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ABSTRACT Social recommender systems leverage collaborative filtering (CF) to serve users with content
that is of potential interesting to active users. A wide spectrum of CF schemes has been proposed. However,
most of them cannot deal with the cold-start problem that denotes a situation that social media sites fail to
draw recommendation for new items, users or both. In addition, they regard that all ratings equally contribute
to the social media recommendation. This supposition is against the fact that low-level ratings contribute little
to suggesting items that are likely to be of interest of users. To this end, we propose bi-clustering and fusion
(BiFu)-a newly-fashioned scheme for the cold-start problem based on the BiFu techniques under a cloud
computing setting. To identify the rating sources for recommendation, it introduces the concepts of popular
items and frequent raters. To reduce the dimensionality of the rating matrix, BiFu leverages the bi-clustering
technique. To overcome the data sparsity and rating diversity, it employs the smoothing and fusion technique.
Finally, BiFu recommends social media contents from both item and user clusters. Experimental results show
that BiFu significantly alleviates the cold-start problem in terms of accuracy and scalability.

INDEX TERMS Cold-start problem, collaborative filtering, bi-clustering, smoothing, fusion.

I. INTRODUCTION
Social media sites, e.g., IMDB, MovieLens and Delicious,
have achieved widespread success over the past five years.
Millions of users are active daily in these sites. They upload
media, make comment and share information within social
circles [1]. To further promote marketing and maintain user
loyalty, many social media sites, together with various Appli-
cations for Internet of Things employ Social Recommender
Systems (SRSs) [2] [3] to serve users with the most attractive
services. Collaborative Filtering (CF) is a fundamental mech-
anism to SRSs, which automatically aggregates user profiles
and finds user preference from the large-scale SRSs [4].

CF has been adopted in social medial sites such as Face-
book [5], Amazon [6] and Google [7].
In order to achieve high levels of prediction accuracy

or runtime scalability, various CF schemes have been pro-
posed for SRSs [8]–[13]. However, most of them suffer
from the cold-start problem. The problem represents a sit-
uation that social media sites are incapable of making rec-
ommendation for new items, new users or both due to few
rating elements available in the matrices (data sparsity is
higher than 85%) [14]–[16]. In the cold-start setting, these
schemes have trouble in effectively locating similar items
and like-minded users [17]. As a consequence, the problem
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remarkably undermines the SRSs efficiency. Moreover, most
CF schemes implicitly assume that all ratings contribute the
same to recommendation.

To this end, we propose a cloud-based CF scheme using Bi-
clustering and Fusion (BiFu), which takes the trivial ratings,
bi-clustering and fusion into consideration. We implement
a social recommender system and provide accurate social
recommendation as a cloud service. Thus, social medial site
can easily enjoy the accurate recommendation. To tackle the
cold-start problem through constructing a dense area in the
item-user rating matrix, BASA firstly identifies the popular
items and their associated ratings. Then, it allocates them into
the upper left corner of the matrix. To alleviate the influence
of data sparsity, BiFu takes advantage of the bi-clustering
technique to aggregate similar items and like-minded users
simultaneously. It goes further by smoothing ratings within
every user cluster. To recommend products for active users,
BiFu predicts unrated items from like-minded user clusters
and similar item clusters. Our experiments demonstrate the
superiority of BiFu scheme in terms of recommendation accu-
racy and scalability. The main contributions of this work are
three-fold.

• BiFu proposes the concept of trivial ratings for SRSs that
identifies user dislike items. It filters out the trivial rat-
ings in the item-user matrix, which considerably reduces
the dimensionality of the item-user matrix and improves
the recommendation accuracy.

• BiFu introduces the bi-clustering and fusing techniques
for handling the cold-start problem, alleviating the influ-
ence of data sparsity to SRSs. It simultaneously clusters
items and user profiles. Then it smoothes ratings within
every user cluster to overcome the diversity of user rating
styles. Finally it fuses the recommendation from both
item and user clusters.

• We implement a social recommender system and pro-
vide it as a cloud service.

The remaining of this paper is organized as follows.
Section II introduces the related work. Section III provides
the background of our work. Section IV introduces BiFu in
detail. Section V reports the experiment settings and results.
Section VI concludes our work with future directions.

II. RELATED WORK
In this section, we briefly review the existing works regarding
the cold-start problem in SRSs. We also discuss the tech-
niques used in the proposed scheme.

A. COLLABORATIVE FILTERING WITH THE COLD-START
PROBLEM
The cold-start problem has not been well tackled so far,
despite the fact that the vast majority of CF research has been
dedicated to SRSs over the past two decades in attracting
users and improving their loyalty. As a result, these works
usually achieve low recommendation accuracy as well as poor
scalability under the cold-start setting [14], [18], [19].

It is intuitive that incorporating external information, e.g.,
content information, may help CF bridge the gap between the
clues of existing and new items or users, thus enabling CF to
solve the notorious problem. The newly-added information
can involve various aspects of items and users. Taking a
movie as an example, the information may be about actors,
directors, composers, genres and singers, or the information
of age, gender, job attributes and nationality of audiences.
In [15], Zhou et al. integrated user initial review and matrix
factorization for prediction. In [19], Schein et al. derived
a generative probabilistic model, which augmented the raw
movie ratings with actor and director information. In [14],
Victor et al. proposed a trust-based CF scheme, which incor-
porated a trust network among all users in SRSs into the raw
ratings. By identifying and leveraging key features on the
trust network, this scheme achieved a high level of recom-
mendation accuracy. All these kinds of schemes, however, are
seriously restricted by three drawbacks. First, they assume
that external information should be ready to be included,
which may not hold due to diverse uncertainties and con-
straints [20], [21]. Second, it incurs heavy cost to supplement
profiles of a number of items and users. Finally, the addition
of external information increases the dimensionality of the
item-user matrix, thus slowing down the speed of operation.
These drawbacks do not exist in hybrid systems that combine
CF and the content-based filtering schemes.
Another solution is to inject pseudo-items or pseudo-

users, namely filterbots, into the item-user rating matrix,
and then apply the conventional CF schemes. With these
pseudo-items, pseudo-users and corresponding ratings, exist-
ing schemes [22] significantly alleviate the sparsity of the
item-user matrix. Nevertheless, these schemes do not cap-
tured the diversity of the items or users, hence they share the
same shortcomings held in conventional CF schemes.
In general, incorporating semantics of items and users into

CF will alleviate the influence of the cold-start problem [18].
These kinds of CF schemes are built on top of two conditions.
One is that users are able to correctly express their interest
or requirements regarding item intrinsic features. The other
is that the ratings are tightly correlated with user behaviors.
These conditions, however, cannot be satisfied in reality.

B. COLLABORATIVE FILTERING WITH THE
BI-CLUSTERING TECHNIQUE
The majority of CF schemes mainly employ one-dimension
clustering to cluster items or users individually. However,
the one-dimension clustering technique usually ignores the
useful information in the opposite dimension. To this end,
Bi-clustering technique simultaneously clusters both item
dimension and user dimension in the item-user matrix. Corre-
spondingly, the Bi-clustering technique performs better than
one-way cluster technique to deal with sparse and high-
dimensional recommendation matrices [23]–[26].
To summarize, the cold-start problem is prevalent in SRSs.

It still remains open to CF schemes that do not append any
other external information.
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C. RECOMMENDER SYSTEMS BASED ON CLOUD
COMPUTING
Cloud computing is increasing popular in the past several
years. A cloud platform often provides the services accord-
ing to three main models: Platform-as-a-Service (PaaS),
Infrastructure-as-a-Service (IaaS) and Software-as-a-Service
(SaaS) [27].

Because cloud computing can greatly improve the capacity
and reliability of calculation and reduce costs of infrastructure
and maintenance, it is a good choice to implement recom-
mender systems under the cloud computing environment. In
fact, researchers have proposed several recommender systems
based on the SaaS model. In [28], Lee et. al proposed a
personalized DTV program recommendation system to refine
the channel selecting processes and satisfy the consumers’
requirements. CPRS [29] is proposed to recommend pro-
grams to the consumers for digital TV platforms. In [30],
Jiang et. al proposed a blog personality recommender sys-
tem to recommend high quality and personalized blogs for
different readers based on cloud computing infrastructure.
To easilymaintain end-users, [31] shows a case of cloud client
virtualizaiton, which can be used in cloud services.

III. PRELIMINARY
In this section, we introduce the underlying mechanisms of
memory-based CF and bi-clustering technique involved in the
proposed scheme. Notations in the design of BiFu are listed
in Table 1.

TABLE 1. Notations in the design of BiFu.

A. MEMORY-BASED CF
It draws recommendation by identifying similar items or
like-minded users over the entire item-user matrix. They
often achieve high levels of accuracy, but are unable to scale
up [32]. Generally, memory-based CF can be classified into
item-based, user-based and IU-based categories according to
the rating sources, as shown in Figure 1. In this subsection, we
discuss the item-based and user-based CF before going into
the introduction to IU-based CF.

1) ITEM-BASED CF
It exploits the idea that similar items may be preferred by the
same user. Eq. 1 illustrates how an item-based CF predicts an

FIGURE 1. Memory-based CF involves item-based, user-based
and IU-based CF. It exploits a phenomenon that like-minded
users may go for the same item and the same user may like
similar items.

active user u likes the active item i.

Pu,i = ri +

∑
j∈Iu sim(i, j) · (ru,j − rj)∑

j∈Iu sim(i, j)
(1)

sim(i, j) =

∑
u(ru,i − ri) · (ru,j − rj)√∑

u (ru,i − ri)
2
·

√∑
u (ru,j − rj)

2
. (2)

The similarity of items can be measured by Pearson Corre-
lation Coefficient (PCC) and Vector Space Similarity (VSS)
algorithms. As described in [33], PCC often achieves better
performance than VSS. Consequently, BiFu selects PCC to
measure the item similarity. Eq. 2 shows the PCC-based
similarity, where u ∈ Ui ∩ Uj.

2) USER-BASED CF
It shares the similar motivation as item-based CF that like-
minded users may go for the same item. Eq. 3 shows the
underlying mechanism of user-based CF, where sim(u, v) is
the similarity of users u and v.

Pu,i = ru +

∑
v∈Ui sim(u, v) · (rv,i − rv)∑

v∈Ui sim(u, v)
(3)

User similarity is often calculated by PCC or VSS algo-
rithms [34]. In view of widespread success of PCC in user-
based CF, BiFu chooses it as the similarity measurement
between users.

3) IU-BASED CF
Both item-based and user-based CF neglect the ratings that
like-minded usersmade on similar items. These ratings reflect
the preference of like-minded users, which may provide
insights in inferring potential interest of active users. A simple
example of IU-based CF is illustrated in [8].
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B. BI-CLUSTERING TECHNIQUE
In SRSs, bi-clustering technique (also referred to as two-
mode clustering) aims at simultaneously clustering items into
k disjoint clusters and users into l clusters [35], [36]. Then
we get two clusters, i.e., IC : {IC1, IC2, · · · , ICα, · · · , ICk}
and UC : {UC1,UC2, · · · ,UCβ , · · · ,UCl}, where ICα
and UCβ are an item cluster and a user cluster, respec-
tively. Thus, the bi-clustering is defined as a tuple (IC,UC).
Note that the partitions of items and users are indepen-
dently, and their combination relies on the entire item-user
matrix.

IV. BIFU: A CLOUD-BASED COLD-START
RECOMMENDATION SCHEME USING
BI-CLUSTERING AND FUSION
In this section, we propose BiFu: — A cloud-based Cold-
start Recommendation Scheme, which exploits the rating
confidence level and bi-clustering techniques. Algorithm 1
illustrates the three phases of BiFu scheme — filtering,
bi-clustering, and prediction.

Algorithm 1 BiFu Scheme.

In the filtering phase, BiFu filters trivial ratings in the item-
user matrix by introducing the rating confidence level. Then
it removes empty items and user profiles, and aggregates
popular items and frequent raters to the upper left corner of
the item-user matrix. In the bi-clustering phase, BiFu clusters
items and users into item clusters and user clusters simulta-
neously. Within every user cluster, BiFu presents a smoothing
strategy to eliminate the diversity of user rating styles. In the
prediction phase, BiFu fuses recommendation from both item
and user clusters and then makes suggestions. Note that the
filtering and bi-clustering phases are accomplished in the
offline phase, which hides the heavy computation overhead
from disclosing to users. What follows is detailed introduc-
tion to BiFu scheme.

A. FILTERING PHASE
This phase aims at preprocessing ratings for the bi-clustering
phase, and reducing the dimensionality of the item-user
matrix. It involves filtering trivial ratings, removing empty
profiles and constructing a dense area.

1) FILTERING TRIVIAL RATINGS
The ratings on a specific item are usually distributed around
an average rating.We assume that the ratings followGaussian
distribution. We argue that a rating less than the average atti-
tude provides discriminative information that the item is unfa-
vorable to a certain user. Such ratings are defined as trivial
ratings, which negatively contribute to recommendation. Let
µ, σ 2 and r be the mean, variance and the rating of a concrete
item, the Probability Density Function (PDF) of the rating r

is f (r;µ, σ 2) = 1
√

2πσ 2
e
−(r−µ)2

2σ2 . Its Cumulative Distribution
Function (CDF) can be computed as an integral of the PDF.
Its PDF is defined in Eq. 4, where y is the lower bound
of the rating. The Quantile Function (QF) F−1(p;µ, σ 2)
is the inverse function of F(r;µ, σ 2), where p is the
belief.

F(r;µ, σ 2)=
∫ r

y
f (t;µ, σ 2)dt=

1
√
2πσ 2

∫ r

y
e
−(t−µ)2

2σ2 dt (4)

Definition 1: Rating confidence level αx is a probability
of a rating falls into the interval [x, y], where y ≤ x ≤ y and
y is the upper bound of the rating.

Theorem 1: Given a rating confidence level αx and PDF
f (r;µ, σ 2), then αx =

∫ y
x f (r;µ, σ

2)dr .

Proof: Straightforward.

Corollary 1: Given a rating confidence level αx and CDF
F(r;µ, σ 2), the rating confidence interval of αx is [x, y],
where x = F−1(1− αx;µ, σ 2).
The rating confidence level is the value of

∫ y
x f (r;µ, σ

2)dr
in most cases. Usually, the value of y is a fixed value (e.g., 5
in 5-point scale) in SRSs.
Figure 2 illustrates an example that the rating confidence

interval under the given rating confidence level and the rating
scale. Once we get the rating confidence interval, we are able
to filter trivial ratings that are defined in Definition 2.

Definition 2: Given a rating confidence level αx , trivial
ratings are ratings in the item-user matrix that fall out of the
interval [x, y].

Theorem 2: Given a concrete item, during the rating
aggregation phase, if a rating on the item is r, and |r−u| ≥ kδ,
the probability that the rating happens is at least (1 − 1

k2
),

where k > 1.

Proof: Directly derived from Chebyshev’s inequality.

As a matter of fact, we have Chebyshev’s inequality shown
in 2 to ensure the correctness of the rating selection. Given
the antagonistical influence of trivial ratings, BiFu employs a
function to filter them. Specially, it will check whether every
rating of an item is less than x. In this way, BiFu dramatically
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FIGURE 2. Rating confidence level in Gaussian Distribution.
Given an item, BiFu dramatically reduces the number of its
candidate ratings by selecting the ratings between (x, y].

reduces the dimensionality of the item-user matrix. Note that
BiFu merely marks trivial ratings as non-rated ratings, thus
generating many new empty profiles in the matrix that will
be removed in the following step.

2) REMOVING EMPTY PROFILES
Consider that a user makes negative contribution to recom-
mendation when he/she does not rate any items or rate items
as low scores. For the same reason, an item is useless for any
CF scheme if it has not been rated yet or is lowly rated. These
empty item and user profiles bring nothing to SRSs but a large
amount of meaningless computation overhead. Therefore, it
is always of wisdom to remove them. Note that we do not
remove these empty columns and rows from the original
item-user matrix, but shift them to the end of the item-user
matrix.

Figure 3 illustrates the results of removing empty profiles.
BiFu not only simplifies its successive operations, but also
gets a dense area that is the basis for the next step.

3) CONSTRUCTING A DENSE AREA
In this step, BiFu introduces the concepts of popular items
and frequent raters to aggregate ratings. It identifies and
aggregates them to the upper left of the item-user matrix.
Popular items are items that are frequently rated by users,
and frequent raters are users that rate more items than others.
Given an active item i and an active user u, Eq. 5 defines
their rating density, where ρi is the rating density of the
item i and ρu is the rating density of the user u. Thus,
popular items and frequent raters are defined as Definitions
3 and 4.

ρi = |Ui|/|U |, ρu = |Iu|/|I | (5)

Definition 3: Popular items are itemswhose rating density
ρi is bigger than the threshold ρ̂i: ρi > ρ̂i, where ρ̂i is the
average rating density of all items.

Definition 4: Frequent raters are users whose rating den-
sity ρu is bigger than the threshold ρ̂u: ρu > ρ̂u, where ρ̂u is
the average rating density of all users.

By specifying the values of the thresholds ρ̂i and ρ̂u, BiFu
easily identifies popular items and frequent raters. At the
same time, it aggregates them to the upper left of the item-user
matrix, which finally forms a dense area. Figure 4 plots the
original rating distribution of a certain part of Netflix dataset.
Figure 4 shows the same part of thematrix after preprocessing
popular items and frequent raters. With such a dense rating
distribution, BiFu is ready for the bi-clustering phase.
Note that BiFu presents an aggregation algorithm that

can shift popular items and frequent raters in a linear time.
Suppose BiFu plans to get top ς popular items, it randomly
chooses the first ς items from the upper left of the item-user
matrix and sorts them by heap–sort algorithm. Then, it checks
the rest popular items by maintaining the heap structure.
Thus, in the worst case, the complexity of shifting popular
items to the upper left of the matrix is O(ς · log(ς )+ (n−ς ) ·
log(ς )), where n is the number of items that are identified as
popular items.

B. BI-CLUSTERING PHASE
To alleviate the influence of data sparsity, BiFu uses the
bi-clustering technique to simultaneously cluster similar
items and like-minded users. Specifically, it includes two
steps in bi-clustering – clustering and smoothing ratings
within every user cluster.
BiFu clusters both dimensions of the item-user matrix

into item clusters and user clusters by K -means algo-
rithm. After clustering, it divides |I | items into NIC clusters
{IC1, IC2, . . . , ICNIC } by PCC similarity. Meanwhile, it clas-
sifies |U | users into NUC clusters {UC1,UC2, . . . ,UCNUC }
also by PCC similarity. Detail information of using the
co-cluster technique for collaborative filtering can refer
to [26] and [35].

In every user cluster, we observe two significant phenom-
ena. One is that many items are not rated owing to the data
sparsity in the cold-start settings. The other is the diversity of
user rating style that some users tend to express the same level
of favorite degree as higher scores than other users. This kind
of rating diversity reflects biased arbitrariness.These few rat-
ings or biased arbitrariness negatively decrease the prediction
accuracy. Consequently, BiFu presents a smoothing strategy
for every user clusters. To be specific, the missing values in
each cluster are smoothed by the Eq. 6, whereUCu is the user
cluster that includes the user u.

ru,i = ru +
∑

u′∈UCu

ru′,i − ru′

|UCu|
(6)

For the same reason, BiFu leverages the smooth technique
for every item cluster to eliminate the data sparsity and rating
diversity.

C. PREDICTION PHASE
This phase aims at drawing recommendation for active users
in an online manner. To predict the rating of the active user
ua may rate the active item ib, BiFu firstly predicts the rating
by looking for similar items of the item ib from item clusters
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FIGURE 3. BiFu removes empty profiles for the item-user matrix under the cold-start setting. (a) The user rating distribution in the item-user matrix is sparse.
(b) Empty profiles of items and users are identified and then cleared. (c) A new user rating distribution is constructed after BiFu removes empty profiles.

FIGURE 4. BiFu constructs a dense area in Netflix dataset.
(a) A snapshot of part of original rating distribution in the
item-user matrix. (b) A snapshot of rating distribution after BiFu
shifts the popular items and the frequent raters.

and makes the item-based prediction. Then, it predicts the
rating by seeking like-minded users of the user ua from user
clusters and draws the user-based recommendation. Finally,
BiFu gives the rating Pua,ib by fusing these two predictions
together.

Note that original and smoothed ratings affect recommen-
dation differently. To distinguish them, BiFu introduces a
parameter λ, whose value is between 0 and 1. The weight wu,i
is 1− λ when the user u has rated the item i; otherwise is λ.

To predict the rating for the requested item ib, BiFu extracts
ib’s several nearest similar items from the most similar item
clusters that better embody item features. The similarity
between the item ib and an item cluster ICα is defined as Eq. 7,
where UICα is the set of users that have rated items in the
cluster ICα , and u ∈ Uib ∩ UICα . Then, it extracts a certain
number of most similar items from several most nearest item
clusters. Usually, BiFu sets the number of most similar items
bigger than the number of items in the most nearest cluster.
Thus, the ratings extractedmay cover user preference asmuch
as possible. The similarity between the item ib and another
item i is defined as Eq. 8, which incorporates the smoothing

parameter λ to distinguish different ratings (e.g., original and
smoothed ratings).

sim(ib, ICα)=

∑
u
(ru,ib − rib )(

∑
i′∈ICα

ru,i′−ri′
|ICα |

)

√∑
u
(ru,ib − rib )

2

√∑
u
(

∑
i′∈ICα

ru,i′−ri′
|ICα |

)
2

(7)

sim(ib, i)=

∑
u∈Uib

wu,i(ru,i−ri)(ru,ib−rib )√ ∑
u∈Uib

w2
u,i(ru,i−ri)

2√ ∑
u∈Uib

(ru,ib−rib )
2
. (8)

Meanwhile, BiFu chooses ua’s top several like-minded
users from the most similar user clusters that best match his or
her preference. The similarity between ua and a user cluster
UCβ is given in Eq. 9, where IUCβ is the set of items rated in
the cluster UCβ , i ∈ Iua ∩ IUCβ . Given a specific user, BiFu
selects its several most nearest user clusters and then extracts
a certain number of most like-minded users as the source of
user-based prediction. The similarity between ua and another
user u is given in Eq. 10.

sim(ua,UCβ ) =

∑
i
(rua,i−rua )·(

∑
u′∈UCβ

ru′,i−ru′
|UCβ |

)

√∑
i
(rua,i−rua )

2
·

√∑
i
(
∑

u′∈UCβ

ru′,i−ru′
|UCβ |

)
2

(9)

sim(ua, u) =

∑
i∈Iua

wu,i ·(ru,i−ru)·(rua,i−rua )√ ∑
i∈Iua

w2
u,i ·(ru,i−ru)

2
·

√∑
i∈Iua

(rua,i−rua )
2

(10)
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Pua,ib = (rib +

∑
i∈Sib

wu,i ·sim(ib, i)·(ru,i−ri)∑
i∈Sib

wu,i ·sim(ib, i)
)·γ (11)

+ (rua +

∑
u∈Sua

wu,i ·sim(ua, u)·(ru,i−ru)∑
u∈Sua

wu,i ·sim(ua, u)
)·(1−γ )

BiFu involves two kinds of recommendation mecha-
nisms – item-based and user-based mechanisms. It intro-
duces a parameter γ to incorporate them. The incorporation
for the rating of the user ua on the item ib is given
as Eq. 12.

Thus far, we have discussed BiFu that is charac-
terized by introducing the rating confidence level and
bi-clustering technique. What follows is our empirical
study.

D. IMPLEMENTATION
We implement BASA as a social recommender system at
Apache Hadoop platform (http://hadoop.apache.org/) and
provide the service in the SaaS model.

To use the cloud service, a social site can simply upload
its item-user matrix to the cloud server through web browser.
Once the cloud server receives a recommendation request,
the server launches a virtual machine to work on this
new request and associates the virtual machine with the
request. In the virtual machine, a software that implements
the BiFu scheme in Algorithm 1 is then started to work
on the item-user matrix. Once the software finish the pro-
cessing, the virtual machine returns the results for recom-
mendation to the cloud server. After that, the cloud server
stores the recommendation results, notifies the social site
that the recommendation results are ready and destroys
the correspondence virtual machine to free the computation
resources.

V. EXPERIMENTS
In order to evaluate the proposed scheme, we carried out
a series of experiments. Particularly, we try to answer the
following questions:

• What is the overall performance of the proposed
scheme?

• How do the two fundamental problems of CF, i.e., data
sparsity and scalability, affect the performance of BiFu?

• How do the parameters influence BiFu? It involves sev-
eral parameters in its design such as the fusion parameter
γ and the smoothing parameter λ.

A. EXPERIMENTAL SETTINGS
We mainly compare our BiFu approach against:

• Average-based CF scheme (AVG), which draws pre-
diction by injecting average filterbots in the item-user
matrix [22].

TABLE 2. Statistical features of MovieLens and Netflix datasets.

• Item-based CF scheme (IB), which makes recommenda-
tion by item similarity.

• User-based CF scheme (UB), which draws suggestions
by user similarity.

• SCBPCC, which is a scalable CF scheme using cluster-
based smoothing [33].

We conducted our experiments over a couple of well-
known social media datasets about movies — MovieLens
(http://www.grouplens.org/) and Netflix (http://www.netflix
prize.com/). The statistical features of these datasets are sum-
marized in Table 2. The lower bounds for identifying trivial
ratings (i.e., x in Definition 2) in MovieLens and Netflix
were set as 3.1 and 3.7, respectively. All experiments were
conducted on a cluster of Ubuntu 64-bit OS that involves
4 computers. Every computer is with 8 GB RAM and Intel
Xeon E5405 2.00 GHz dual CPUs.
To thoroughly evaluate the proposed scheme, we designed

three types of experiments to study the cold-start problem
(i.e., new items, new users or both) — horizontal compari-
son (HC), vertical comparison (VC) and bidirectional com-
parison (BC), as illustrated in Figure 5.
• In HC experiment, we changed the size of the training
set by selecting the first 15%, 30%, 45%, 60%, 75%
item profiles of MovieLens and Netflix datasets named
as ML_15, ML_30, ML_45, ML_60 and ML_75, and
NF_15, NF_30, NF_45, NF_60 and NF_75, respec-
tively. We selected the last 20% columns (new items) of
the original item-user matrix as the test set.

• In VC experiment, we used the same scheme as HC to
choose the training set, but we extracted user profiles
instead of item profiles. The last 20% rows (new users)
are selected as the test set.

• In BC experiment, we also shared the same scheme as
in HC and VC did to select the training set, but we
simultaneously extracted item and user profiles, e.g.,
extracting the first 15% item profiles and 15% user
profiles together. We selected the last 20% item and user
profiles of the original item-user matrix as the test set.

B. EVALUATION METRICS
In order to keep consistent with most previous research, we
select two metrics to measure the recommendation accuracy.
One is Mean Absolute Error (MAE), defined in Eq. 12, where
T is the test set, and |T | is the size of the test set.
The other metric is Root Mean Squared Error (RMSE),

given in Eq. 13, where T is the same meaning as its
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FIGURE 5. Three types of experiments for the cold-start problem – horizontal, vertical and bidirectional comparison, designed for new items, users and both,
respectively. (a) Horizontal comparison. (b) Vertical comparison. (c) Bidirectional comparison.

TABLE 3. MAE/RMSE on MovieLens.

counterpart in MAE. The smaller the MAE and RMSE are,
the better the recommendation accuracy.

MAE =
∑

u∈T
|Pu,i − ru,i|/|T | (12)

RMSE =

√∑
u∈T

(Pu,i − ru,i)2/|T |. (13)

C. PERFORMANCE
BiFu can alleviate two CF fundamental problems – data
sparsity and scalability under the cold-start setting. In this
section, we conducted experiments to evaluate the proposed
scheme.

1) RECOMMENDATION ACCURACY
The cold-start problem involves three aspects: new items,
new users or both. Therefore, we conducted HC, VC and
BC experiments over MovieLens and Netflix datasets corre-
spondingly.

Tables 3 and 4 illustrate the recommendation accuracy over
MovieLens and Netflix datasets. With the increase of the
training set from 15% to 75% on two datasets, the number
of the ratings in the training set increase rapidly, leading

to the result that all CF schemes achieved the lower MAE
and RMSE over all three types of experiments. Among these
schemes, BiFu achieved the lowest MAE and RMSE, indicat-
ing that it outperforms other CF schemes in recommendation
accuracy. This is owing to two reasons. One is BiFu filters
trivial ratings and marks them as non-rated ratings. The other
is it removes a large number of empty profiles, including the
original empty profiles and new empty profiles produced in
the filtering step.
All CF schemes cannot get better prediction accuracy in

Netflix dataset than MovieLens dataset. For example, the
MAEs/RMSEs of IB in HC experiment over ML_15 and
NF_15 datasets are 0.7272/0.9307 and 0.7963/0.9909. This
is because the data sparsity in Netflix is less than that
of MovieLens dataset. Compared with AVG, IB, UB and
SCB, BiFu has the minimal variation in its recommendation
accuracy, which shows that BiFu is more robust than the
others in handling the data sparsity. Moreover, BiFu also
embodies an attractive characteristic that it achieves high
levels of accuracy even if in the small training set. Thus, we
may train BiFu over amedium size subset of the original item-
user matrix, which saves lots of training time.
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TABLE 4. MAE/RMSE on Netflix.

FIGURE 6. Scalability of BiFu in the offline phase. (a) Scalability of BiFu over MovieLens dataset. (b) Scalability of BiFu
scheme over Netflix dataset.

In summary, BiFu outperforms the other schemes in rec-
ommending products or services. This is attributed to two
reasons. Firstly, BiFu employs the bi-clustering technique to
locate the most related items and the most like-minded users
as the recommendation sources. Secondly, it fuses the ratings
for recommendation from related items and like-minded users
after filtering out the trivial ratings on top of the proposed
concepts — popular items and frequent raters.

2) SCALABILITY
It has an impact on the performance of BiFu scheme that
makes recommendation in large-scale SRSs. In the online
phase, all CF schemes can respond to request in a few sec-
onds. In the offline phase, BiFu distinguishes itself from
the existing CF schemes in making preparations for per-
sonalized recommendation. It incorporates the bi-clustering
technique that is a computation-intensive process. It also
incurs some computation overhead in filtering trivial rat-
ings. Therefore, in this section we conducted experiments
to evaluate the scalability of BiFu in the offline phase by
varying the training set over MovieLens and Netflix datasets.
We changed the training set in the same manner as that in
accuracy experiments. We also ran the IB, UB, AVG and
SCB schemes as the baselines. Note that in our experi-
ments, we selected the running time as the metric to measure
scalability.

Figure 6 shows the response time of BiFu scheme in
the offline phase. As the testset grows, the response time
of BiFu increased in a linear fashion, indicating that BiFu
is scalable. The maximum response time for ML_75 with
100% percentage of the testset is about 20,000 seconds,
amongwhich the bi-clustering consumes almost a half time to
cluster the large-scale rating matrices (particularly in Netflix
dataset).
Note that the non-personalized CF schemes (e.g., AVG) ran

fast, but they made poor recommendation without personal-
ization. In comparison with the SCB scheme that achieved
high scalability, BiFu is a little bit slow, but it significantly
improves the recommendation accuracy. This is because
BiFu introduces some computation-intensive operations in
the offline phase. Generally, the recommendation accuracy
rather than scalability in SRSs is the goal. Therefore, we claim
that the proposed scheme is highly appropriate to the cold-
start problem.

D. SENSITIVITY OF PARAMETERS
This experiment evaluates the sensitivity of the fusion param-
eter γ and the smoothing parameter λ of BiFu.

1) SENSITIVITY OF FUSION PARAMETER γ
BiFu makes use of γ to fuse recommendations that are
achieved in item-based and user-based manners. Thus, we
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FIGURE 7. Sensitivity of parameters in BC experiment. (a) Sensitivity of γ over MovieLens dataset. (b) Sensitivity of λ over
MovieLens dataset. (c) Sensitivity of γ overNetflix dataset. (d) Sensitivity of λ overNetflix dataset.

designed experiments to check how much it affects the per-
formance of BiFu.

Figure 7(a) and (c) illustrates the sensitivity of parameter
γ in BC experiment over MovieLens and Netflix datasets.
When γ varies from 0 to 1, BiFu firstly gets a high accuracy
and lately a low accuracy. When the value of γ is between 0.1
and 0.3, BiFu gets high levels of accuracy. In our experiments,
we set the value of γ as 0.2 for both datasets. On the other
side, the value of γ is less than 0.5, indicating that the user-
based mechanism contributes more in recommendation than
the item-based mechanism. This exactly fits a fact that like-
minded users usually go for the same item.

2) SENSITIVITY OF SMOOTHING PARAMETERS λ
Figure 7(b) and (d) shows the effect of λ in BC experiment
over the MovieLens and Netflix datasets. With the increase
of the value of λ, the accuracy of BiFu varies significantly.
As the value of λ is between 0.1 and 0.4, BiFu gets better
accuracy. This indicates that smoothed ratings have an impact
on the performance of BiFu, but not that much as that of the
original ratings.We set its value as 0.3 and 0.25 inMovieLens
and Netflix experiments, respectively.

VI. CONCLUSION
In this paper, we have proposed a newly-fashioned scheme—
BiFu, enabling the social media sites to alleviate the influence

of the cold-start problem. We implement a prototype as a
cloud service based on the Apache Hadoop. BiFu firstly
proposes the concept of trivial ratings that are negative to
social recommendation. It further puts forwards a identifying
mechanism. Then, it leverages the Bi-clustering technique for
both items and users to accurately identifying similar items
and like-minded users as possible. Our empirical study have
shown the superiority of the proposed scheme.
However, BiFu could be further improved. We are evaluat-

ing it on the cloud environment with more users involved. We
are also investigating the item or user similarity calculation
and dimension shrink of the rating matrix. We plan to make
the BiFu as a general social recommender container so that it
can support various recommender systems.
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