Distributed caching for cloud computing
Maxime Lorrillere, Julien Sopena, Sébastien Monnet et Pierre Sens

February 11, 2013

ip UPMC @ <Zoozoo

1AA1 SORBONNE INVENTEURS DU MONDE NUMERIQUE

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 1/16

Introduction

Cloud computing

Host Host Cloud computing

Computing resources as a service

Context

On-demand self-service
Elastically provisioned

QoS guarantees

Google S3

@ We need a common interface

Building a virtual platform

o Deal with different resources

o From different providers

o With different properties

Maxime Lorrillere (LIP6/UPMC/CNRS)

February 11, 2013

2 /16

Introduction

Cloud computing

Host Host Cloud computing

Computing resources as a service

Context

On-demand self-service
Elastically provisioned

QoS guarantees

Google S3

@ We need a common interface

Building a virtual platform

o Deal with different resources

o From different providers

o With different properties

Maxime Lorrillere (LIP6/UPMC/CNRS)

February 11, 2013

2 /16

Introduction

Cloud computing

Host Host Cloud computing

Computing resources as a service

Context

On-demand self-service
Elastically provisioned

QoS guarantees

Google S3

@ We need a common interface

Building a virtual platform

o Deal with different resources

o From different providers

o With different properties

Maxime Lorrillere (LIP6/UPMC/CNRS)

February 11, 2013

2 /16

Cerliffig
Distributed caching

CPU Local hard drive

o High capacity
100ns o High latency

- 100us o Bottleneck

Loms | <
o Low latency
@ o Capacity?

100ms
Local
@ o Very low latency
o Small capacity
haR:ﬂm;rtise @ Principle of locality

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 3/16

el liei e Related works

Distributed caching

Related works

Operating system layer:

o Application level [Memcached]
o Existing applications have to be updated
o Filesystem level [xF5 PAFS, Cephl

o Guest operating system have to use a specific
file system

@ Bloc level [XHive, dm-cache|
o Incompatible with distributed file systems Bloc level

o Existing solutions are not “cloud aware”

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 4 /16

el liei e Related works

Distributed caching

Related works

Operating system layer:

o Application level [Memcached| 0T T T T

o Existing applications have to be updated | Virtual File System |
o Filesystem level [xF5 PAFS, Cephl

o Guest operating system have to use a specific
file system

@ Bloc level [XHive, dm-cache|
o Incompatible with distributed file systems Bloc level

e Existing solutions are not “cloud aware”

Our contribution: a generic approach to develop ditributed caches for cloud
computing

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 4 /16

Development of a distributed cache ESEIEIS

Development of a distributed cache

Implementation constraints

Applications

o Ensure genericity
= Integration into the Linux kernel

Virtual File System

o Be non-intrusive

Performance constraints

i | File systems |

i | Bloc level |

o Limit overhead

o
c
9]
£
o]
B0
@
c
@
1S
>
I
o
1S
o]

=

@ Minimise memory footprint

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 5/ 16

Development of a distributed cache Remote caches

Remote cache

Direct client cooperation

Client

o Remote memory extends local
memory

o Easy localisation of data

e No data sharing

Remote cache

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 6 /16

Development of a distributed cache Remote caches

Remote cache

Direct client cooperation

Client

o Remote memory extends local
memory

o Easy localisation of data

e No data sharing

Remote cache

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 6 /16

Development of a distributed cache Remote caches

Remote cache

Direct client cooperation

Client

o Remote memory extends local
memory

o Easy localisation of data

e No data sharing

Remote cache

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 6 /16

Development of a distributed cache BV

miss Chent
i o Basic operations: get and put

o Blocking get
Ej - o Executed by the process in

kernel-space

Serveur

o Dedicated kernel thread

Architecture

client

server

o Request-response
o Red-black tree

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 7/ 16

Development of a distributed cache BV

Architecture

o Basic operations: get and put

o Blocking get

o

client

o Executed by the process in
kernel-space

Serveur

o Dedicated kernel thread

server

o Request-response
o Red-black tree

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 7/ 16

Development of a distributed cache BV

Architecture

o Basic operations: get and put
o Blocking get

o Executed by the process in
kernel-space

Serveur

o Dedicated kernel thread

o Request-response
o Red-black tree

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 7/ 16

Development of a distributed cache BV

Architecture

alloc

put() called inside critical section

Memory
— CET—
asic operations: get and put

Dedicated kernel thread

Request-response
o Red-black tree

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 8 /16

Development of a distributed cache BV

Architecture

alloc

Memory
manager

Basic operations: get and put

put() called inside critical section

Dedicated kernel thread

Request-response
o Red-black tree

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 8 /16

Development of a distributed cache BV

Architecture

alloc

Memory
manager

Basic operations: get and put

put() called inside critical section
Executed in a dedicated thread

client

server

Dedicated kernel thread

Request-response
o Red-black tree

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 8 /16

Details and optimizations
Metadata management

Problem: metadata management efficiency

E ez test(keyo) a ; .
Solution: Bloom filter [Bloom'1970]
o Probabilistic data structure
. o Compact
miss k .
e test(key2) o No false negative
: o False positive possible

: hit 7
E L test(keys)

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 9 /16

Ll el epimE s
Cache accesses management

Problem: sequential access detection

get(0) (1)

get(1)

get(2) Solution: prefetching

get(3) --~ @ Sequential read detection
get(4) @ Read prediction

get(5) -~/ o Read ahead of data

get(6) - -~ o Amortized network latency
a7

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 10 / 16

Ll el epimE s
Communications management

Problem: network buffers memory footprint

alloc
K\° Solution: zero-copy
Niamay @ Avoid copying into the network stack
e o Decrease memory allocations

o Avoid deadlocks

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 11 / 16

Ll el epimE s
Communications management

Problem: network buffers memory footprint

alloc .
Solution: zero-copy

G @ Avoid copying into the network stack
e 7]
@ Decrease memory allocations
A
alloc'»v 0

o Avoid deadlocks

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 11 / 16

Evaluation

Experiment setup

o Virtualized platform
o Intel Core i7-2600 (4 hyper-threaded cores), 8GB memory

o Cache server (2 cores, 4GB)
o Client (2 cores, 512MB)

o Reads from local virtual hard drive

o 1Gbit/s virtual network (~ 600us RTT)

@ Micro-benchmark
o 32MB read
o Each read is split into fragments from 512 bytes to SMB
o Each fragment is read at a random position from a file

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013

12 / 16

SEE S Performance evaluation

Remote miss overhead

Empty remote cache

100 F 7T T T]
Classic : :
—_ Remotecache - - - -
Q 80 [v B H N —
o
3
5 60 [.
Q.
<
2 40 - —
o
£ 20 F -
0 | |

210 212 214 216 218 220

Fragment size (bytes)

o Bloom filter avoids remote miss

o Code execution has a negligible

Maxime Lorrillere (LIP6/UPMC/CNRS)

February 11, 2013

13/ 16

Evaluation Performance evaluation
Performance peak
Data preloaded in remote cache
T T T T T T T T T T T T T T L
100 Classic R : Speed-up - --- |
@ go | Remotecache - - - - | R H i s
) N
s o i
= 60 [- \
> = N
o N
ey . -
S 40 - B i
e AN
£ 20 e et ; R 5 7
210 212 214 216 218 220 222 210 212 214 216 218 220 222
Fragment size (bytes) Fragment size (bytes)

e Up to 8x performance improvement with small fragments (1KB)

@ Performance drop above 128KB

Maxime Lorrillere (LIP6/UPMC/CNRS)

February 11, 2013

H N WA UO N OO

Speed-up

14 / 16

Evaluation

Performance evaluation

Performance with local memory full of data

Data preloaded in remotecache, full local memory

90 b C‘Ias‘sic‘
80 |- Remotecache - - - -

Throughput (MB/s)
w
o
T

I-1 =i

214

Fragment size (bytes)

210 212 714 516 18 220 22

Fragment size (bytes)

e Up to 6x performance improvement with small fragments (1KB)

@ Performance drop above 64K

Maxime Lorrillere (LIP6/UPMC/CNRS)

February 11, 2013

= N W A~ U O

Speed-up

15 / 16

Conclusion

Conclusion

Existing distributed caches are not "cloud aware"

We propose an approach to develop distributed caches for the cloud

Working non-intrusive prototype

Promising: up to 8x performance improvement in random read

Realistics benchmarks: Memcached, dm-cache, bcache,. ..

Sequential read performance improvements

Consistency guarantees

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 16 / 16

	Introduction
	Context
	Caching
	Related works

	Development of a distributed cache
	Constraints
	Remote caches
	Architecture
	Details and optimizations

	Evaluation
	Experiment setup
	Performance evaluation

	Conclusion

