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ABSTRACT

Cooperative spatial multiplexing (CSM) system has played an important role in wireless networks by offering a substantial
improvement in multiplexing gain compared with its cooperative diversity counterpart. However, there is a limited number
of research works that consider the performance of CSM systems. As such, in this paper, we have derived exact perfor-
mance of CSM with amplify-and-forward and decode-and-forward relays in terms of outage capacity and ergodic capacity.
We have shown that CSM systems yield a unity diversity order regardless of the number of antennas at the destination and
the number of relays in the networks, which is the direct result of diversity and multiplexing gain trade-off. Our analytical
expressions are corroborated by Monte-Carlo simulations. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cooperative communications have aroused much interest
in recent years as practical transmission schemes for future
wireless networks because of their substantial increase in
spectral efficiency and reliability [1,2]. Most of the studies
in cooperative communications have focused on the diver-
sity gain aspect where relay nodes are deployed to assist
direct communications in terms of the spatial diversity gain
[3–6]. However, the transmission requires at least two hops
for relay networks, which decreases the spectral efficiency
compared with the direct communications.

To overcome this shortcoming, a series of seminars has
investigated the spatial multiplexing gain of relay networks
[7–11]. Specifically, by assuming that all decode-and-
forward (DF) relays simultaneously transmit the source’s
message in the second hop, an improvement in capacity can
be achieved by the cooperative spatial multiplexing (CSM)
system compared to the cooperative diversity scheme [8].
The work in [8] then is extended to amplify-and-forward
(AF) relays for dual-hop [9] and multihop [10]. However,

these works, that is, [8–10], have evaluated the perfor-
mance of CSM systems via simulations. Very recently, the
performance analysis for CSM systems with AF relays has
been reported in [11]. In particular, the symbol error proba-
bility (SEP) and the ergodic capacity, given in the forms of
single integral, have been presented in [11]. Although these
expressions enable us to evaluate the CSM system perfor-
mance, their lack of tractability cannot reveal the insights
on the impact of the networks parameters on the CSM per-
formance. To the best of the authors’ knowledge, there is
no previous work deriving the exact closed-form expres-
sions for the performance of CSM systems with either DF
or AF relays.

Therefore, in this paper, we take a step further to ana-
lyze the performance of CSM systems by considering both
DF and AF relays and deriving exact performance metrics
of the system. In particular, assuming that a single-antenna
source node communicates with a multiple-antenna desti-
nation through the assistance of multiple relays (each of
which is equipped with a single antenna), the CSM sys-
tem is formed to enhance the capacity of relay networks.
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The relays operate in either DF or AF mode and simultane-
ously convey the source’s signal to the destination. At the
destination, a simple linear receiver, namely zero-forcing,
is applied to the detect source’s symbols. Our contributions
are summarized as follows:

� The performance analysis for CSM systems is carried
on for both DF and AF relays. The fading channel
under consideration is independent but not necessarily
identically distributed (i.n.i.d.) Rayleigh.

� We characterize statistical distribution of the end-
to-end signal-to-noise ratio (SNR) by deriving the
exact cumulative distribution function (CDF) and the
probability density function (PDF).

� Utilizing the exact expressions for the statistics of
SNR, we can derive the exact expressions for CSM
systems in terms of outage probability, SEP, and
ergodic capacity.

� We further derive the spatial diversity gain for CSM
systems. It is interesting to obtain that the CSM sys-
tem yields a unity diversity order for both DF and
AF relays irrespective of the number of relays and the
number of antennas at the destination.

The remainder of this paper is organized as follows: In
Section 2, the system and the channel models for CSM
with AF and DF relays are briefly described. In Section 3
and Section 4, the performance analysis for CSM has been
derived for AF and DF relays, respectively. In Section 5,
the numerical results are provided to illustrate the impact
of CSM systems. Finally, Section 6 concludes our paper.

2. SYSTEM MODEL FOR
COOPERATIVE SPATIAL
MULTIPLEXING SYSTEMS WITH
AMPLIFY-AND FORWARD AND
DECODE-AND FORWARD RELAYS

Consider a CSM system with uplink communications con-
sisting of a source node (equipped with a single antenna),
R relay nodes (equipped with a single antenna), and a des-
tination (equipped with nD multiple antennas). Information
is exchanged over dual-hop transmission. In the first hop,
the source transmits R symbols x1; x2; : : : ; xR to the R
relays with the average power per symbol Ps . Then, the
k-th relay for k D 1; 2; : : : ; R will be active in the k-th
duration to receive xk . Depending on the relaying oper-
ation, the k-th relay can work either in DF or AF mode.
In this work, we investigate the CSM system for both DF
and AF relays. In the second hop, in contrast to cooper-
ative diversity system where each relay node has to use
orthogonal channel, the CSM system allows all relays to
transmit simultaneously to the destination to increase the
spectral efficiency. The destination can deploy the linear
equalization to detect the multi-streams from the source,
for example, zero-forcing or minimum mean square error.

The dual-hop fading is assumed as quasi-static flat
channel, that is, the channel is fixed over the frame
with duration of two hops being spanned over R C 1

symbols and changed over subsequent frames. The chan-
nel model under consideration is Rayleigh fading where
both independent and identically distributed (i.i.d.) and
i.n.i.d. fading can be taken into account. In particular,
the channel vector from source to the R relays is defined
as Œh1; h2; : : : ; hR�, where hk is the channel coefficient
from source to the k-th relay being modeled as a complex
Gaussian random variable with zero mean and variance
�1k, CN

�
0;�1k

�
. The channel matrix from R relays to

nD-antenna destination is denoted as an nD � R matrix
G. The .i ; j /-th element of GGG for i D 1; 2; : : : ; R and
j D 1; 2; : : : ; nD is the channel coefficient from the i -
th relay to the j -th antenna of destination, which is also
characterized as CN

�
0;�2k

�
.

For AF relaying mode, the post-processing SNR per
symbol of the k-th sub-stream, k D 1 : : : R, can be
determined by [11]

�AFk D
�0jhk j

2

1C
h
.„„„H„„„/�1

i
kk

(1)

where ŒAAA�ij denotes the .i ; j /-th entry of matrix AAA, and

�0 D
Ps
N0

is the average transmitted SNR. Here, matrix „

is defined as

„„„D

2
64

˛1G11 : : : ˛RG1R
::: � � �

:::

˛1GnD1 : : : ˛RGnDR

3
75 (2)

and ˛k D .�1k C N0=Ps/
�1, with N0 being the noise

variance.
For DF relays, the end-to-end SNR of a dual-hop trans-

mission can be considered as the minimum among the two
hops [12]. As such, the instantaneous SNR of the k-th
symbol for CSM with DF relays can be given by

�DFk Dmin.�k1; �k2/

Dmin

 
�0jhk j

2;
�0

Œ.GGGH2 GGG2/
�1�kk

!
(3)

3. PERFORMANCE ANALYSIS OF
COOPERATIVE SPATIAL
MULTIPLEXING SYSTEMS WITH
AMPLIFY-AND-FORWARD RELAYS

3.1. Outage probability

From the definition of matrix „„„ in (2), we can observe
that „„„H„„„ is a complex Wishart matrix. Accordingly, the

inverse of the k-th diagonal element of matrix .„„„H„„„/�1,

that is, Yk D 1=Œ.„„„H„„„/�1�kk , is a weighted chi-square

distributed random variable with 2.nD�RC1/ degrees of
freedom [13], whose PDF can be expressed as

fYk .y/D
exp.�y=�k/

�kmŠ

�
y

�k

�m
(4)
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where �k D ˛2
k
�2k and m D nD � R. Furthermore, it is

well-known that the PDF of random variable Xk D 1=Yk
is given by

fXk .x/D
1

x2
fYk

�
1

x

�

D
1

�kmŠx
2

exp

�
�
1

�kx

��
1

�kx

�m
(5)

where the second equality follows immediately from (4).
We now can readily derive the CDF of the instantaneous
SNR �AF

k
of the k-th sub-stream as follows:

F
�AF
k

.�/D Pr

�
jhk j

2 <
�

�0
.1CXk/

�

D EXk

�
1� exp

�
�

�

�0�1k
.1CXk/

��

D1�

Z 1
0

exp
�
� �.1Cx/
�0�1k

	
exp

�
� 1
�kx

	 �
1
�kx

	m
�kmŠx

2

D1�
2

mŠ

�
�

�0�1k �k

�.mC1/=2
exp

�
�

�

�0�1k

�
KmC1

 
2

s
�

�0�1k �k

!
(6)

where Ex f:g is the expectation operator over the random
variable X , and Kn .:/ is the nth-order modified Bessel
function of the second kind [14, Eq. (8.432.6)]. Having the
CDF of �AF

k
in hands allows us to evaluate the outage

probability of the system under consideration. Denoting
�th as the SNR threshold, below which the system is in
outage, the outage probability can be obtained by replac-
ing � with �th in the CDF expression given previously
as follows:

PAFo D
1

R

RX
kD1

F
�AF
k

.�th/

D
1

R

RX
kD1

"
1�

2

mŠ

�
�th

�0�1k �k

�.mC1/=2
exp

�
�

�th

�0�1k

�
KmC1

 
2

s
�th

�0�1k �k

!#
(7)

3.2. Symbol error probability

The PDF of �AF
k

can be easily obtained by differentiating
the CDF with respect to � as follows:

f
�AF
k

.�/D
2

mŠ

�
1

�0�1k �k

�mC2
2

�
m
2 exp

�
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�
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2
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2
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2 exp
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�
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2
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�
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!
(8)

The SEP of M -PSK can be given in exact form by [15]

PAFe D
1

�

Z .M�1/�=M

0
ˆ
�AF
k

�
g

sin2 �

�
d� (9)

where gD sin2
�
�
M

�
and ˆ

�AF
k

.s/D E
�AF
k
fexp .�s�/g

is the moment generating function (MGF) of �AF
k

. Apply-
ing the Laplace transform of f

�AF
k

.�/ yields the MGF of

�AF
k

as

ˆ
�AF
k

.s/D
1

1C �0�1k s
exp

�
1

�k.1C �0�1k s/

�
(10)

�
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Theorem 1. The CSM with AF relays achieves the unity
diversity gain, that is,

dAF , lim
�0!1

� logPe

log �0
D 1 (11)

Proof . Because each sub-stream plays a similar role, we
can rewrite (11) as follows:

dAF D lim
�0!1

� logPek

log �0

D lim
�0!1

� logˆ
�AF
k

.g/

log �0
(12)

From (10) and (12), we obtain

dAF D lim
�0!1

log.1C g�1k�0/
log �0„ ƒ‚ …

I1

�I2 (13)

where I2 is defined as

I2 D lim
�0!1

log

"
1P
`D0

˛` exp

�
1

�k.1C�0�1k g/

�#

log �0
EmC`C1

�
1

�k.1C �0�1kg/

�
(14)

and ˛` D .mC 1/
`�`�1
k

. It is easy to see that I1 D 1. For
the large SNR, that is, �0� 1, I2 can be expressed as

I2 D lim
�0!1

log

"
1P
`D0

˛` exp
�
ˇ
�0

	
EmC`C1

�
ˇ
�0

	#

log �0
(15)

where ˇ D 1
�k�1k g . The exponential integral function can

be shown in the form of the incomplete gamma function

EmC`C1

�
ˇ

�0

�
D

�
ˇ

�0

�mC`
�

�
�m� `;

ˇ

�0

�
(16)

where �.a; x/D
R1
x ta�1e�tdt is the incomplete gamma

function. Furthermore, using the fact that �.a; x/ D

e�xxa
1P
iD0

La
i
.x/

iC1 [14, eq. (8.355)], where Lai .x/ is

the Laguerre polynomial of order i and applying
[14, eq. (8.970.1)], we obtain

EmC`C1

�
ˇ

�0

�
D exp

�
�
ˇ

�0

� 1X
iD0

iX
jD0

.�1/j

.i C 1/j Š

 
i �m� `

i � j

!
ˇj

�
j
0

From (15) and (17), I2 can be written as

I2 D lim
�0!1

log

 
1P
`D0

1P
iD0

iP
jD0

.�1/j ˛`
.iC1/j Š

�i�m�`
i�j

�ˇj
�
j
0

!

log �0
D 0 (17)

which completes the proof. �

3.3. Ergodic capacity

The ergodic capacity of CSM with AF relays can be
obtained by summing up the data rate of all sub-streams,
given by (18) as shown

CAF D
1

RC 1

RX
kD1

E
�AF
k
flog2.1C �k/g (18)

D
2

.RC 1/mŠ ln 2

RX
kD1

1X
`D0

�
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�0�1k �k

�m�`C2
2

�
1
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�` Z 1
0

�
mC`
2 exp

�
�

�

�0�1k

�

� ln.1C �/KmC`

 
2

s
�
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!
d�
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where the scalar 1=.R C 1/ accounts for the fact that the
transmission incurs inRC1 symbol duration, and (18) fol-
lows immediately from (8). As can be observed from (18),
we need to calculate the following integral to obtain the
closed-form expression for the ergodic capacity

JD

Z 1
0
�
mC̀
2 e
� �
�0�1k ln.1C�/KmC̀

 
2

s
�

�0�1k �k

!
d�

(19)
To further simplify integral J , we express ln.1 C �/ and

KmC`
�
2
q

�
�0�1k �k

�
in terms of the Meijer’s G-function

and Fox’s H-function by making use of [16, eq. (8.4.6.5)],
[16, eq. (8.4.23.1)], and [16, eq. (8.3.2.21)] as follows:

ln.1C �/DG1;22;2

�
�

ˇ̌̌
ˇ 1; 11; 0

�

DH
1;2
2;2



�

ˇ̌̌
ˇ .1; 1/; .1; 1/.1; 1/; .0; 1/

�
(20)
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s
�
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!

D
1

2
G
0;2
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�
�

�0�1k �k
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ˇ � �
mC`
2 ;�mC`2

�

D
1

2
H
0;2
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�

�0�1k �k

ˇ̌̌
ˇ � �

.mC`2 ; 1/; .�mC`2 ; 1/

�
(21)

whereGm;np;q .�/ is the Meijer’s G-function [16, eq. (8.2.1.1)],

and Hm;n
p;q Œ�� is the Fox’s H-function [16, eq. (8.3.1.1)]. By

substituting (20) and (21) in (19) and using the help of
[17, eq. (2.6.2)], we obtain

J D
1

2

�
1

�0�1k

��m�`�2
2

H
1;2;2;1;0
1;Œ2W2�;0;Œ2W0�

2
664
�0�1k

1
�k

ˇ̌̌
ˇ̌̌
ˇ̌

.mC`C22 ; 1/

.1; 1/; .1; 1/

__
.1; 1/; .0; 1/I .mC`2 ; 1/; .�mC`2 ; 1/

3
775 (22)

where H
K;N;N 0;M;M 0

E;ŒAWC�;F ;ŒBWD�
Œ�� is the generalized Fox’s

H-function [17, eq. (2.2.1)]. Finally, by combining (22)
with (18), the ergodic capacity of CSM with AF relays can
be given as

CAF D
1

.RC 1/mŠ ln 2

RX
kD1

1X
`D0

�
1

�k

�m�`C2
2

H
1;2;2;1;0
1;Œ2W2�;0;Œ2W0�

2
664
�0�1k

1
�k

ˇ̌̌
ˇ̌̌
ˇ̌

.mC`C22 ; 1/

.1; 1/; .1; 1/

__
.1; 1/; .0; 1/I .mC`2 ; 1/; .�mC`2 ; 1/

3
775
(23)

4. PERFORMANCE ANALYSIS
OF COOPERATIVE
SPATIAL MULTIPLEXING
SYSTEMS WITH FIXED
DECODE-AND-FORWARD RELAYS

4.1. Outage probability

Defined as the probability that the minimum of its single-
hop SNRs is below a given threshold SNR, the system
outage probability of the CSM system with DF relays can
be mathematically expressed as

PDFo D
1

R

RX
kD1

F
�DF
k

.�th/ (24)

where �DF
k

is given in (3), which leads to the fact that

F
�DF
k

.�/D 1�
�
1�F�k1 .�/


 �
1�F�k2 .�/



(25)

Because �k1 D �0jhk j
2 is an exponential random variable,

we can observe that F�k1 .�/ D 1 � exp
�
� �
�0�1k

	
. In

addition, the CDF of �k2 D
�0h

.GGGH2 GGG2/
�1
i
kk

can easily be

obtained by differentiating (4), which enables us to rewrite
(25) as follows:

F
�DF
k

.�/D1�exp

�
�

�

�0�1k

�
�.mC 1; �=.�0�2k //

�.mC 1/

(26)
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4.2. Symbol error probability

By making the derivative of (26) with respect to � and
using the fact that @�.aC1;x/

@x
D �x

a

ex , we obtain the PDF
as follows:

f
�DF
k

.�/D
exp

h
�
�

1
�0�1k

C 1
�0�2k

	
�
i

�0�2k�.mC 1/

�
�

�0�2k

�m
C

exp
�
� �
�0�1k

	
�0�1k

�.mC 1; �=.�0�2k //

�.mC 1/
(27)

The MGF is then can be given by

ˆ
�DF
k

.s/D

�
�1k

�1k C�2k C �0�1k�2k s

�mC1 �0�1k s

1C �0�1k s
C

1

1C �0�1k s
(28)

Theorem 2. The CSM with fixed DF relays achieves the
first diversity gain, that is,

dDF , lim
�0!1

� logPe

log �0
D 1 (29)

Proof . Similarly, as in the case of AF relays, the diversity
order for fixed DF relays can be shown as

dDF D lim
�0!1

log.1C g�1k�0/
log �0„ ƒ‚ …

I1

� lim
�0!1

log



1C

�
�1k

�1kC�2kC�0�1k�2k g

	mC1
�0�1kg

�
log �0„ ƒ‚ …

I3

(30)

It is easy to observe that I3 D 0, which finalizes the
proof. �

4.3. Ergodic capacity

By expanding the incomplete gamma function in the sum-
mation of elementary functions in (8), the ergodic capacity
for CSM with fixed DF relays can be given by

CDF D
1

.RC 1/ ln 2
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kD1

Z 1
0

ln.1C �/
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h
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�

1
�0�1k
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�
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C
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0
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h
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�

1
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�
i

�0�1k i Š

�
�

�0�2k

�i
d� (31)

To evaluate the integral in (31), we apply the following
result from [18, Appendix B]

Z 1
0

ln.1C x/xn�1 exp.�˛x/D .n� 1/Š exp.˛/
nX
jD1

�.�nC j ; ˛/

˛j
(32)

where n D 1; 2; : : :, ˛ > 0, which yields the desired
expression as follows:
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3
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Figure 1. Outage probability of cooperative spatial multiplexing
with AF relays versus SNR.

Figure 2. Outage probability of cooperative spatial multiplexing
with DF relays versus SNR.

Then, applying some simplifications, we can obtain the
ergodic capacity as in (34), where 	1k D

1
�0�1k

and

	2k D
1

�0�2k
.

CDF D
1

.RC 1/ ln 2
exp.	1k C 	2k /

2
4.	2k /mC1 mC1X

jD1

�.�m� 1� j ; 	1k C 	2k /

.	1k C 	2k /
j

C

mX
iD0

	1k .	2k /
i
mC1X
jD1

�.�i � 1� j ; 	1k C 	2k /

.	1k C 	2k /
j

3
5 (34)

Figure 3. Symbol error probability of cooperative spatial multi-
plexing with AF relays versus SNR.

Figure 4. Symbol error probability of cooperative spatial multi-
plexing with DF relays versus SNR.

5. NUMERICAL RESULTS

In this section, numerical results are provided to validate
our analysis. The number of relays is set as RD 3, and the
number of antennas at the destination is selected as nD D 4.
We consider three different cases corresponding
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Figure 5. Ergodic capacity of cooperative spatial multiplexing
versus number of relays.

i.i.d. and i.n.i.d. Rayleigh fading channels as follows: Case
1: f�1kg3kD1 D 1, f�2k g

3
kD1
D 1, Case 2: f�1k g

3
kD1
D

2, f�2k g
3
kD1

D 2, and Case 3: f�1k g
3
kD1

D f3; 4; 5g,

f�2k g
3
kD1
D f6; 7; 8g.

Figures 1 and 2 show the outage probability for CSM
with AF and DF relays, respectively, versus the average
SNR with the outage threshold being chosen as �th D 3dB.
In addition, Figures 3 and 4 display the SEP performance
of Quadrature Phase Shift Keying modulation for AF and
DF versus the average SNR, respectively. As can be seen
from these four figures, the performance is improved with
the increase of channel mean power of the fading chan-
nels, that is, �1k and �2k . It is observed that the best
performance is seen with Case 3 because its channel mean
powers are the highest among the three cases. It is also
interesting to see that the curves are parallel in the high
SNR regimes, which reveals the fact that the diversity gains
are the same and do not depend on the channel mean pow-
ers. In addition, for the four figures, the analysis and the
simulation curves match very well with each other, which
validates the correctness of our analytical derivation.

Figure 5 displays the ergodic capacity of AF and DF
relays, where the number of antennas at the destination
is selected as nD D R C 1. Here, we plot the capacity
versus the number of relays R. As can be seen that the
capacity performance is enhanced as the number of relays
increases. More importantly, CSM with DF relays show a
better performance than that of AF relays. This is straight-
forward because, in the latter case, the relays convey not
only the source’s information but also the relay’s noise to
the destination, which degrades the system performance.

6. CONCLUSIONS

In this work, we have analyzed the performance of CSM
systems with AF and DF relays over i.n.i.d. Rayleigh fad-
ing channels. In particular, by assuming that each relaying

terminal simultaneously transmits the source’s signal to the
destination, which deploys the linear receiver, the capacity
of CSM systems can be significantly increased compared
with cooperative diversity. We have derived exact analyt-
ical expressions for the outage probability, symbol error
probability, and ergodic capacity. More importantly, we
have shown that the capacity enhancement of CSM sys-
tems is achieved at an expense of the unity diversity gain
for both AF and DF relays.
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