the effectiveness of theo-
retical analysis, we performed the following experiment by
collecting RSS values at points A and B using four different
smartphones (Galaxy S3, MX2, Mi3, Ascend P6) throughout
the day. The experiment was carried out on the ninth floor of
a 17-story building. As shown in Fig. 1, points A and B are
both in the corridor, and their distance is about 3 m, while
point C is in the room and the distance between B and C
is also about 3 m. The measured value of each point was
collected ten times and the average taken as the RSS value
to remove randomness. Fig. 2 shows the RSS values col-
lected at the three locations throughout from 8:00 to 20:00.
The experimental result demonstrates the obvious impact

Fig. 3. NR-RSS fluctuation. (a) NR-RSS fluctuation of locations A and B.
(b) NR-RSS fluctuation of locations B and C.

of environment dynamics and device heterogeneity on the
RSS value.

As seen from the experiment results, we learn that the
RSS value of a particular location can fluctuate throughout
the day. However, as Fig. 3 shows, the RSS difference values
of points A and B stay relatively stable during the day.
Considering that points A and B are both in the corridor
and very close, these environmental dynamics produce the
almost same effect, so the RSS values of points A and B
change almost synchronously. While point B is in the cor-
ridor and point C is in room, in their surroundings, there
exist some differences that influence RSS difference value of
points B and C. But as shown in Fig. 3(b), such an influence
is in an acceptable range. First, in the proposed scheme,
plenty of APs are uniformly distributed in the environment,
consequently weakening the influence of different surround-
ings. Second, the collected RSS values tend to stabilize
through proofreading the average. Besides, neighbor locations
adopted to calculate the RSS difference value locate mostly in
the same environment.

As shown in Fig. 3, we notice that the NR-RSSi values
of four different smartphones are close, while the four smart-
phones’ RSS values at points A, B, and C are quite different
at the same moment, as shown in Fig. 2. For the same
smartphone, the collected RSS values may be always higher or
lower than the real values. Therefore, the difference values of
RSS values at the two points for different smartphones should
be close to the same value. The result of NR-RSS experi-
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Fig. 4. Object’s state transition of motion.

ment supports our theoretical analysis, as shown in Fig. 3.
Given these facts, we can easily draw the conclusion that the
NR-RSS is more robust and stable against environment
dynamics and the heterogeneity of devices. Consequently, we
use NR-RSSs as the fingerprint data to build radio map instead
of ARSSs.

IV. MARKOV-PREDICTION MODEL

Fingerprint-based localization systems must scan the sur-
rounding RSS on each positioning at online localization phase.
It is a high-energy-consuming operation for smart objects
such as smartphones. It is more efficient to predict the
object’s movement by means of mathematical models.
Thus, we apply the Markov-chain model to conduct object’s
trajectory analysis, which can reduce the energy consumption.
In the Markov-chain model, localization object is likely to
be moving objects equipped with mobile devices (such as
robots and vehicles) in IoT. From the point of purposiveness,
their movements have a certain probability (degree of purpo-
siveness), complying with the principle of a Markov chain.
In addition, the probability of object’s movement can be
obtained through the process of collecting and training. For
example, an object has to go directly to a known location,
the probability is close to 1, and the object can be predicted
to move along the direction at next moment. In the proposed
approach, as the NR-RSS matching localization runs, history
data about object’s movement are accumulated. Historical data
can be used to calculate the probability of movement in
Markov-chain model. Based on the probability of movement,
we get initial state of Markov process for localization object,
where the current location and the probability of movement
can be combined to predict the next location.

A. Establishment of the Markov-Chain Model

In the Markov-chain model, each object’s movement is
modeled as a Markov process, and the probability of each
movement only depends on the object’s current position.
Utilizing the probabilistic model, namely, Markov-chain mode,
an object’s movement can be predicted. The building map is
modeled as a cellular structure and is equally divided into
hexagonal cells. The object is located at a cell, represented
as v0 at time 0, as shown in Fig. 4. At time 1, it will either stay
where it is or move to one of the six neighbors, v1, v2, v3, v4,
v5, and v6, arranged as shown in Fig. 4. At time 2, it will also
stand or move to one of the current location’s six neighbors.

Fig. 5. Random pedestrian’s trajectory.

This procedure is then iterated at times 3, 4, . . . , t . In the
general model, we define n different status of the object’s
movement.

Due to the difference of the moving ability of object and the
size setting of cell, the object may move outside the neighbors.
Especially, in the MPM, we expect that the object travels at
most the distance of one cell, which is affected by the moving
ability of the object and the size of the cell. So, time unit
depends on the moving ability of the mobile object

μ(0) = (
μ

(0)
1 , μ

(0)
2 , . . . , μ(0)

n

)
. (6)

Here μ
(0)
s (s = 1, 2, . . . , n) denotes the probability in the state

of s at time 0. And after k steps of status transition, the
probability in the state of s is μ

(k)
s . The μ

(k+1)
s is estimated

by the following formula:

μ(k+1)
s =

n∑

i=1

μ(k)
s · Pij , (s = 1, 2, . . . , n) (7)

j is also from 1 to n, and its matrix form is

(
μ

(k+1)
1 μ

(k+1)
2 · · · μ(k+1)

n

)

= (
μ

(k)
1 μ

(k)
2 · · ·μ(k)

n

) ·
⎛

⎜
⎝

p11 · · · p1n
...

. . .
...

pn1 · · · pnn

⎞

⎟
⎠ (8)

namely

μ(k+1) = μ(k) · P. (9)

The elements of the transition matrix P are called transition
probabilities. The transition matrix can be obtained by ana-
lyzing the object’s motion historical data. Furthermore the
well-known theorem is obtained [29]: for a Markov chain
(X0, X1, . . .) with state space v0, . . . , vk , initial distribution
μ(0) and transition matrix P, the distribution μ(n) at time n
satisfies

μ(n) = μ(0) · Pn . (10)

In the model, the state space corresponds to the behav-
ior of the object movement, and it has seven values in
total.
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Fig. 6. Illustration of workflow in LNM.

B. Prediction by Markov Model

Let us take an example; a random object’s moving trajectory
is shown in Fig. 5. The illustration at the bottom-right is
the orientation index corresponding to the object’s movement
state. The black circle represents where the object stayed.
The orientation of object movement is represented as a pair
of numbers. The first number in parenthesis is the sequence
number and the second is the orientation index, namely, the
object’s movement state. The process continues until enough
history data are collected at time i . The MPM is built to predict
the object’s following movement state. The state transition for
heading is shown in Table I.

So we can get state-space {0, 1, . . . , 6} and transition matrix

Pi =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0.33 0 0.33 0.33 0
0.25 0.50 0 0 0 0 0.25

0 0.50 0 0.50 0 0 0
0 0 0 0 0.50 0.50 0

0.25 0 0 0.25 0.25 0.25 0
0 0 0 0 0.25 0.25 0.50
0 0.67 0.33 0 0 0 0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The initial distribution is μ(i) = {0, 1, 0, 0, 0, 0, 0}. According
to (9), the object’s next motion state probability vector can be
calculated

μ(i+1) = μ(i) Pi

= (0, 1, 0, 0, 0, 0, 0)

·

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

0 0 0.33 0 0.33 0.33 0
0.25 0.50 0 0 0 0 0.25

0 0.50 0 0.50 0 0 0
0 0 0 0 0.50 0.50 0

0.25 0 0 0.25 0.25 0.25 0
0 0 0 0 0.25 0.25 0.50
0 0.67 0.33 0 0 0 0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

= (0.25, 0.50, 0, 0, 0, 0, 0.25).

Thus, according to the prediction analysis, the object most
likely directly moves left next time because the 1st index has
the highest probability 50%. With the increasing of history
data, the prediction model will be more accurate. In practical
application, more history data are collected to improve the
accuracy of further prediction. In our evaluation experiment,
enough history records are collected to start predicting.

TABLE I

MOVEMENT DIRECTION STATE TRANSITION

V. LOCALIZATION ALGORITHM

In this section, we present the architecture and work-
flow of the proposed localization system leveraging the
LNM algorithm in detail. The system mainly operates in two
stages: offline training stage and online location determination
stage, as shown in Fig. 6. In the offline stage, surveying users
use smartphones to collect RSS data at all designated locations
and then send them to the remote localization server. The
server processes this information to get NR-RSS, building up
the NR-RSS fingerprint map database. All interested locations
are kept inside this database. In the online localization stage,
the remote server that runs localization algorithm will return
the location estimation to the device.

A. Fingerprint Collection

Surveying users equipped with smartphones measure RSS
from the surrounding APs at the targeted smart building
environment. These RSS values are used to calculate NR-RSS,
which are stored at the corresponding positions in finger-
print map. The map is divided into equally spaced hexagon
cells, and the entire map forms a honeycomb structure. The
distance between the centers of adjacent hexagons is equal
and close, and consequently the environment dynamics of
adjacent cells are similar. Therefore, the cell is used to replace
the exact geographic coordinate, where the RSS value of
center of each cell is recorded to calculate NR-RSS value.
Each cell has its unique Location ID. The cell spacing is
crucial to the performance of the system. For the method,
it is the ideal situation that the mobile devices receive the
location information feedback from the server when they get
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TABLE II

EXAMPLE OF NR-RSS FINGERPRINT MAP

to the next neighbor cell. In this paper, the best cell spacing
is empirically determined according to the normal walking
speed of mobile users. The tuple M corresponding to each
cell is

M = (L, �S) (11)

where L represents the Location ID of the cell, and �S is
the RSS set collected by surveying-users at the real phys-
ical locations, which correspond to the current cells. �S is
stored as

�S = {(ID1, MS1), (ID2, MS2), . . . , (IDn, MSn)}. (12)

Here, ID represents the MAC address of the AP, MS is the
mean value of the RSS values measured by the surveying-
users, and n is the number of surrounding APs. Surveying-
users should scan the WiFi signals and send such tuple M
information of each cell to the fingerprint server.

B. NR-RSS Fingerprint Database Construction
Previous fingerprint-based localization systems build the

fingerprint map radio using ARSS values. These systems
are vulnerable to environment dynamics and heterogeneous
devices. Thus, we devise a novel technique that makes use of
NR-RSS values to overcome the above weakness. Let us start
with the basic scenario. At some moment, a mobile device
is at some place. In the next moment, the device should
remain or arrive at one of the six orientations, regardless
of the limitation factors of the real environment, such as
walls and obstacles, etc. V0, V1, V2, . . . , V6 stand for the
seven states. At the training phase, surveying users scan the
WiFi signals at their positions and their six neighbor points.
The server receives and processes the information to build the
fingerprint data of these positions in the NR-RSS fingerprint
database.

Table II is an example of the NR-RSS fingerprint data.
Loc stores the unique location ID value for each cell.
ARSS stores the ARSS values. To improve the accuracy,
we scan the WiFi signals several times and calculate the mean
value as ARSS. �S has the form in (12). The last and most
important part is the NR-RSS column, which reflects the main
idea of our system. We use the ARSS values of the device
position and its six neighbors to calculate the difference values
of the position and its neighbors as NR-RSS.

−→
RSi has the

following form:
−→
RSi = {(ID1, RS1), (ID2, RS2), . . . , (IDn, RSn)} (13)

where i is the i th neighbor. We define the west as the first
neighbor, increasing in a clockwise direction. One thing to
note here is that a location does not always have six neighbors

Fig. 7. Data flow in LNM.

because of the limitation of building structure. ID represents
the MAC address of the AP, RS is the difference value
of the position and its neighbor, and n is the number of
surrounding APs.

The fingerprint server handles the raw data received from
the clients, builds the NR-RSS fingerprint map, and stores
it in the map database. The location information about the
interest area is stored in the form described earlier in this
paper. Our fingerprint map is robust and stable against envi-
ronment dynamics and the heterogeneity of devices by using
the NR-RSS.

C. Localization
In the online location determination stage, there are two

localization methods. At the beginning of localization, as there
are not enough movement data for setting up the MPM,
NR-RSS matching method mainly works. The localization
process runs as follows: the mobile devices can scan the
WiFi signals and periodically send information to the local-
ization server. The server combines the received RSS with
the history neighbor RSS information to obtain the NR-RSS;
then the NR-RSS is compared with all entry locations in the
NR-RSS fingerprint database and the most matching one is
determined to finish the location estimation. With the mobile
device moving, the trajectory of its movement is constantly
recorded. When the historical data reach a certain amount,
location estimation is mainly performed by the MPM. That is
to say, during this phase, location estimation is mainly based
on the MPM and supplemented by NR-RSS matching. The
data flow in our localization algorithm is shown in Fig. 7.

1) NR-RSS Matching Localization: When initializing the
localization application, as there are no history data for the
first time localization, the system uses the typical positioning
solution RADAR [30] to obtain the initial location of mobile
device. We call this process global search localization (GSL).
Because GSL has to search all the locations in the fingerprint
map, this operation is time-consuming. But this only happens
at localizing the initial position. During the following local-
ization, the system will utilize the NR-RSS match method and
return location information in real time.

After initializing, system will localize mobile devices by our
novel NR-RSS match solution. First, the accelerometer sensor
in the smart device is utilized to judge whether the mobile
device is in motion or stands. If the mobile device still stands,
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Algorithm 1: NR-RSS Matching Localization Algorithm
1: Initialize (GSL)
2: loop
3: if movement then
4: Compute CND-RSS
5: Match CND-RSS with NR-RSS fingerprints
6: if Dmin > δ then
7: PGSL
8: else
9: Localization according to Dmin

10: end if
11: else
12: current location = last location
13: end if
14: end loop

its current location is the same as the last localization outcome.
Otherwise, when the mobile device moves to the next place,
it sends the raw ambient RSS values to the fingerprint server.
When history data are accumulated to a certain amount, the
prediction model is built.

Second, for the processing and matching stage, the first
step is to calculate the RSS difference value of the current
location and its last adjacent location (LAL). This difference
value is called current neighbor difference RSS (CND-RSS).
LAL has the corresponding NR-RSS stored in the NR-RSS
fingerprint map. Therefore, the next thing to do is to determine
which neighbor of LAL the mobile device arrives at. A metric
and a search methodology are used to compare the neighbors,
obtaining the best matching one. Our solution is to compute
the Euclidean distance of the CND-RSS and the prestored
NR-RSSs of LAL in the fingerprint database, and then pick
the neighbor location that minimizes the distance

Di = ||RSi − CR|| (14)

where RSi is the NR-RSS of the i th neighbor of LAL stored
in the database and CR is CND-RSS. The neighbor that has
smallest Dmin is chosen to be the location estimation and gives
feedback to the mobile device.

Our approach assumes that the mobile device will exactly
move to one of the neighbors. However, due to the difference
of moving speed, it is not possible that the mobile device will
arrive exactly at the center of the next neighbor every time.
Consequently, the error of the estimated position increases
over time, and finally the mobile device might move to the
other place rather than the neighbors. As shown in Fig. 4,
an object moves from its current place, and at next moment,
it may arrive at the shadow cells rather than the neighbors.
Our algorithm determines such situation by using a threshold
value δ

Dmin > δ (15)

where δ represents the threshold to determine whether the
mobile device arrives at the neighbor or other place. The
value of δ is set according to the actual fingerprint map
state of the indoor environments. In the latter situation, we

start a search method resembling the GSL described earlier.
Instead of searching all the location items, we set the device
place and its neighbors as the center and match outward
expansion cells until we find the cell whose ARSS values
are close to the observed value. In this way, only a small
amount of location records need searching, and the location
estimation is returned in real time. This process is termed
pseudo GSL (PGSL). Algorithm 1 explains the process of
NR-RSS matching localization.

2) Markov-Prediction Localization: At the beginning of the
NR-RSS matching localization phase, there is a necessity for
scanning the surrounding WiFi signals for each localization
estimation process. This is quite a high-energy-consuming and
time-consuming operation for mobile devices. Thus, MPM is
adopted for localization. As the NR-RSS matching localization
runs, movement history data are constantly recorded, and
when it accumulates to certain amount, the Markov-prediction
localization starts working.

To prevent Markov-prediction localization from causing the
accumulated error, the NR-RSS match localization needs to be
executed to verify the accuracy of Markov-prediction local-
ization. When utilizing MPM on mobile devices, prediction
result and current NR-RSS are sent to the server, where
NR-RSS match localization is conducted to confirm whether
prediction result is right. If the localization results estimated by
NR-RSS matching and prediction model are nearly the same,
server only returns confirming information, implying that the
prediction result is valid. However, when they are different,
there are two conditions: 1) if the result of NR-RSS matching
is located at one of the six neighbors of the last location,
the result will be sent to mobile devices as localization result
and 2) if the result is located outside the six neighbors of
the last location, the PGSL will be run to determine the
mobile device position and sent to mobile devices. Moreover,
as the prediction model has produced erroneous localization
estimation, the recent movement history data will be deleted
from the prediction model and the model will be rolled back to
the last right status. To balance energy consumption and posi-
tioning accuracy, mobile devices should control the frequency
of transmitting the request of verifying. In the early stage that
MPM is built based on history data, once MPM localization
is executed, the request of verifying will be sent to the server.
With the increase of history data and the accumulation of
accurate positioning, mobile devices may reduce the frequency
of transmitting the request. However, when checking out that
Markov-prediction localization produces localization error,
mobile devices will increase the frequency of transmitting the
request. The algorithm of building and working process of the
MPM is described in Algorithm 2.

In the algorithm, the threshold C is set to decide whether
movement history data are enough to support the effective
Markov-prediction localization. C varies with motion object
and motion situation, because different motion objects and
even different motion situation of the same object need to
accommodate different amounts of history data to achieve the
valid MPM. For instance, when an object moves highly irreg-
ularly, more movement history data are needed to calculate
the probability to switch to the different movement states.
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Algorithm 2: Markov-Prediction Model Algorithm
1: loop
2: if History records < C then
3: NR-RSS Matching Localization
4: History records++
5: end if
6: end loop
7: if History records >= C then
8: Build Markov Prediction Model(MPM)
9: Localization by MPM

10: end if
11: if MPM localization result == NR-RSS localization result

then
12: History records++
13: else
14: if NR-RSS localization result is the neighbor of the last

location then
15: Localization result== NR-RSS localization result
16: else
17: Run PGSL to get localization result
18: end if
19: History records--
20: end if

VI. PERFORMANCE EVALUATION

This section discusses the results of real experiments
to evaluate the performance of our proposed LNM. First,
experimental testbed and the context of experiment are intro-
duced in detail. Second, we evaluate the performance of the
proposed algorithm under heterogeneous devices against other
well-known algorithms.

A. Experimental Testbed

In this experiment, mobile devices carried by pedes-
trians move according to the given trajectory in a
about 1000 m2 area, where nine APs are deployed (shown
as Fig. 6). Based on the different cell radius length in the
experiment choosing optimal cell radius, the various number of
calibration points is dynamically set. When cell radius is 1 m,
380 calibration points are adopted, while 5 m cell radius
corresponds to 20 calibration points. However, in our experi-
ment environment, 2 m is selected as the optimal cell radius
through the determination of experiment, where the corre-
sponding number of calibration points is set at 100. Thus, cell
radius and the number of calibration points are, respectively,
defined as 2 m and 100 in the subsequent experiment. Each
calibration point is indicated by some stable RSS observations
from all orientations. Each observation mainly contains RSS
from all active APs. Besides, the thickness of wall between
rooms is less than 10 cm, yielding certain interference.
In the area, moving people and physical barriers always exist,
which also causes fluctuations of RSS. Our experiment system
includes smartphone client and server components. To carry
out a proper evaluation of LNM in real environments, we
implemented the client system on four different smartphones
(Galaxy S3, MX2, Mi3, Ascend P6), which are Android smart-
phones equipped with WiFi (MX2 uses Flyme2.0 based on

TABLE III

SMARTPHONES CONFIGURATION INFORMATION

Android). The configuration information of these smartphones
is shown in Table III. The server is developed with JAVA
on Windows7 platform. We have collected realistic RSS in a
WLAN environment illustrated in Fig. 1 from 6:00 to 22:00 of
the day, and over seven days, keeping the executed scenarios
as close to realistic as possible.

B. Experiments

The accuracy of our localization system is significantly
influenced by various system parameters. To obtain an ideal
location estimation, we should first find out the optimal
parameter values. Among them, cell radius has a significant
impact on the accuracy of localizing. First, each RSS value
corresponding to a cell is used to calculate the NR-RSS value.
Consequently, the selection of cell radius seriously influences
the accuracy of NR-RSS localization. Second, in MPM, seven
different statuses of the object movement are expected to
locate at the adjacent cells; therefore, the size of cell radius is
an important factor to achieve accurate prediction. We define
the relation of location error and cell radius as Le = pRc.
p value has two cases: p < 1 denotes that the location
error is lesser than the cell radius, namely, real location
and localization result are in the same cell. In this case,
theoretically, we can shrink Rc to reduce the localization error.
However, when Rc of cell is too small, the object may always
move outside the neighbors, which can cause more serious
inaccuracy of localization. Thus, to set the suitable Rc of
cell, the device’s computing ability and the time during a step
need comprehensively be considered. p > 1 means that the
localization result is outside the cell where the real position is
located. The experiment shows that our approach ensures that
location error is lesser than the cell radius. Another important
parameter is the threshold δ for determining whether PGSL is
implemented.

As we localize the cell instead of specific geographic
coordinates, the cell spacing will impact the location error and
correct rate significantly. Combined with the aforementioned
mathematic analysis, the suitable cell radius should be chosen,
enabling location error always less than cell radius ( p < 1).
Next, a series of experiments are conducted to choose the
optimal cell radius. In the experiment, the floor plan is divided
into many hexagon cells, and a set of localization is performed
by altering the cell radius length from 1 to 5 m, while the user
is walking at a speed of 1–1.5 m/s. Location error and correct
rate are adopted to evaluate the performance corresponding to
various cell radius length. Location error refers to the average
distance between the position localized by LNM and the target
location. And correct rate is the percentage of LNM hitting
right cells times during 70 times of localization process. The
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TABLE IV

IMPACT OF CELL SPACING

TABLE V

IMPACT OF δ

statistical results of the location error and the correct rate
are shown in Table IV. With increased cell radius length,
the correct rate becomes higher, while the location error also
becomes bigger. In our experience, the location error of 1.5 m
is an acceptable error with a quite high correct rate of 80.3%.
Balancing the two measures, we think 2 m is a relatively
ideal value for cell radius, and hence use it for the subsequent
experiments.

As mentioned above, δ is used to judge whether the user
goes outside the neighbor cells and to determine whether to
execute PGSL. To choose suitable δ value, the fingerprint
map data for different regions are analyzed, and a sequence
of test experiments are performed to determine this threshold
value. The result of the experiment for δ is shown in Table V.
As the results show, when δ is 25 dbm, both the location
error and correct rate have the best performance, and thus
the value of δ is set to 25 dbm in the following evaluation
experiments.

Moreover, to evaluate the energy consumption and the
localization accuracy of using MPM, we respectively imple-
ment our system and a system merely based on NR-RSS
localization, and four different smartphones are used to build
fingerprint map and localize in our testbed. Energy ratio is
defined to represent the ratio of energy consuming between
the LNM localization system using NR-RSS and MPM and
localization system only using NR-RSS. Besides, switch times
represent the switch times from MPM prediction to NR-
RSS localization in our system. During the 12 hours, energy
ratio and switch times on every smartphone are recorded.
As is shown in Table VI, on four different smartphones,
the localization system using NR-RSS and MPM achieves
remarkable energy efficiency, and the limited switch times also
manifest the restricted degradation of localization accuracy.

We compare the number of appearance of the deviation
of RSS value and NR-RSS value under different tolerable

TABLE VI

IMPACT OF USING MPM

TABLE VII

NUMBER OF EXCEEDING TOLERABLE DEVIATION

TABLE VIII

NUMBER OF LOCALIZING AT THE WRONG CELL

Fig. 8. Comparison of localization using different location fingerprint.

deviation. Tolerable deviation represents acceptable deviation
degree of RSS value or NR-RSS. If the measured value
exceeds the required tolerable deviation, the measured value
cannot be used, and the value needs to be measured again.
While, considering the different energy consumption demand
of the systems, we set different tolerable deviation for different
systems. As is shown in Table VII, under different tolerable
deviations (5%, 10%, 15%, 20%), the number of exceeding
tolerable deviation of RSS value and NR-RSS value among
100 cells in 5 h are presented.

To show the impact of wrong estimation, we compare the
number that the localization result is at the wrong cell in
NR-RSS and RSS matching localization. Table VIII shows
that the number to localize at the wrong cell in four different
periods (1 h).

In addition, in order to verify the performance of
NR-RSS in localizing, we, respectively, implement the local-
ization system based on NR-RSS and other location finger-
prints, including signal strength difference (SSD) [30] and
RSS [31]. As illustrated in Fig. 8, the localization accuracy
of the three systems is compared; obviously, the localization
system based on NR-RSS outperforms the localization system
based on SSD and RSS.
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Fig. 9. LNM location error on different smartphones used for map building. (a) Ascend P6 used for map building. (b) Mi3 used for map building.
(c) MX2 used for map building. (d) Galaxy S3 used for map building.

C. Impact of Device Heterogeneity

This evaluation mainly analyzes the performance of LNM
with different devices to demonstrate that our algorithm works
well under heterogeneous devices. In the experiment, four
different smartphones were used to build fingerprint map and
localize. For each time experiment, only one device was
used for building fingerprint map, while four smartphones
are used to localize each time. Localization was performed
at different times of the day to check the performance of
the systems against environmental dynamics. The situation
of location error for LNM is shown in Fig. 9. Therefore,
our algorithm can achieve stable localization accuracy against
device heterogeneity.

D. Comparison Experiment

At last, we compare the performance of LNM and
three other well-known systems: RADAR [32], WILL [33],
and Zee [34]. These indoor localization systems are
quite classical or a relatively new positioning solution.
RADAR is an RF-based indoor localization system,
which also uses RSS information collected at numer-
ous positions. The approach does not consider the influ-
ence of environment dynamics and device heterogeneity
on RSS value, causing inaccuracy of localization. The
WILL system is based on off-the-shelf WiFi infrastructure,
exploiting user motion trajectory to achieve the indoor
localization. Utilizing the constructed RSS fingerprint and
the floor plan database, the mapping between fingerprints
and their measured locations is implemented to localize.

TABLE IX

COMPARISON OF LOCALIZATION ALGORITHMS

TABLE X

POWER CONSUMPTION AND AVERAGE LOCALIZATION TIME

Zee system estimates the users’ motion trajectory to enable the
indoor localization without the calibration effort. The method
utilizes various inertial sensors (e.g., accelerometer, compass,
gyroscope) embedded in the mobile devices to localize, which
simultaneously performs WiFi scanning.

As shown in Table IX, we make the analysis and comparison
for the proposed algorithm and these three algorithms in terms
of the following key parameters: fingerprint, motion trajectory,
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Fig. 10. CDF of location error comparison on different smartphones.
(a) Mi3. (b) MX2. (c) Galaxy S3. (d) Ascend P6.

calibration effort, and prediction. Then, the proposed system
and these three systems were run at Mi3, MX2, Galaxy S3,
and Ascend P6. We compare the four systems on localization
accuracy, power consumption, and system running time.

Fig. 10 shows the cumulative density function (CDF) of the
location error for the four techniques running at different
mobile phones. LNM gives nearly 70%, 72%, 71%, and 70%
accuracy for localizing the right place within 2.1 m at the plat-
form of Mi3, MX2, Galaxy S3, and Ascend P6, respectively.
Compared with the other three systems whose accuracy is
relatively low and fluctuates largely, its performance is quite
satisfying. The results indicate that the accuracy of LNM does
not degrade with device heterogeneity and LNM can get the
relatively high accuracy of 1.5 m. This reaffirms our belief that
our method will work well in complex real-world scenarios.

In addition, to verify the availability of LNM, we also
test the state of power consumption for 1 h and the average
system running time for one time localization of LNM. The
comparison results of the power consumption and the average
system running time of the four systems are shown in Table X.
We implement the four systems in the four smartphones
(Mi3, MX2, Galaxy S3, Ascend P6), respectively, to ensure
the fair and valid comparisons. As the results of comparison
experiment show, our algorithm has quite good performance
in the aspects of power consumption and system running time
under the requirement of the stable high localization accuracy.

VII. CONCLUSION

In this paper, we have proposed and evaluated a novel
method, named LNM, which uses NR signal fingerprint and
Markov chain for localizing in smart building environment.
The proposed fingerprint radio map building and localiza-
tion techniques are based on the neighbor relationship. Our
techniques provide robust and stable localization accuracy
against device heterogeneity and environmental dynamics,
which ensures the efficiency of localization. Experiments using
heterogeneous smartphones have confirmed that LNM is feasi-
ble and reliable. LNM can achieve high localization accuracy
with about 1.5 m error on the average. Our LNM outperforms
other systems in the literature: RADAR, Zee, and WILL.
As LNM can localize in real time with high accuracy, it
has reached a level of maturity that allows for the practical
realization of IoT localization solutions and services, and
has potential for large-scale deployment in the IoT scenarios.
For future work, we will evaluate other mobile devices such
as aeroterrestrial drones (e.g., WiFiBot and Parrot) [35] in
complex buildings, as such smart objects will be used in the
future smart buildings for supporting many activities (cleaning,
emergency, disabled people support, and so on).
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