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Introduction

Cloud computing

Host Host Cloud computing

Computing resources as a service

Context

On-demand self-service
Elastically provisioned

QoS guarantees

Google S3

@ We need a common interface

Building a virtual platform

o Deal with different resources

o From different providers

o With different properties
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Cerliffig
Distributed caching

CPU Local hard drive

o High capacity
100ns o High latency

- 100us o Bottleneck

Loms | <
o Low latency
@ o Capacity?

100ms
Local
@ o Very low latency
o Small capacity
haR:ﬂm;rtise @ Principle of locality
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el liei e Related works

Distributed caching

Related works

Operating system layer:

o Application level [Memcached]
o Existing applications have to be updated
o Filesystem level [xF5 PAFS, Cephl

o Guest operating system have to use a specific
file system

@ Bloc level [XHive, dm-cache|
o Incompatible with distributed file systems Bloc level

o Existing solutions are not “cloud aware”
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o Filesystem level [xF5 PAFS, Cephl

o Guest operating system have to use a specific
file system

@ Bloc level [XHive, dm-cache|
o Incompatible with distributed file systems Bloc level

e Existing solutions are not “cloud aware”

Our contribution: a generic approach to develop ditributed caches for cloud
computing
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Development of a distributed cache ESEIEIS

Development of a distributed cache

Implementation constraints

Applications

o Ensure genericity
= Integration into the Linux kernel

Virtual File System

o Be non-intrusive

Performance constraints

i | File systems |

i | Bloc level |

o Limit overhead
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@ Minimise memory footprint
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Development of a distributed cache Remote caches

Remote cache

Direct client cooperation

Client

o Remote memory extends local
memory

o Easy localisation of data

e No data sharing

Remote cache
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Development of a distributed cache BV

miss Chent
i o Basic operations: get and put

o Blocking get
Ej - o Executed by the process in

kernel-space

Serveur

o Dedicated kernel thread

Architecture

client

server

o Request-response
o Red-black tree
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Development of a distributed cache BV

Architecture

alloc
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Development of a distributed cache BV

Architecture
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Memory
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server
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Details and optimizations
Metadata management

Problem: metadata management efficiency

E ez test(keyo) a ; .
Solution: Bloom filter [Bloom'1970]
o Probabilistic data structure
. o Compact
miss k .
e test(key2) o No false negative
: o False positive possible

: hit 7
E L test(keys)
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Ll el epimE s
Cache accesses management

Problem: sequential access detection

get(0) (1)

get(1)

get(2) Solution: prefetching

get(3) --~ @ Sequential read detection
get(4) @ Read prediction

get(5) -~/ o Read ahead of data

get(6) - -~ o Amortized network latency
a7
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Ll el epimE s
Communications management

Problem: network buffers memory footprint

alloc
K\° Solution: zero-copy
Niamay @ Avoid copying into the network stack
e o Decrease memory allocations

o Avoid deadlocks
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Evaluation

Experiment setup

o Virtualized platform
o Intel Core i7-2600 (4 hyper-threaded cores), 8GB memory

o Cache server (2 cores, 4GB)
o Client (2 cores, 512MB)

o Reads from local virtual hard drive

o 1Gbit/s virtual network (~ 600us RTT)

@ Micro-benchmark
o 32MB read
o Each read is split into fragments from 512 bytes to SMB
o Each fragment is read at a random position from a file
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SEE S Performance evaluation

Remote miss overhead

Empty remote cache
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o Bloom filter avoids remote miss

o Code execution has a negligible
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Evaluation Performance evaluation
Performance peak
Data preloaded in remote cache
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e Up to 8x performance improvement with small fragments (1KB)

@ Performance drop above 128KB
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Evaluation

Performance evaluation

Performance with local memory full of data

Data preloaded in remotecache, full local memory
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e Up to 6x performance improvement with small fragments (1KB)

@ Performance drop above 64K
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Conclusion

Conclusion

Existing distributed caches are not "cloud aware"

We propose an approach to develop distributed caches for the cloud

Working non-intrusive prototype

Promising: up to 8x performance improvement in random read

Realistics benchmarks: Memcached, dm-cache, bcache,. ..

Sequential read performance improvements

Consistency guarantees
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