
Distributed caching for cloud computing

Maxime Lorrillere, Julien Sopena, Sébastien Monnet et Pierre Sens

February 11, 2013

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 1 / 16



Introduction Context

Cloud computing

VM VM VM

Host Host

Google S3

Cloud computing
Computing resources as a service
On-demand self-service
Elastically provisioned
QoS guarantees

Building a virtual platform
Deal with different resources

From different providers
With different properties

We need a common interface

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 2 / 16



Introduction Context

Cloud computing

VM VM VM

Host Host

Cache

Google S3

Cloud computing
Computing resources as a service
On-demand self-service
Elastically provisioned
QoS guarantees

Building a virtual platform
Deal with different resources

From different providers
With different properties

We need a common interface

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 2 / 16



Introduction Context

Cloud computing

VM VM VM

Host Host

Cache

Google S3

Cloud computing
Computing resources as a service
On-demand self-service
Elastically provisioned
QoS guarantees

Building a virtual platform
Deal with different resources

From different providers
With different properties

We need a common interface

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 2 / 16



Introduction Caching

Distributed caching

CPU

Local
hard drive

Remote
hard drive

100ms

Main memory

100ns

10ms
Main memory

100µs

Local hard drive
High capacity
High latency
Bottleneck

Network
Low latency
Capacity?

Main memory
Very low latency
Small capacity
Principle of locality

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 3 / 16



Introduction Related works

Distributed caching
Related works

Operating system layer:
Application level [Memcached]

Existing applications have to be updated
Filesystem level [xFS, PAFS, Ceph]

Guest operating system have to use a specific
file system

Bloc level [XHive, dm-cache]
Incompatible with distributed file systems

Existing solutions are not “cloud aware”

Applications

Virtual File System

Cache

File systems

Bloc level

Our contribution: a generic approach to develop ditributed caches for cloud
computing

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 4 / 16



Introduction Related works

Distributed caching
Related works

Operating system layer:
Application level [Memcached]

Existing applications have to be updated
Filesystem level [xFS, PAFS, Ceph]

Guest operating system have to use a specific
file system

Bloc level [XHive, dm-cache]
Incompatible with distributed file systems

Existing solutions are not “cloud aware”

Applications

Virtual File System

Cache

File systems

Bloc level

Our contribution: a generic approach to develop ditributed caches for cloud
computing

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 4 / 16



Development of a distributed cache Constraints

Development of a distributed cache

Implementation constraints
Ensure genericity
⇒ Integration into the Linux kernel
Be non-intrusive

Performance constraints
Limit overhead
Minimise memory footprint

Applications

Virtual File System

Cache

M
em

or
y

m
an

ag
em

en
t

File systems

Bloc level

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 5 / 16



Development of a distributed cache Remote caches

Remote cache
Direct client cooperation

p

miss

Client

hit

Remote cache

res

IOreq

IOres

req

Remote memory extends local
memory
Easy localisation of data
No data sharing

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 6 / 16



Development of a distributed cache Remote caches

Remote cache
Direct client cooperation

p

miss

Client

miss

Remote cache

res

IOreq

IOres

req

Remote memory extends local
memory
Easy localisation of data
No data sharing

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 6 / 16



Development of a distributed cache Remote caches

Remote cache
Direct client cooperation

p

miss

Client

miss

Remote cache

res

IOreq

IOres

req

Remote memory extends local
memory
Easy localisation of data
No data sharing

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 6 / 16



Development of a distributed cache Architecture

Architecture

p

miss

get()

client

server

IOreq

miss ?

IOres

Mres

Mget

Client
Basic operations: get and put
Blocking get
Executed by the process in
kernel-space

Serveur
Dedicated kernel thread
Request-response
Red-black tree

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 7 / 16



Development of a distributed cache Architecture

Architecture

p

miss

get()

client

server

IOreq

miss ?

IOres

Mres

Mget

Client
Basic operations: get and put
Blocking get
Executed by the process in
kernel-space

Serveur
Dedicated kernel thread
Request-response
Red-black tree

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 7 / 16



Development of a distributed cache Architecture

Architecture

p

miss

get()

client

server

IOreq

miss ?

IOres

Mres

Mget

Client
Basic operations: get and put
Blocking get
Executed by the process in
kernel-space

Serveur
Dedicated kernel thread
Request-response
Red-black tree

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 7 / 16



Development of a distributed cache Architecture

Architecture

p

put()

Memory

manager

alloc

client

server

Mput

Mput

Client
Basic operations: get and put
put() called inside critical section

Executed in a dedicated thread

Serveur
Dedicated kernel thread
Request-response
Red-black tree

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 8 / 16



Development of a distributed cache Architecture

Architecture

p

put()

Memory

manager

alloc

client

server

Mput

Mput

Client
Basic operations: get and put
put() called inside critical section

Executed in a dedicated thread

Serveur
Dedicated kernel thread
Request-response
Red-black tree

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 8 / 16



Development of a distributed cache Architecture

Architecture

p

put()

Memory

manager

alloc

client

server

Mput

Mput

Client
Basic operations: get and put
put() called inside critical section
Executed in a dedicated thread

Serveur
Dedicated kernel thread
Request-response
Red-black tree

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 8 / 16



Development of a distributed cache Details and optimizations

Metadata management
Problem: metadata management efficiency

...
1

...

0

...
1

...

test(key0)
hit ?

test(key2)
miss

test(key3)
hit ?

Solution: Bloom filter [Bloom’1970]
Probabilistic data structure
Compact
No false negative
False positive possible

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 9 / 16



Development of a distributed cache Details and optimizations

Cache accesses management
Problem: sequential access detection

0get(0)

1get(1)

2 3get(2)

get(3)

get(4) 4 5 6

get(5)

get(6)

get(7) 7 8 9 10 11

...

Solution: prefetching
Sequential read detection
Read prediction
Read ahead of data

Amortized network latency

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 10 / 16



Development of a distributed cache Details and optimizations

Communications management
Problem: network buffers memory footprint

p

put()

Memory

manager

alloc

Solution: zero-copy
Avoid copying into the network stack
Decrease memory allocations
Avoid deadlocks

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 11 / 16



Development of a distributed cache Details and optimizations

Communications management
Problem: network buffers memory footprint

p

put()

Memory

manager

alloc

alloc

Solution: zero-copy
Avoid copying into the network stack
Decrease memory allocations
Avoid deadlocks

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 11 / 16



Evaluation Experiment setup

Evaluation
Experiment setup

Virtualized platform
Intel Core i7-2600 (4 hyper-threaded cores), 8GB memory
Cache server (2 cores, 4GB)
Client (2 cores, 512MB)

Reads from local virtual hard drive

1Gbit/s virtual network (∼ 600µs RTT)

Micro-benchmark
32MB read
Each read is split into fragments from 512 bytes to 8MB
Each fragment is read at a random position from a file

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 12 / 16



Evaluation Performance evaluation

Remote miss overhead
Empty remote cache

 0

 20

 40

 60

 80

 100

210 212 214 216 218 220 222

T
h
ro

u
g

h
p
u
t(

M
B

/s
)

Fragment size (bytes)

Classic
Remotecache

Bloom filter avoids remote miss
Code execution has a negligible

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 13 / 16



Evaluation Performance evaluation

Performance peak
Data preloaded in remote cache

 0

 20

 40

 60

 80

 100

210 212 214 216 218 220 222

T
h
ro

u
g

h
p

u
t 

(M
B

/s
)

Fragment size (bytes)

Classic
Remotecache

210 212 214 216 218 220 222

 1

 2

 3

 4

 5

 6

 7

 8

 9

S
p

e
e
d

-u
p

Fragment size (bytes)

Speed-up

Up to 8x performance improvement with small fragments (1KB)
Performance drop above 128KB

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 14 / 16



Evaluation Performance evaluation

Performance with local memory full of data
Data preloaded in remotecache, full local memory

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

210 212 214 216 218 220 222

T
h
ro

u
g

h
p

u
t 

(M
B

/s
)

Fragment size (bytes)

Classic
Remotecache

210 212 214 216 218 220 222

 1

 2

 3

 4

 5

 6

S
p

e
e
d

-u
p

Fragment size (bytes)

Speed-up

Up to 6x performance improvement with small fragments (1KB)
Performance drop above 64K

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 15 / 16



Conclusion

Conclusion

Summary
Existing distributed caches are not ”cloud aware“
We propose an approach to develop distributed caches for the cloud
Working non-intrusive prototype
Promising: up to 8x performance improvement in random read

Future works
Realistics benchmarks: Memcached, dm-cache, bcache,. . .
Sequential read performance improvements
Consistency guarantees

Maxime Lorrillere (LIP6/UPMC/CNRS) February 11, 2013 16 / 16


	Introduction
	Context
	Caching
	Related works

	Development of a distributed cache
	Constraints
	Remote caches
	Architecture
	Details and optimizations

	Evaluation
	Experiment setup
	Performance evaluation

	Conclusion

