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Abstract
With the advent of cloud architectures, virtualization has be-
come a key mechanism. In clouds, virtual machines (VMs)
offer both isolation and flexibility. This is the foundation of
cloud elasticity, but it induces fragmentation of the physical
resources, including memory. While each VM memory needs
evolve during time, existing mechanisms used to dynamically
adjust VMs memory are inefficient, and it is currently impos-
sible to take benefit of the unused memory of VMs hosted by
another host. In this paper we propose PUMA, a mechanism
that improves I/O intensive applications performance by pro-
viding the ability for a VM to entrust clean page-cache pages
to other VMs having unsused memory. By reusing the exist-
ing page-cache data structures, PUMA is very efficient to re-
claim the memory lent to another VM. By being distributed,
PUMA increases the memory consolidation at the scale of a
data center. In our evaluations made with TPC-C, TPC-H,
BLAST and Postmark, we show that PUMA can significantly
boost the performance without impacting potential activity
peaks on the lender.

Categories and Subject Descriptors D.4.2 [Operating Sys-
tems]: Storage Management

1. Introduction
Clouds extensively use virtualization which forms the basis
to ensure flexibility, portability and isolation. However, the
advent of virtualization tends to dramatically increase the
amount of unused memory. A physical node is partitioned;
its memory is split and distributed to multiple virtual ma-
chines (VMs). As it is very difficult to predict the amount
of memory needed by an application, VMs memory usually
over-provisioned. The problem comes from the fact that the
amount of VMs memory is defined statically; it is usually
chosen among predefined configurations offered by cloud
providers [Birke 2013]. Thus, the available memory of a phy-
sical host is fragmented among the hosted VMs, leading to a
global underuse of memory and inducing a huge extra cost.
Some VMs may lack memory while others could use less
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without performance degradation. These VMs can either be
hosted on the same physical node or by different ones. In this
context, providing the ability to pool unused memory at the
scale of a data center would improve the global performance.

Several research works aim at improving memory us-
age, like deduplication [Miłós 2009, Miller 2012, Wald-
spurger 2002], or at offering memory flexibility like memory
ballooning [Schopp 2006, Hines 2009, Waldspurger 2002]
and hypervisor managed caches [Kim 2011, Hwang 2014].
However, these approaches exhibit severe limitations. Dedu-
plication aims at optimizing only processes memory. Me-
mory ballooning provides the ability to resize VMs memory
on a single host, but it was shown that it requires swapping
to disk memory pages to handle changing workloads over
time [Salomie 2013]. Finally, caches such as Mortar [Hwang
2014] or XHive [Kim 2011] solve the problem of unused me-
mory by providing a shared pool of memory maintained by
the hypervisor, but assumes that: (i) VMs memory needs can
be correctly predicted so that it is not necessary to dynami-
cally resize it; or (ii) VMs memory can be dynamically re-
sized when needed without degrading performance.

In this paper, we propose PUMA, a system that is based
on a remote caching mechanism that provides the ability to
pool VMs memory at the scale of a data center. An important
property while lending memory to another VM, is the ability
to quickly retrieve memory in case of need. Our approach
aims at lending memory only for clean cache pages: in case
of need, the VM which lent the memory can retrieve it easily.
We use the system page cache to store remote pages such that:
(i) if local processes allocate memory the borrowed memory
can be retrieved immediately; and (ii) if they need cache the
remote pages have a lower priority than the local ones.

We show through extensive experimentations that our ap-
proach allows input/output (I/O) intensive applications to dy-
namically use free memory on remote VMs to boost their per-
formance. Our evaluation on the benchmarks TPC-C, TPC-
H, Postmark and BLAST using VMs localized either on a
same or on different physical servers shows that:

• PUMA can bring a 12% speedup by borrowing only
500 MB, and up to 4 times faster using 6 GB of remote
cache in the case of the TPC-C benchmark;

• PUMA can retrieve borrowed memory quickly, up to 10
times faster than a ballooning-based approach;

• PUMA is resilient to latency variations: by monitoring the
response time, it is able to decide if it should use the
remote cache or fall back on disk accesses;



1 git clone 3 git clone

baseline 215s 204s
Auto-ballooning 339s 447s

PUMA 184s 251s

Table 1: Automatic ballooning response time.

• in presence of sequential workloads, it is hard to improve
performance, but PUMA does not degrade it thanks to a
filter that prevent PUMA from using a remote cache in
such cases.

The rest of this paper is organized as follows. First, Sec-
tion 2 depicts motivating use cases for which PUMA can bring
significant improvements. Section 3 gives some background
information and details PUMA’s design and implementation.
Section 4 presents the experimental results obtained with
PUMA, then Section 5 shows the benefits of PUMA on the
use cases presented in Section 2. Section 6 presents related
works and outlines the main differences with the PUMA’s ap-
proach. Finally, Section 7 concludes the paper.

2. Motivating scenarios
To illustrate the benefit of PUMA we consider scenarios based
on discussions we had with our industrial partners1. In the
scenarios, a medium size IT company may need to run a VM
with a database-based business activity and another one with
revision control software such as Git. We used the TPC-C
benchmark to emulate the business activity on a VM con-
figured to use 10 GB of memory. On a second VM, we use
a Git server that mirrors the Linux kernel repository. With
such applications, each git clone command would tempo-
rary generate a memory peak load. This VM is configured to
use 4 GB of memory to support such kind of peak loads.

Scenario 1. The company has bought a powerful multi-
core node on which it runs the 2 VMs. Table 1 shows the
response time of the git clone operations. The response
time for the configuration with full isolation (i.e., without any
sharing mechanism) are given by the baseline line.

In this configuration, one may want to use the state-of-
the art auto-ballooning approach [Capitulino 2013]. It pro-
vides the ability to significantly enhance the business activ-
ity latency by dynamically balancing memory of the VMs.
However, it was shown that memory ballooning can lead to
disastrous swapping [Salomie 2013, Hwang 2014]. Table 1
shows that 3 concurrent git clone operations take more
than twice the time they use to take in the full isolated config-
uration2. The 4 GB VM has trouble to retrieve memory lent
to the 10 GB VM. In PUMA, we detect the need of memory
to quickly retrieve the pages that were lent to the TPC-C VM.

Scenario 2. We now consider another configuration in
which a bigger company runs its own private cloud. The
company uses a 10 GB VM to host its business activity, as
in the previous case. It also has another 10 GB VM that can
be used as a spare VM if the first one fails. Meanwhile, this
VM can let the first one use its memory to extend its cache if
needed. In that case, the memory ballooning approach is not

1 http://en.oodrive.com/en/
2 This experiment is presented in details in Section 5.
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Figure 1: Virtualization and system page cache.

an option anymore: it can only work for VMs running on a
same physical host.

3. System Design
The basic principle of PUMA is to allow any cluster node
to benefit of the memory of any other node to extend its
cache. PUMA is designed using a client/server model, where
a client node may use available memory on a server node.
Any node can become a PUMA client or a PUMA server,
and this can change over time depending on the memory
needs. However, it does not make sense for a node acting as
a client to also act as a server at the same time. This section
first gives the necessary background, and then it describes
PUMA’s design, discusses the technical issues, and outlines
its implementation.

3.1 Background
Virtualization enables multiplexing the computing resources
of a physical server. A hypervisor [Waldspurger 2002,
Barham 2003, Kivity 2007, Velte 2010] runs on a physi-
cal host and is responsible for managing Virtual Machines
(VMs). Paravirtualization is a virtualization technique that
presents specific interfaces to the virtual machines in order to
reduce the virtualization overhead. Paravirtualization is es-
pecially useful to improve (I/O) performance.

Figure 1 shows a typical virtualized configuration with 2
hosts. Each host runs two guest operating systems on top of a
hypervisor (e.g. KVM), with a paravirtualized network (e.g.
virtio). Using a paravirtualized network improves the overall
network performance, but it also allows guests running on
a same host to communicate through a high performance
paravirtualized network.

To enhance file access performance, operating systems
keep the data read from disk in a cache called a page cache.
In the Linux kernel, these pages are stored into a per-inode
radix tree. Page cache pages are often called file backed pages
because there always exists a corresponding image on disk.
When the system load is low, most of the memory is filled by
pages from the page cache. When the system load increases,
the memory is filled mostly by processes pages, the page
cache is thus shrunken to make room for the active processes.
The process pages are called anonymous pages, i.e., pages
that are not file backed. In Figure 1, we show the anonymous
pages (a) and file backed pages (b) for each VM.

When there is a need for memory, for instance when a
process tries to allocate memory or when the kswapd ker-
nel threads wake up, the Page Frame Reclaiming Algorithm

http://en.oodrive.com/en/


(PFRA) of the Linux kernel frees some memory pages. To
do so, both anonymous and file backed pages are linked to-
gether into two LRU lists. The PFRA chooses victim pages to
evict from memory. Most of the time, clean file-backed pages
are evicted if possible because doing so is inexpensive: they
have an identical version on disk and thus they just have to be
freed. If page cache pages are dirty (i.e., modified), they must
first be written to disk. When anonymous pages are evicted,
they also have to be written to disk into the swap space.

3.2 Design Goals
PUMA’s main goal is to pool VMs unused memory for the
benefit of other VMs having I/O intensive workloads. We
chose to handle only clean file-backed pages through PUMA
for the following reasons:

• If processes running on the server need to allocate me-
mory, the clean file-backed pages of the client can be re-
moved without any synchronization.

• Writes are generally non-blocking, because writing dirty
pages to disk can be deferred, thus there is no performance
improvement to expect in handling writes into the cache.
In contrast, reading a block from disk is blocking and as
slow as disk latency.

• Managing dirty pages into a cooperative cache is complex
because consistency issues have to be handled in case
of failure. Having such an overhead without performance
increase is useless.

As we choose to handle only clean file-backed pages,
fault-tolerance is straightforward since it is only necessary to
detect the failure of a PUMA node. If a node crashes, an up-
to-date version of the pages remains available from the disk.
Hence, we consider that fault tolerance is out of the scope of
this paper. Finally, PUMA should be designed such that it can
be used with any file system, block device or hypervisor.

3.3 Puma Design
A straightforward method to build a low-level cooperative
cache is to build a virtual block device on top of a real one.
The virtual block device can thus catch every accesses to the
disk, i.e., every miss from the page cache. It can then make
a lookup into the cooperative cache to try to find the missing
data. However, even if this solution is simple and elegant, it
severely limits the scope of the cache to block devices only,
and thus prevents distributed file systems from using it.

We prefer to adopt a more general approach. To do so,
we have to catch directly misses and evictions from the local
native page cache as shown in Figures 2 and 3 where VM1

and VM2 act as a client and a server respectively. Each
miss from the page cache can lead to a get operation while
evictions lead to put operations.

Get operation. In case of a miss on a clean page in the
local cache (step 1 of Figure 2), PUMA checks in its local
metadata catalog if this page has been sent to the server (2).
This metadata catalog, maintained by the client, stores the
ids of the pages that have been sent to the server during a put
operation in order to avoid sending useless get requests to
the server. Thus PUMA sends a request to the server (3), only
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Figure 3: put() stores a page to the remote cache.

when the page id is present in the metadata catalog. Then, the
server sends back the page (4).

Put operation. When a victim page is chosen by the
PFRA in order to free some memory (steps 1 and 2 of Fi-
gure 3) it may induce a put operation (3) if PUMA decides
it is worth if (according to the mechanisms described in sec-
tions 3.3.2 and 3.3.3). Then, PUMA copies the page to a buffer
while the freed page can be given back (4). Finally, the page
is sent to the server to store it (5).

3.3.1 Dealing with the memory
While implementing the get and put operations, it is neces-
sary to take memory contention into account. Indeed, the put
operation is called when the PFRA tries to solve a lack of
free memory. However the put operation needs memory, at
least to allocate the necessary data structures to send the page,
such as network buffers or local metadata. The put operation
should avoid allocating memory; this could lead to make the
PFRA trying to free some more memory pages, leading to
another call to the put operation, and so on. In practice, this
would end in a put failure: the evicted pages will not be sent
to the remote cache. This remains correct since PUMA only
puts clean, file-backed pages in the remote cache.

To take into account the memory contention and to in-
crease the global performance of caching, PUMA is based on
the following principles.

Preallocation of request buffers. We strive to send the
pages to the remote cache to give more chance for a remote
cache hit. To increase the probability that a put will succeed,
all the memory needed to handle requests is taken from a
preallocated pool of memory. Thanks to this, we do not add
pressure on the PFRA.

Aggregation of read-ahead get requests. To avoid block-
ing processes each time a page is read, we aggregate all the



pages of the read-ahead window together within a single get
request sent to the server. Therefore, we have only one block-
ing request operation for all these pages. Thanks to this ap-
proach we benefit from the existing read-ahead algorithm.

Aggregation of put requests. The memory reclaim path
generally chooses tens of victim pages to reduce the number
of calls to the PFRA. Sending tens of messages is not very
efficient and consumes the memory we are trying to release.
To avoid the creation of many small messages, we use a per-
process message buffer to merge messages together.

3.3.2 Dealing with response time
PUMA relies on short response times. To avoid a performance
drop PUMA monitors the latency and, in case of high latency,
it stops using the server and falls back on disk accesses.

To monitor the latency, PUMA nodes periodically ex-
change ping messages. They compute both a short-term
Lshort (the last 15 seconds) and a long term moving-average
latency Llong. The first one is used to detect a latency peak,
and the second one to measure the average latency.

When one of these averages reaches a certain threshold,
the PUMA node stops sending put or get requests to the other
node and falls back on disk accesses. When the latency gets
below another threshold, the PUMA node starts sending put
or get messages again. We use different thresholds to provide
some hysteresis. This mechanism is analyzed in Section 4.5.

3.3.3 Dealing with sequential workloads
Disks usually support a bandwidth of hundreds of MB/s,
which might be higher than the network bandwidth available
to PUMA. Moreover, such accesses are generally prefetched,
which means that disk access latency is amortized. In such
cases, PUMA might slow down an application which does
sequential I/Os. To avoid a performance drop with this kind
of I/O pattern, we introduced an optional filter to PUMA.
The filter aims to avoid using the remote cache for sequential
accesses and to focus only on random accesses.

When this option is enabled, PUMA detects sequential
accesses from disk, and tags the corresponding pages such
that, when they are evicted from the local cache PUMA does
not send them to the remote cache. The benefit of the filter
option is twofold:

• the corresponding pages are not sent to the cache, this
means that we avoid the overhead due to a large put;

• on a second access on these pages, they are not present
into the remote cache and can be retrieved efficiently from
disk; hence PUMA will not slow down the application by
fetching them from a remote node.

This option is analyzed in details in sections 4.3 and 4.4.1.

3.3.4 Caching Strategies
In this section, we present two different caching strategies
that we have implemented for PUMA.

Exclusive. With the exclusive strategy, when a client
requests a page, it is removed from the server’s memory.
This strategy does not require maintaining different copies
of a same page. Moreover, since the remote cache is used in
addition to the system one, the total available cache size is the

sum of the size of the local cache and the size of the remote
one. However, this strategy will make a client send a same
page to the server many times, particularly in workloads with
frequent read requests.

Non-Inclusive. The non-inclusive strategy aims at reduc-
ing client and network loads in read dominant workloads. In
our implementation, the server keeps pages in its memory
even when they are sent back to a client. Thus, hot pages re-
main in the server memory. This may prevent the client from
needing to send this page again to the server if it is later cho-
sen as a victim page. In contrast to a strictly-inclusive caching
strategy, a non-inclusive [Zahran 2007, Jaleel 2010] caching
strategy is a strategy where the inclusion property is not en-
forced. Thus, the total cache size available is closer to the
exclusive strategy, while with a strictly-inclusive strategy it
would be the max between the size of the local cache and
the remote one.

3.4 Implementation Details
We implemented PUMA in the Linux 3.15.10 kernel. Most of
our implementation is ∼8,000 lines of code inside a kernel
module. A few core kernel changes are necessary: ∼150 lines
to the memory management subsystem and ∼50 lines to the
virtual file system layer.

3.4.1 Metadata management
A client keeps track of meta-information sent to the server
into an in-memory radix tree. Clients maintain a small
amount of metadata for each page cached by the server to
handle consistency and to be able to check locally if a given
page is stored by the server. This metadata includes some bits
(i.e., present, busy) to know if the page is in the cache or if
a page is being sent. More bits might be used to locate the
PUMA node where the page was previously sent.

Overall, for each page (4 kB) stored in the remote cache, a
client needs to keep only a few bits embedded into a single 64
bits integer, which means that we only need 2 MB of memory
(amortized) on client side to manage 1 GB of memory in the
remote cache. Moreover, a client has always the possibility
to reclaim the memory used by the metadata; in this case, it
invalidates the corresponding pages on the remote cache.

3.4.2 Server side implementation
A server offers its free memory to the remote cache. It han-
dles requests from a client. Pages on a server are stored into
an in-memory tree and linked together into the system LRU
lists and are accounted as inactive page cache pages. Thus,
remote cache pages reclaiming works in the same way as lo-
cal pages. However, as remote cache pages are added to the
inactive LRU list, if a process on the server VM needs me-
mory, either for caching I/Os or to allocate anonymous pages,
remote cache pages will get evicted before local pages.

3.4.3 Non-inclusive cache consistency

Clients only act on clean pages3 and we have no means to
detect if a given page has been modified since the last time
PUMA fetched it from the server. This means that the server

3 Dirty pages are written to disk before put() is called.



may have an old version of a modified page, in which case the
client has to send it again to the server, even if it detects that
the page is already stored by the server. To solve this problem,
we chose to add a dirtied flag to each page, in addition to
the existing dirty bit, in order to catch every time a page is
set dirty. We can then check this dirtied flag when the page
is evicted from the page cache.

Moreover, due to buffering a dirtied (i.e., updated) page
may be queued into the message buffer while a process is
trying to get that page (as PUMA buffers pages to be sent to
the server). This may lead to a scenario in which a request
for the page reaches the server, potentially storing an old
version of the page, before the page itself. We solve this
race condition by adding a busy synchronization bit on the
metadata.

4. Evaluation
In this section, our objective is to evaluate how PUMA be-
haves in various situations. First, we describe the experiment
setup; then we evaluate the raw performance of PUMA with
micro and applicative benchmarks and we analyze the be-
nefit of both caching strategies. Then, we compare the per-
formance of PUMA with SSD caching, and we analyze how
PUMA is able to dynamically reclaim memory when needed.

4.1 Experiment setup
All the experiments were run on the high-end Paranoia clus-
ter from the Grid’5000 platform [Bolze 2006], where each
node is a 2× 8 cores Intel Xeon E5-2660v2, with 128 GB of
memory and a 10 Gb/s Ethernet card. These nodes also have
5 600 GB SAS disk, that we configured in RAID0.

We deployed the benchmarks on VMs under the Linux
KVM [Kivity 2007] hypervisor that we configured according
to best practices [IBM 2010]. Each VM uses 2 virtual CPUs
with the ext4 file system, and all I/O are done through the
Virtio [Russell 2008] paravitualization framework. Each ex-
periment is done on a freshly booted VM after a warm-up
phase long enough to fill the system page cache and the re-
mote cache. We run each experiment 10 times and then we
compute the average and the confidence interval using the
student’s t-distribution with a 95% confidence level. We al-
ways observed a small standard deviation.

4.1.1 Workloads
We used the following benchmarks in the experiments:

Random reads workload: we use the random reads
workload from the Filebench4 benchmark. This workload
starts one thread reading from a single file at non-aligned ran-
dom offsets. We configured it to use a 4 GB file with a read
size of 4 kB. We measure the number of completed I/Os per
second.

Sequential reads workload: we use the sequential reads
workload from the Filebench4 benchmark. This workload
reads a single 4 GB file multiple times from the beginning,
and reports the resulting bandwidth (MB/s).

Scientific workload: BLAST [Altschul 1990] is a bioin-
formatics tool used to find regions of similarity between

4 http://filebench.sourceforge.net

a query sequence and a database of sequences. Basically,
BLAST scans the database to find sub-sequences which are
similar to the query. A large part of the I/O pattern gener-
ated by BLAST is sequential. For our experiments, we used
the patnt database, which is roughly 3 GB in size. We ex-
tracted 5 sequences of 600 characters from this database, and
we measure the runtime needed to find similar sequences in
the database.

Write-intensive workload: Postmark [Katcher 1997] is
a benchmark which measures the performance of file sys-
tems over a workload composed of many small files, typi-
cal of e-mail services. This workload can generate a mix of
data and metadata operations, and is thus composed of many
small writes to the file system. Postmark defines a transac-
tion as a read or an append to an existing file, followed by
a file creation or deletion, and reports the number of com-
pleted transactions per second. We use an unfriendly config-
uration of Postmark where more than 80% of I/Os are writes.
We configured Postmark to generate 20,000 transactions on
25,000 files. We chose file size ranging from 512 bytes to
64 kB to generate a working set of around 3.5 GB. We con-
figured postmark to generate transactions with the same ratio
of reads over append, and with the same ratio of creations
over deletions.

Database workloads: we use TPC-H5 and TPC-C5 as
database benchmarks. Both of them were run on the version
9.3.1 of the PostgreSQL database server.

TPC-H defines a set of 22 complex business-oriented ad
hoc queries and concurrent data modifications. Most of the
workload is read-only. It models queries executed in large
scale enterprise that examine large volume of data to give
answers to critical business questions. We configured it with
a scale factor of 3, giving a data set size of around 3 GB.
TPC-H reports a throughput in terms of number of completed
queries per hour.

TPC-C simulates a complete computing environment of
an online transaction processing marker. We configured it to
use 40 warehouses, giving a data set size of roughly 4 GB.
TPC-C measures the number of “New-Order” transactions
executed per minute and reports their response time. In our
evaluation, we only consider the response time (90th per-
centile) of this transaction.

4.1.2 Metrics

In all the experiments we used the previously described
benchmarks to evaluate PUMA. To this end, we vary the size
of the available PUMA cache and we compute their speedup
relative to a 1 GB VM with no additional cache. Thus, we
used 2 VMs for PUMA: VM 1, where the I/O intensive bench-
marks runs, which has 1 GB of memory; and VM 2, which
offers its free memory to VM 1 through PUMA.

4.2 Random reads and caching strategies

In this section, we study the random reads benchmark per-
formance and show PUMA’s exclusive and non-inclusive
caching strategies behavior.

5 http://www.tpc.org
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(a) Number of gets (b) Number of puts

Figure 4: Number of gets/puts with random reads.

With a random read pattern, the hit ratio grows linearly
with the available cache. However, as the Figure 5a shows,
the performance of the cache depends on the access time of
the slow device (in case of a miss). For instance, 1% of misses
is enough to drop the performance. This is why we observe a
threshold effect when the entire working set fits in the cache.
To analyze the benefit of each caching strategies, we study
the number of pages sent to (put) and fetched from (get) the
remote cache of this benchmark.

Figure 4a shows the number of gets per I/O of the random
read benchmark. The average number of pages get from the
remote cache increases linearly with the memory available
for caching. We see that the exclusive strategy does more get
requests (i.e., remote hits) than the non-inclusive one until the
whole working set fits in the cache. This is consistent with
the performance results in Figure 5a, where the exclusive
strategy is better than the non-inclusive one because the total
cache size available is higher.

Figure 4b shows the number of puts per I/O for the ran-
dom read benchmark. With a non-inclusive strategy, we ob-
serve that the number of pages sent to the remote cache de-
creases as the cache size increases, while it remains constant
with the exclusive strategy. This is because this benchmark
is read-only, which allows the non-inclusive strategy to avoid
sending back pages which are already present to the remote
cache. However, as the Figure 5a shows, the exclusive stra-
tegy performs better than the non-inclusive one until the en-
tire working set fits in the cache, which illustrates the over-
head of PUMA’s put operation.

4.3 Filtering sequential I/O

In this section, we analyze the performance of the sequential
reads benchmarks, and we show that with the filter option,
PUMA is able to detect sequential patterns to avoid a negative
impact on the performance.

As our nodes have high performance SAS disks config-
ured in RAID0, it is hard to improve the performance of a
sequential I/O pattern. This is confirmed by the performance
results of the sequential reads benchmark presented in Fi-
gure 5b. First, we can see that PUMA is thrashing until the
whole file can fit in the cache, thus we always pay the price
without any benefit. Next, when the cache is large enough,
the exclusive strategy does not help because half of the net-
work bandwidth is used to send the pages to PUMA, while
with the non-inclusive strategy the pages stay in the cache.

(a) Average read/transaction (b) Average writes/transaction

Figure 6: Accesses to block device with Postmark.

However, when the filter option is enabled, sequential
accesses are detected and go directly to the disk so that PUMA
does not slow down the accesses.

4.4 Applicative benchmarks performance

4.4.1 BLAST: partially sequential workload
As we saw for the sequential reads workload, it is difficult
to improve I/O performance for a sequential pattern due to
cache thrashing and amortized disk latency. As expected, the
speedup of BLAST presented in the Figure 5c shows that
PUMA with no filter option degrades the performance of the
application if the database does not fit in cache. However,
when the cache is large enough, PUMA is able to improve the
performance of BLAST up to +30%.

Surprisingly, if we enable PUMA’s filter option, PUMA is
able to improve the performance up to +45%. This is due to
the fact that, as we explained in section 3.3.3, the filter option
has a double benefit: (i) the application is not slowed down
due to the higher bandwidth of the storage device compared
to the network bandwidth, and (ii) we give more room to
quickly send random get requests by not overloading PUMA’s
message queues.

4.4.2 Write-intensive workload
Postmark is designed to simulate the workload of applica-
tions like e-mail services that makes an intensive use of
writes, which could be a worst case for a read-only cache
like PUMA. However, as the Figure 5d shows, PUMA can still
improve the performance even if it is not designed to handle
dirty pages: a small amount of cache is enough to get around
10% of performance improvement. We can improve the per-
formance up to 3 times compared to the baseline when all the
dataset fits in cache.

To understand how PUMA can improve write intensive
workloads, we report the number of I/Os sent to the block
device per transaction executed into the Figure 6. As ex-
pected, we observe that PUMA reduces read accesses (Fi-
gure 6a), however we can see that it also reduces the number
of writes (Figure 6b). This phenomenon is due to the fact that
in this benchmark, writes are buffered, thus they are sent to
the block device if the PFRA needs to flush them to free me-
mory. However, as it takes time to write data, the PFRA has to
reclaim clean pages first. Thus, by increasing the cache size,
more writes can be delayed, which reduces the I/O load. With
PUMA, clean pages are sent to the PUMA node, which gives
more memory to delay the writing of dirty pages.



(a) Random reads. (b) Sequential reads. (c) BLAST.

(d) Postmark. (e) TPC-H. (f) TPC-C.

Figure 5: Speedup relative to a 1 GB VM obtained with various benchmarks and applications: (a) 4 kB random reads, (b)
sequential reads, (c) BLAST, (d) Postmark, (e) TPC-H and (f) TPC-C.

4.4.3 Database workload
The TPC-H and TPC-C benchmarks are highly concurrent I/
O workloads that are very dependent on cache size. As the
Figures 5e and 5f show, PUMA is able to improve the perfor-
mance of both of them even with a small cache size: at least
+5% for TPC-H and +12% for TPC-C. The concurrency of
these benchmarks can be observed by the exclusive caching
strategy with the filter option enabled that reaches its limit
very quickly. This is due to the combination of two factors:

• Most of the I/Os are a mix of random accesses and
medium sized sequences. With the non-inclusive strategy
(with filter), once a page is accessed randomly, it stays in
the cache even when it is accessed a second time sequen-
tially. In the case of the exclusive strategy (with filter),
pages are removed from the remote cache when accessed.

• Sequential accesses are not as fast as in the sequential read
benchmark or the BLAST application because multiple
concurrent streams generate concurrent sequential I/Os
that involve a lot of disk seeks. Hence, such I/Os are more
subject to a performance improvement.

4.5 Resilience to network latency
In this section, we show that network latency is a critical issue
and that PUMA is able to control itself to avoid a negative
impact on applications performance. To show the problem,
we used Netem [Hemminger 2005] to inject network latency
between PUMA nodes, and we measure the speedup of the
benchmarks with PUMA relative to a 1 GB VM without
PUMA (as in previous sections). Figure 7a shows the results
of these experiments.

As we can expect, most of the overall speedup of the
applications with PUMA decreases as the network latency
increases. Benchmarks that are the most I/O intensive are
slowed down compared to the baseline: Postmark perfor-

mance is reduced with an additional network latency of
500µs, 1ms is enough to slow down the sequential read
benchmark, and TPC-C response time skyrockets off the
chart with more than 1.5ms.

Figure 7b shows the results of these experiments with
PUMA latency management mechanism enabled. We con-
figured (empirically) Lshort to [1.5ms, 40ms] and Llong to
[1ms, 1.5ms]. Overall, we observe that this mechanism helps
PUMA to not slow down applications performance in case of
high latency. The only notable exception is Postmark with
500µs of network latency, where in this case Tshort and Tlong
need to be more aggressive.

4.6 Comparison with SSD caching

In this section, we compare PUMA’s performance against
SSD caching. We used a Samsung 840 Pro 128GB with the
dm-cache [Thornber 2013] module from Linux kernel. We
configured dm-cache inside a VM to use a 5 GB cache device
backed by the SSD, i.e., the working set of our benchmarks
fits in the cache. We also run PUMA with a non-inclusive
strategy and 5 GB of remote cache. Note that, since we used
another machine, results presented in this section might be
slightly different from those presented in previous sections.

The results of these experiments are presented in Table 2.
These results show that under random read workloads, PUMA
performs much better than a SSD cache, while we expected
to have more or less the same result from both. The reason
is that most of the virtualization overhead is due to context
switches between the VM and the hypervisor [Santos 2008,
Har’El 2013]. This overhead is particularly damaging in I/O
intensive workloads due to VM Exits for I/O complete inter-
rupt: while we got around 150µs latency between VMs for
PUMA, which is pretty high, we measured more than 200µs
of access latency to the SSD from the VM.



(a) PUMA without latency management. (b) PUMA with latency management.

Figure 7: Speedup and slowdown (logarithmic scales) of benchmarks with latency injection between VMs, without (a) and with
(b) latency control support.

Random read Postmark BLAST TPC-H

PUMA ×38 +55% +267% +218%
dm-cache ×19 ×10 +98% +128%

Table 2: Comparison between SSD caching and PUMA, with
1 GB of local memory and 5 GB of additional cache.

With BLAST, since it has a sequential pattern, the SSD is
not impacted by the latency, and the SSD cache is roughly as
fast as PUMA.

TPC-H generates a mixed sequential/random workload
with writes. With this benchmark, PUMA is still faster than
the SSD cache, but since we do not handle writes and writes
to an SSD are much faster than writes to a magnetic disk, the
gap between the SSD cache and PUMA is reduced.

Finally, with Postmark, as we could expect the SSD cache
is much faster than using PUMA since we do not handle
writes, and thus we have to write them to a slow HDD. It
shows us the cost of writes into the HDD: dirty pages are
all eventually written to the slow HDD, while with an SSD
cache, which is persistent, they can remain in the SSD.

4.7 Dynamic memory balancing
In this section, we evaluate PUMA’s dynamic memory man-
agement, which is detailed in Section 3.4.2, then we measure
its impact with varying workloads compared to a memory
ballooning approach.

We deployed the random read benchmark described in
Section 4.1 with a 64 KB block size on a VM with 1 GB of
memory. Another VM with 4.5 GB is available for caching
with PUMA’s non-inclusive strategy. On this second VM, we
inject a memory workload after 10min, which consists on
allocating small chunks of memory each second, emulating
an application need for anonymous memory. The size of the
chunks is chosen such that all the memory of the VM is
allocated in 10min. We write into each allocated memory
chunk to ensure that the pages are really mapped into the VM.
Then, this benchmark sleeps for ten minutes before freeing
the allocated memory in a few more minutes.

Figure 8a shows the memory usage of the client VM run-
ning the random read benchmark. We observe that when
the server reduces its cache size, the memory used for lo-
cal caching increases. This is due to the fact that there is less

(a) Ideal (b) Ballooning (c) PUMA

Figure 9: Memory allocation latencies.

metadata to store on client side (the metadata being used to
recall which pages are stored remotely) freeing some me-
mory that can be used for caching. Before starting the me-
mory allocation workload on the server side, the amount of
local memory used for caching is stable. However, when the
memory workload starts (at 10’), this amount of memory is
more variable because the remote cache is reducing the avail-
able memory for remote-caching, and thus the entire working
set (4 GB) does not fit in cache and the client, using the non-
inclusive strategy, has to send pages to the remote cache.

Figure 8b shows the memory usage of the VM which of-
fers the PUMA remote cache. At 10’, it starts the memory
workload and, dynamically, reduces the remote cache size to
allow pages of the memory intensive process to be allocated.
When it frees its memory, the memory is immediately avail-
able for the benefit of the other VM.

Figure 8c shows the performance of the random read
workload. Before the PUMA remote cache node starts the
memory workload, all the data set fits in the cache (lo-
cal+remote) and the performance is at its maximum. When
the memory workload starts, the performance quickly col-
lapses, because, as we saw in Section 4.2, only a few disk
accesses are enough to slow down such kind of workload.
When the memory workloads frees the memory on the re-
mote cache node, the remote cache is progressively filled,
which increases the hit ratio and the performance.

We report on the Figure 9 the latency of each memory
allocation for a configuration using KVM memory auto-



(a) Client side memory (b) Server side memory (c) 64KB random read workload with varying
memory load on server side.

Figure 8: Memory usage with dynamic memory management and varying memory load on server side.

ballooning and for PUMA. We also report these values for a
single VM with 4.5 GB of memory (ideal). With this config-
uration, memory allocations take less than 1ms, with a stan-
dard deviation of 0.1.

With dynamic memory ballooning, memory allocations
take 20ms on average, with a standard deviation of 76 (some
values, not represented in this figure, are above 1s). This is
because the VM running the random read benchmark took
all of the memory for its own cache, and it is not possible to
deflate the balloon of the VM running the memory workload
without swapping.

With PUMA, the logic is embedded inside the VMs, and
we are able to get back the lend memory without the need of
the hypervisor. In average, we measure 1.8ms of latency for
memory allocations, with a standard deviation of 2.2.

5. Back to the scenarios
In Section 2 we presented 2 scenarios in which existing so-
lutions are either non-efficient (locally) or non-existent (re-
motely). In this section, we show that PUMA is able to dy-
namically use free memory of other VMs, hosted locally or
on another host, to improve the performance of I/O intensive
applications, without impacting potential activity peaks.

5.1 Co-localized VMs

In our first case study presented in Section 2, we show how
PUMA can be used to improve the performance of consoli-
dated applications into a single server. The results of these ex-
periments are presented in Table 1. As we can see, automatic
ballooning cannot return the memory to the Git VM because
of the semantic gap: most of the memory used by TPC-C
is for caching purpose and could be quickly reclaimed. This
leads to a huge performance drop of the Git VM (219%).
With PUMA, the performance of the Git VM is still impacted
(23%), but it is much more acceptable than what we observe
using the auto-ballooning approach.

To explain why automatic ballooning fails, and how
PUMA is able to succeed, we report the amount of memory
available to the Git VM in both cases in Figure 10. With
PUMA, we represent the amount of free memory available
into the VM, minus hosted remote cache pages, while we re-
port the amount of available memory (i.e. memory hot-plug)
in the auto-ballooning. For the first part of these curves, al-
most no memory is available: free memory is either used for

Figure 10: Available memory on the git server with PUMA
and auto-ballooning. While it is idle, all the memory of the
VM is used for the benefit of the TPC-C VM. On activity,
PUMA quickly reclaims the memory lend to the other VM.

remote cache pages (PUMA) or directly given to the other VM
(auto-ballooning). In the second part of these curves (1’30“),
the git clone has started and the Git server has to allo-
cate memory. In the case of PUMA, the memory is quickly
reclaimed and the application can progress. Using the auto-
ballooning approach the host is not able to reclaim the me-
mory used by the TPC-C VM, and it has to swap to give the
memory needed by the Git VM, which is a very slow process.
These results are consistent with what we have observed in
the previous experiments (Figures 8b and 9). When the ac-
tivity of the Git VM stops, PUMA starts offering again free
memory to the TPC-C VM.

5.2 Distributed setup

The second scenario represents a bigger company which has
multiple physical servers in a data center, interconnected with
a high performance network, such as 10 GB Ethernet. On
the first node, we deploy a VM with 10 GB of memory and
we run a database benchmark as in the previous section. On
the second node, we deploy a spare VM with 10 GB of
memory, which can be used in case of a failure of the first
VM. Thus, until there is a failure, the spare VM can offer its
unused free memory to the main VM, by using PUMA and the
10 GB Ethernet link. Obviously, we cannot reproduce these
experiments with the automatic ballooning approach, as such
solutions do not work among multiple nodes.

The results of this experiment are presented in Figure 11.
We also presents the results for the TPC-H benchmark with



Figure 11: PUMA speedup with VMs on different nodes.

10 + 10 GB of memory, and we reproduce the results of the
other benchmarks that we presented in Section 4.1 in their
8 GB configuration. Surprisingly, overall performance in a
distributed setup is close to the performance in a local setup.
However, as we already explained I/O virtualization is still
slow, and the use of a high performance network only add
tens of µs of latency.

6. Related Work
Many research works aim at improving memory usage in
clouds. Most of these approaches provide the ability to share
memory among multiple physical machines, but only few of
them focus on how to optimize the usage of the “unused”
memory (i.e., file backed pages). This section briefly presents
these approaches and explain how our solution differs.

Memory ballooning [Waldspurger 2002, Barham 2003,
Schopp 2006, Hines 2009] is a technique that allows a hy-
pervisor to dynamically resize the physical memory it gives
to the hosted VMs. To do so, it instructs a guest to inflate a
balloon, which pins memory pages within the guest. To in-
crease the memory of another guest, it asks the inflated guest
to deflate its balloon. The major drawback is that, due to the
semantic gap, the hypervisor does not know for what the me-
mory given to the VMs is used, hence it is not able to reclaim
memory even if it is used for caching. This solution presents
other drawbacks: (i) inflating/deflating balloons may incur la-
tency, and (ii) it only operates for VMs running on top of
a single physical host. In contrast, PUMA is able to handle
varying workloads and can be deployed on VMs hosted on
different hosts.

Memory ballooning is often used with page sharing (dedu-
plication) among VMs. Transparent page sharing [Wald-
spurger 2002] is a technique used to reduce VM memory us-
age and to overcommit memory. Basically, the hypervisor pe-
riodically scans the memory of each guest and when identical
pages are detected, they are shared so that the VMs access the
same pages. The main drawback is that scanning the memory
consumes CPU and memory bandwidth. Satori [Miłós 2009]
is a modification to the Xen hypervisor that uses enlighten-
ments from the guest to help the hypervisor to scan pages
more efficiently and to detect short-lived sharing opportuni-
ties. However, even if these solutions optimize the memory
usage by using deduplication techniques and offer good re-
sults, there is still room for improvement. They cannot solve
the sizing problem: they can compress the memory allocated
to a VM, but what if the VM needs more memory? These
approaches appear to be complementary to ours.

Cooperative caching [Dahlin 1994, Sarkar 1996, Anna-
pureddy 2005] uses participating clients’ memory to extend
the local cache of other clients. Some approaches, such as
XHive [Kim 2011], take benefit of the virtualization to pro-
vide a transparent and efficient cache between VMs. How-
ever, while their cooperative caching approach gives good
performance, it requires to make complex modifications both
to the guest OS and to the hypervisor. Moreover, like the
ballooning approach, it cannot be used to pool the memory
of VMs hosted on different hosts.

Hwang et al. proposed Mortar [Hwang 2014], a frame-
work used to pool spare memory of Xen virtual machines
to provide volatile data cache managed by the hypervisor. In
this approach, a predefined amount of memory is allocated
by the hypervisor and can be used on-demand by the VMs.
In contrast, PUMA is able to manage the unused, but allo-
cated, memory of the VMs, while Mortar manages a preex-
isting pool of free memory, i.e. VMs have to be resized in or-
der to give their unused memory to the hypervisor. Moreover,
PUMA does not rely on hypervisor modifications, allowing it
to be deployed regardless of the hypervisor.

Zcache (formerly RAMster) [Magenheimer 2009] is a
compressed in-memory page cache that periodically sends
compressed pages to an other host. Zcache works for anony-
mous pages as well as clean page cache pages; however pre-
vious studies [Magenheimer 2012] show that most of the be-
nefit of Zcache comes from anonymous pages (i.e. swap) in
memory intensive workloads such as multithreaded kernel
compilation.

7. Conclusion
In cloud architectures, the extensive use of virtualization
through VMs leads to a fragmentation of the memory. To
tackle this problem, we propose PUMA, a mechanism pro-
viding the ability to pool unused memory. As a VM should
be able to retrieve quickly the memory it has lent to another
VM, we based our approach on lending memory only to store
clean file-backed pages that can be removed without any syn-
chronization.

Therefor PUMA is based on an efficient, kernel-level re-
mote caching mechanism. It is is block device, file system
and hypervisor agnostic. Moreover, it can operate both lo-
cally and remotely. We show through extensive experimenta-
tions that our mechanism allows applications to use memory
on remote VMs to boost their performance. We also show that
a VM can retrieve its own memory efficiently when needed.
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