
DECOUPLING APPLICATION PARAMETERS IN WSN AND IMPLEMENTATION OF Y-

THREADS IN LITEOS

Debojit Dhar, Maliha Sultana and Sriram Murali

Department of Electrical and Computer Engineering, University of British Columbia

ABSTRACT

This paper proposes methodologies for better utilization of

sensor nodes for large scale applications that requires good

time sensitivity, memory utilization and adaptability. In real-

time applications such as motion sensing, the operating

system of sensor nodes needs to be reprogrammable to

accommodate sudden variations in the environment. In this

project, we have decoupled application parameters for

Wireless Sensor Networks (WSN) and have developed a

library for the LiteOS (a fairly recent WSN operating

system) kernel to provide an interface to the user to make

applications reactive to the changing environment. We have

also implemented a stack sharing mechanism in LiteOS that

supports Y-Threads, a combination of events and threads.

Current WSN operating systems support either event-driven

or thread-based approach which can sometimes be

inadequate. The implementation of shared-stack and

decoupling application parameters from the kernel on

LiteOS shows significant performance improvement over a

class of applications that might otherwise over-burden the

low-power sensor nodes.

Index Terms— Wireless Sensor Network, Decoupling,

Multithreading.

1. INTRODUCTION

Typically, the commonly available sensor-nodes are

battery operated and have very limited memory, often only a

few kilobytes. While using sensor nodes for such large-scale

applications where multiple application threads are involved,

the limited memory available within the nodes will be easily

overwhelmed. Further, the applications are inherently

concurrent, thereby affecting the reliability (predictability)

of the system. Thus the operating system must ideally be

optimized to support concurrency, save memory and

conserve energy.

There are numerous approaches to reduce energy

requirements in a wireless sensor network environment.

Wang et. al [1] analyze common energy conservation

mechanisms at the operating system for wireless-sensor

network for large-scale deployments with harsh

environmental conditions. The ideal way to reduce energy

requirements is to program the application to activate the

sensor less frequently. In case of some abnormal behavior, it

is important to make the sensor operate at a higher frequency

so that we do not miss this event. Current research does not

suggest any method of decoupling the task parameters from

the application and the only way out would be to redeploy

the application with the new parameters. This would mean

that a task at the sensor network’s base station (sink) has to

continuously monitor the sensed data and react in case there

is an event of elevated interest. We have tried to come up

with a solution to this problem. We provide an interface to

application programmers for changing application

parameters seamlessly without having to redeploy. This

covers our first goal for this project.

The other goal of our project is to optimize memory

usage in multithreaded operating systems for the highly

resource constrained sensor motes. To support concurrency,

WSN operating systems implement either a multithreading

model or an event driven model or a restricted combination

of both. LiteOS [2], a fairly recent WSN operating system,

provides UNIX like abstraction and supports multithreading

but does not use any kind of stack optimization techniques.

In LiteOS, a private stack is allocated for each thread

assuming the worst case execution behavior of that thread.

But not all threads use the amount allocated and even if they

use, they might not use it at the same time. In this project we

have implemented a shared stack mechanism for optimizing

stack usage in LiteOS. In particular, we have implemented

Y-threads [3] that support separate small stacks for the

blocking portions of each thread and a common shared stack

for the non-blocking computations.

2. APPLICATION DECOUPLING

We envision that LiteOS should be flexible to allow the

application to set task parameters during execution time

without the need to reload the application with respect to the

environmental change. By permitting the application to

modify the kernel, the sensor nodes can be programmed to

switch to a different operating mode. This is accomplished

by providing a system call interface to the LiteOS kernel to

accommodate application demands.

Further, the detection of an event of elevated interest can be

sensed by the application by comparing the data with the

threshold set in the application itself. When the criterion is

met, the application will make a system call to the operating

system asking it to change one or more of its task attributes.

The operating system will address this call by changing the

task attributes. For example, on the event of a system call,

the operating system may change the priority of a task. This

way, the communication overhead of the network is reduced

as the application need not be re-ported and it becomes

smart enough to sense and redefine itself.

2.1. Motivation for application decoupling on LiteOS

Depending upon the characteristics of the application, the

following performance gains are obtained when we

implement application decoupling on LiteOS.

The latency between the event of sensing and

communicating the data to the sink, the sink re-deploying the

application and the sensor to start sensing with the new

attributes is very high. In order to reduce the latency

significantly, the sensing event is triggered frequently when

there is an event of high interest, and not when the

environment is normal and static.

This dynamic approach is implemented by decoupling

the application and its parameters. The current WSN

operating systems do not provide enough decoupling

between the application and its parameters. Therefore, the

users do not have enough control over the application. Using

a set of special interfaces at the kernel level of the operating

system, the user is provided the feature to write a simple

extension to the application which can modify its behavior

on the occurrence of certain special events.

The original scheme is quite energy inefficient because

of repeated triggering of the sensor units even when there is

no variation in the data that is collected. Apart from that,

transmission of sensed data to the base station draws up a lot

of energy from the resource constrained nodes. Here, the

application is made smart, aiming to reduce energy

consumption by not sensing frequently when the

environment is stable.

2.2. Implementation of parameter decoupling

In order to implement our parameter decoupling and

intelligent sensing ideas, we explored the code base of

LiteOS and implementation of the LiteOS operating system

on micaz motes. Also, in order to compare it with other

advanced sensor network operating system, we compared

the implementation of LiteOS with Nano-Rk [4] and TinyOS

[5]. Even though these operating systems have similar goals,

both these operating systems are quite different from

LiteOS’s implementation in terms of thread handling and

scheduling. Hence we consider them to be good comparison

platforms for our project.

In LiteOS, the main aim seems to be focused on

programmability and usability from the perspective of the

developers and users of the system. To this end, the

developers of LiteOS have added a lot of features to allow

programmers to program the motes and visualize how their

application is performing. They have added UI aids for

deploying and monitoring applications. The debugging

support provided is also very nice. One of their aims seems

to make their operating system compatible even for the

smallest motes available. To this end, they have tried to keep

the code footprint as minimal as possible. An application

running on LiteOS can simply start a thread and call one of

the sensing functions implemented in the LiteOS library and

then start transmitting the same to the base station. The

entire operation is executed in a while(1) loop with hard-

coded intervals for which the thread is expected to sleep.

The code snippet below would explain the same.

while (1) {

 reading = get_light();

 radioSend(1, 0xffff, 2, &reading);

 sleepThread(125);

 }

As we can visualize, a fixed sleep interval is placed after

every sensing activity. One of the aims of our exercise is to

decouple this parameter from the application. Also, the

LiteOS scheduler is very simple and does not ensure any

timing guarantees on the task at hand. For example, the

priority of the task is set by the scheduler and not by the

application. We would like to abstract this functionality so

that tasks can run with elevated priority as and when needed.

To achieve this aim, we would like to extend or add a new

library class to LiteOS which would have the interface to

allow applications to make system calls and change

parameters which are otherwise set by default in the kernel.

(We are at present developing this library and designing an

application to demonstrate.)

In comparison to LiteOS, Nano-Rk has a much larger

code footprint; applications also need to set several

scheduling parameters which makes them highly decoupled

but complex at the same time. The scheduler is also much

advanced compared to LiteOS and schedules applications

using rate monotonic scheduling which is priority based. The

scheduler is responsible for maintaining timing guarantees as

set through the application. The snippet below shows a

typical Nano-Rk task instance.

void nrk_create_taskset() {

 nrk_task_set_entry_function(&TaskOne, Task1);

 nrk_task_set_stk(&TaskOne,Stack1,

 NRK_APP_STACKSIZE);

 TaskOne.prio = 1;

 TaskOne.FirstActivation = TRUE;

 TaskOne.Type = BASIC_TASK;

 TaskOne.SchType = PREEMPTIVE;

 TaskOne.period.secs = 0;

 TaskOne.period.nano_secs = 250;

 TaskOne.cpu_reserve.secs = 1;

 TaskOne.cpu_reserve.nano_secs=50*

 NANOS_PER_MS;

 TaskOne.offset.secs = 0;

 TaskOne.offset.nano_secs= 0;

 nrk_activate_task (&TaskOne);

}

So, as we can see, parameters are fixed and hardcoded in the

application again. Once this task is submitted to the kernel, it

is scheduled to meet all the timing requirements that are set.

So, the programmer has to redeploy the task in order to

change any of these attributes. Similar to LiteOS, a new

library that allows applications to make system calls to the

kernel and change some of the attributes that are set here

would be beneficial from the programmer’s point of view.

The task would now be able to sense an interesting event

and direct the kernel to change some of its parameters such

as the cpu_reserve or the period.

2.2.1. Decoupling Library

We have implemented a library in LiteOS called

appControl. This library provides an interface to application

developers to make system calls to the kernel and elevate the

priority of the task at hand. The application developer can

now choose from a number of functions. The current

supported tasks are listed below:

Increase the priority of the task to make it the task

running at highest priority. To implement this, the kernel

basically iterates over all the threads running and assigns a

priority which is a unit value greater than the highest priority

task running currently on the kernel. [Function:

ElevatePrioSetMaxPriority]

while (1)

 {

 reading = get_light();

 yellowToggle();

 if (reading < 10 && state == 0)

 {

 ElevatePrioSetMaxPriority();

 sleepThread(500);

 state = 1;

 }else{

 if(state == 1){

 normalizePriority(oldPrio);

 }

 state = 0;

 sleepThread(1000);

 }

 }

The above code shows two system calls:

ElevatePrioSetMaxPriority and normalizePriority which are

a part of our library. The implementation of these functions

is shown below:

void ElevatePrio_setMaxPriority(){

 int credits = 0;

 int i;

 for (i = 0; i < LITE_MAX_THREADS; i++)

 {

 if (thread_table[i].state == STATE_ACTIVE)

 {

 if (credits < thread_table[i].priority)

 {

 credits = thread_table[i].priority;

 }

 }

 }

 credits = credits + 1;

 if(current_thread->priority >= credits ||

current_thread->remaincredits >= credits){

 // do nothing

 }else {

 current_thread->priority = credits;

 current_thread->remaincredits = credits;

 }

}

Allow the programmer to increase the priority by a given

amount. The CPU time is shared between tasks in

proportion to the priorities. For example if there are three

tasks with priorities P1, P2 and P3, the CPU time will be

shared as P1:P2:P3. Now if the programmer wants to

increase the priority P1 by an amount x, the tasks will share

CPU time in the ratio P1+ x : P2 : P3. Hence, the task with

Priority P1 will now enjoy a larger ratio of the CPU time

compared to the other threads. [Function:

elevatePrioSetUserPriority]

Allow the programmer to boost the task for one single

time. This will make the task which requires priority be

boosted for a very short time. Internally, a system call

increases the remainingcredits variable by an amount

requested by the application. So the task will enjoy higher

priority till its credits are consumed. The application

developer has the freedom to increase the remaining credits

by an amount as desired by him once or he can keep on

increasing as long as the interesting event is taking place.

(Multiple calls can be prevented by keeping a flag which

checks if a system call has already been made. This is shown

in the code segment below). [Function:

elevatePrioSetRemCredits]

if (reading < 10 && state == 0) {

 elevatePrioForTimeInterval(sleepTime);

 sleepThread(5000);

 state = 1;

}

else{

 state = 0;

 sleepThread(1000);

 }

Allow the programmers to increase the frequency which

allows a task to run with lower sleep time. This can be easily

achieved in the application itself by providing a small

condition that changes the sleep time of the thread. No

separate modifications in the kernel and library are required

for this.

Allow a thread the privilege to set all other threads to

sleep while it keeps running. This is achieved through a

system call where the current thread makes a system call and

asks the kernel to put all the other threads to sleep for a

required interval of time and leave itself with the entire CPU

time. This function should only be used in critical cases

where you want only your thread to run on the CPU.

[Function: elevatePrioForTimeInterval]

Like priority elevation, mechanisms should be there to

decrease the priority to normal once the critical period is

past. To do this, another system call is invoked which

diminishes the increased priority of the task to its old value.

[Function: normalizePriority]

Continuing effort: Looking more on the lines of flexibility,

some scheduling algorithms can work better than others and

provisions to change the scheduling algorithm with a system

call may prove to be a reasonable and efficient scheme for

several applications.

2.3. Problems

The priority elevation through system calls and intelligent

applications may prove to be a great help for application

developers and maintainers as a lot of energy is saved as

tasks need not be re-deployed on the motes. This saves a lot

of energy. But while experimenting we came across various

bugs which if encountered could defeat the purpose of the

decoupling library. Some of the bugs are listed below.

2.4.1. Concurrent requests

One of the uncertainties of the system is what would happen

if two threads want extra CPU resources at the same time?

This would potentially lead to a race condition and if the

first thread puts the other threads to sleep, they may miss an

interesting event of their own. The only solution to this is

that application developers should use elevate priority

methods in case they have potential threads that may also

call the same function at the same time. They should put

other threads to sleep only in case of some critical

applications.

2.4.2. Stack overflow

Another problem is the problem with stack overflow. A user

thread may be initially allotted a small amount of stack but

once the thread starts making system calls, the stack

requirement increases as all these called functions execute

on the thread stack. Hence threads that have the potential to

make a lot of system calls should be allotted higher amounts

of stack. Another method to tackle this problem is the use of

run to completion routines discussed in the next section.

Also, instead of making continuous system calls flags should

be used.

2.4. Extensions and future work

Similar to LiteOS, the ideas of decoupling and priority

elevation can be applied to other operating systems. In this

project we could evaluate only one other operating system

which is Nano-RK. Nano-RK is similar in terms of LiteOS

in terms that it offers fixed priority scheduling but unlike

LiteOS, allows the user to set a lot of parameters at the

application level. These parameters include the task’s period

(i.e. frequency with which the task should operate),

cpu_reserve (i.e. the amount of CPU time that need to be

reserved for the task), as well as the scheduling type which is

preemptive or non-preemptive. Once a task is deployed,

these parameters remain associated with the task till the task

is killed and redeployed. Similar to the library we have built

for LiteOS, a library can be built for Nano-RK that can make

system calls to change these parameters for the task.

When a task in Nano-Rk is executing, it can retrieve its own

task Id (The function nrk_get_pid() performs this lookup

where it retrieves the id through nrk_cur_task_TCB-

>task_ID). Once the task id is retrieved, the remaining

parameters can be easily set by changing attributes of the

task object in the nrk_task_TCB datastructure. [eg.

nrk_task_TCB[task_ID].cpu_remaining=

new_cpu_remaining].

Since, we were able to extend our idea to one other

popular operating system, we expect that we can extend it to

other operating systems as well.

Another interesting extension is to provide a two way

communication in the system. At the time applications make

system calls asking for priority elevation, we cannot

guarantee that all requests would be honored. The kernel

will decide at the runtime whether the application can or

cannot increase the priority of its thread. As a further

enhancement, the node in concern here could alert

neighboring nodes to start a similar activity or change their

attributes in a similar fashion. Though this could be a very

interesting act, there could be serious security issues

involved as hackers could hack and application and turn the

whole network awry.

2.5. Evaluation

Evaluating the decoupling scheme was one of the tough jobs

in this project. The library indeed helps to fulfill the

application redeploying problem and makes transitions much

easier and smoother but on the other hand, the application

developer now has to foresee several scenarios and make the

application respondent to each of them. The complexity of

the applications is definitely increased. The code footprint is

also larger but by a very narrow amount (34.4% has become

35.1% after the addition of system call priority elevation

support). The memory footprint is an important index since

LiteOS boasts of its portability to the smallest nodes because

of its small memory requirement.

Figure 1: Memory footprint as a percentage of total flash

memory after implementing application parameter

decoupling and stack optimizations using Y-Threads.

We also measured the time required for porting the kernel

on the motes with and without the changes, and they are the

same. Hence, we can safely say that the additional code does

not cause any significant overhead. One of the major

improvements that application decoupling offers is that it

removes the latency for re-deploying an application. The

only cost which the system pays is a single system call.

3. Y-THREADS

Nitta et. al. [3] proposes Y-Threads that separates the

control and computational portion of each thread and uses a

separate stack for each portion. Y-Threads are preemptive

multithreads that run in a small private stack and all the non-

blocking routines are executed in a separate common stack.

Thus Y-Threads support preemptive multithreading and at

the same time make efficient use of the limited RAM.

The observation behind using Y-Threads is that the

control portions of applications require a small amount of

stack which can be pre-allocated to each thread. To execute

the computational portions of the threads the kernel provides

a separate shared stack. Thus Y-Threads are just like the

normal threads with the exception that the majority of work

in Y-Threads is done by Run to Completion Routines (RCR)

that are executed in the shared stack. Consider the following

example:

/*Normal Implementation*/

while(1) {

 recv_radio_msg(&msg);

 leds_greenToggle();

 processMsg(&msg);

}

/*RCR Implementation*/

while(1) {

 recv_radio_msg(&msg);

 leds_greenToggle();

 rcr_call(processMsg, &msg);

}

Here a thread accepts a message and then calls a routine

processMsg() to process the message. This processMsg()

routine involves some computation and requires memory. In

the Y-Thread based stack sharing mechanism this routine

will be executed as a RCR routine and will be executed in a

shared stack (Figure 2). The shared stack is allocated by the

kernel and is used to execute all such routines from different

threads.

Figure 2: Step1: Thread 1 is executing in its own stack, Step

2: Thread 1 makes an rcr_call, Step 3: Execution is started

in the shared stack, Step 4: rcr_call() returns, Step 5:

Execution is resumed in thread’s own stack. The arrow

indicates the execution of a thread in the stack.

3.1. Implementation

We have implemented Y-Threads in LiteOS. We have

modified the operating system kernel and the thread library

and verified our system by running it in MicaZ wireless

sensor motes with AVR processors. The MicaZ motes have

only 4096 bytes of RAM among which the basic LiteOS

kernel (before our modifications) occupies 2562 bytes [6].

The kernel stack grows from the highest RAM address and it

is recommended to reserve addresses higher than 3650 for

the kernel stack. Thus applications actually have

approximately 1K RAM available for all purposes. Since the

amount of RAM is very limited it is really necessary to

optimize RAM usage in these motes and this is exactly what

Y-Threads do.

To support Y-Threads the operating system needs to have

support for two basic functions; one for creating the Y-

Threads and one for executing the run to completion

routines; the functions are specified below:

/*Interface to create threads with their own private stacks*/

typedef void (*y_thread_task) (void);

void createThread(y_thread_task task, uint16_t *ram_start,

uint16_t *stack_pointer, uint16_t priority, char

*thread_name)

/*Interface to execute run to completion routines in the

shared stack*/

typedef void (*rcrFunction) (void *rcrData);

void rcrCall (rcrFunction func, void *rcrData)

Since Y-Threads are created just like normal threads, the

createThread() method in LiteOS was completely suitable

for creating Y-Threads as well. To support the RCRs we

have modified the threads library in LiteOS and added the

new function rcrCall(). rcrCall() takes as arguments the

pointer of the function to be executed in the shared stack and

a pointer to the data to be passed to that function and passes

these parameters to the kernel through registers. The system

call corresponding to this library function is implemented in

the kernel; the system call retrieves the parameters from the

registers, switches the stack pointer (__SP__) register so that

__SP__ register points to the shared stack and then executes

the function pointed to by the retrieved function pointer.

Almost all of the codes in both the library function and the

system call are written in inline assembly for the AVR

processor. The pseudocode of the system call is as follows:

/*System call to execute a function in the shared stack*/

Function rcr_call()

Begin

 Start atomic execution

 Retrieve function pointer and data from registers

 SWAP_STACK_POINTER(backupStackPtr,

sharedStackPtr)
 Push rcr data onto the shared stack

 Execute ICALL instruction

 Pop rcr data from the shared stack

 SWAP_STACK_POINTER(sharedStackPtr,

backupStackPtr)
 End atomic execution

End

SWAP_STACK_POINTER is a macro written in inline

assembly that saves the value of the current stack pointer

register (__SP__) in the first parameter given and loads

value of the second parameter into the __SP__ register. Thus

after the first call to the SWAP_STACK_POINTER() macro

the __SP__ register is backed up in the backupStackPtr and

a pointer to the shared stack is loaded into the __SP__

register. The actual thread stack pointer is restored when the

RCR returns. The RCRs are assumed to be non-blocking and

cannot be preempted. Thus the whole execution in the

shared stack is done atomically.

3.2. Observations

The Y-Thread implementation requires the availability of

a shared stack to execute the RCRs. The shared stack is

actually a chunk of memory reserved by the kernel. There

are two possibilities to implement the shared stack:

(1) Maintain a shared stack always, and

(2) Create the shared stack whenever necessary and

release the memory when the shared stack is no longer

needed.

Nitta et. al. proposed the first approach in [3]. The

problem with this approach is that not all applications will

require the shared stack; but the kernel will maintain a

shared stack always even when the applications do not need

it. Wireless sensor motes usually have very small amounts of

RAM and maintaining a shared stack when it is not needed

results in overkill of limited RAM.

To account for this we have added two more functions to the

thread library, one for requesting the initial setup of the

shared stack and one for releasing the shared stack when it is

no longer needed. In particular we have added the following

library functions:

/*Interface for initializing the shared stack*/

initSharedStack(uint16_t size)

/*Interface for releasing the shared stack*/

releaseSharedStack()

When the kernel receives the first call from any thread

requesting the initialization of a shared stack, it allocates the

specified amount of memory and maintains it as the shared

stack. The kernel maintains a counter that counts how many

threads are using the shared stack and the counter is

increased during each call to initSharedStack() and is

decreased during each call to releaseSharedStack(). When

all the threads release the shared stack the kernel frees up the

memory that was allocated for the shared stack.

The advantage of this approach is that it is robust and is

suited to both Y-Threads and normal threads. If no thread

needs a shared stack, no memory will be allocated, and there

will be almost no overhead (other than the increased OS

code footprint) for supporting Y-Threads. The disadvantage

of this approach lies in the overhead of two system calls per

Y-Thread; one for requesting the shared stack and the other

for releasing it. Another problem with this approach is that if

the shared stack initialization request arrives at some point

when the memory is already fragmented, the kernel may fail

to allocate the chunk required for the stack.

One work around to avoid the extra system calls would be to

incorporate this information in the thread creation and

destruction system calls. For example, the createThread()

function can be easily extended to accept one more

parameter specifying whether it needs a shared stack or not.

This functionality is not implemented yet.

3.3. Limitations of Y-Threads

The most important limitation of Y-Threads is that it is

not suitable for all types of applications. Y-Threads can only

reduce RAM usage when the threads execute some compute

intensive tasks that can be moved to the shared stack. Most

basic WSN applications just take readings from some

sensors such as temperature or light sensors and send the

readings back to the base station where the readings are

actually processed. Y-Threads can add no benefit to these

applications. However, the wireless sensor motes are

becoming more powerful these days and many compute

intensive applications are being developed for the motes

which can be benefitted from Y-Threads. An important task

for all sensor networks is time synchronization [7] which

involves floating point computation and memory overhead.

This task can easily be ported to the shared stack. Sensor

network applications also perform Fourier Transformation

(in motion/event detection), Cyclic Redundancy Checks to

ensure reliability in health/military services and

compression/decompression of images to reduce energy

consumption in data transfer. All of these applications will

be benefitted from the Y-Thread based shared stack

approach.

Another limitation of Y-Threads lies in the overhead of extra

system calls. Since no thread can be preempted while being

executed in the shared stack; the tasks that are executed in

the shared stack should be small. Each execution request of

these tasks incurs a system call overhead which results in

more CPU cycles and additional energy consumption.

3.4. Evaluation

To verify the correctness of our implementation we have

used the benchmarks that come with the LiteOS distribution.

We modified the applications by wrapping up the regular

function calls with rcr_calls and verified that the

applications behave as expected.

However, these applications actually do not involve any

processing that requires memory and hence are not suitable

to evaluate the benefit of shared stack. Unfortunately,

memory intensive WSN benchmarks (references can be

found in [8]) are not available. So, we were not able to run

any experiment regarding this. To provide an estimation of

how much memory can be saved from shared shack we have

analyzed the Fourier Transform (FT) application from the

MiBench benchmark suite. We have found that the

fourierTransform() function uses more than 90 bytes of stack

only for the local variables and the nested function calls. The

basic stack requirement of any thread in the MicaZ motes is

around 50 bytes (including stack space for saving 32

registers on a context switch). Thus we can allocate two

more threads by executing the FT function in the shared

stack. Obviously, the shared stack needs to allocate the

memory, but that memory will be allocated only once and

will be used by multiple such threads.

3.5. Future work

In the currently implemented version of Y-Threads only

run to completion routines are executed in the shared stack.

An extension of this project is to implement the RCRs as

non blocking routines (NBR). When implemented as NBRs

Y-Threads remain preemptable even when running in the

shared stack; the only restriction is that the routines cannot

block while running in the shared stack. To implement

NBRs the current top of the NBR stack must be stored

during a context switch.

Another extension is to implement a completely shared stack

for all threads. In a completely shared stack no thread will

be allocated with a private stack; instead all threads will run

on the same shared stack implemented by the kernel. A

thread’s stack will be eventually fragmented due to

preemption and the kernel will have the responsibility to link

the chunks that are used by that thread. For each thread, a

doubly linked list can be used to identify its chunks in the

shared stack. This extension requires support from the

hardware; it can also be done using compiler support by

wrapping up the Push and Pop operations. But in that case a

table lookup and an if-else logic need to be incorporated

with each push and pop operation which will incur a lot of

CPU overhead.

4. CONCLUSION

In this project we have provided library and kernel support

to decouple application parameters in wireless sensor

network applications. Decoupling enables the application

developers to make their applications adaptable to the

changing environment. It saves a lot of energy and time;

since applications can now change their attributes on the fly

and need not be re-deployed. We have successfully added

the decoupling support in LiteOS, a UNIX based operating

system for WSN.

We have also implemented a shared stack based memory

optimization technique (Y-Thread) in LiteOS. The Y-Thread

approach allocates a small amount of dedicated stack to each

thread and enables the execution of any run to completion

routine in a kernel provided shared stack. By re-using the

shared stack, the Y-Threads based approach makes efficient

utilization of the limited RAM in wireless sensor nodes.

REFERENCES

[1] Lan Wang and Yang Xiao, “Energy Saving Mechanisms

in Sensor Networks”, in the ACM Journal on Mobile

Networks and Applications, Vol 11:5, Oct 2006.

[2] Cao, Q., Abdelzaher, T., Stankovic, J. and He, T. The

LiteOS Operating System: Towards Unix-like

Abstractions for Wireless Sensor Networks, In the

Proceedings of the 7th international conference on

Information processing in sensor networks, 2008.

[3] Nitta, C. and Pandey, R. and Ramin, Y. Y -Threads:

supporting concurrency in wireless sensor networks, In

Proceedings of the International Conference on

Distributed Computing in Sensor Systems, 2006.

[4] Eswaran A. Rowe, A. and Rajkumar. R. Nano-RK: an

Energy-aware Resource-centric RTOS

for Sensor Networks, In the Proceedings of the 26th

IEEE International Real-Time Systems Symposium,

2005.

[5] Hill, J., Szewczyk, R., Woo, A, Hollar, S., Culler, D.,

and Pister, K. System architecture directions for

network sensors. In Proceedings of the 9th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS),

Cambridge, MA, 2000IEEE Signal Processing

Magazine, Vol. 25(2), March, 2008.

[6] LiteOS Programmers’ Guide,

http://www.liteos.net/docs/LiteOS_Programming_Guide

.pdf

[7] M. Maroti, B. Kusy, G. Simon, A. Ledeczi, The

Flooding Time Synchronization Protocol, Proceedings

of the second international conference on Embedded

networked sensor systems, 2004.sensor systems, 2004.

[8] Gurhan Kucuk and Can Basaran. Reducing Energy

Consumption of Wireless Sensor Networks through

Processor Optimizations. Journal of Computers, Vol. 2,

No. 5, July 2007.

[9] Han, C. C., Rengaswamy, R. K., Shea, R., Kohler, E.,

and Srivastava, M. SOS: A dynamic operating system

for sensor networks. In Proceedings of the 3rd

International Conference on Mobile Systems,

Applications, and Services (Mobisys), Seattle, WA,

2005.

[10] Duffy, C., Roedig, U., Herbert, J. and Sreenan, C. An

Experimental Comparison of Event Driven and Multi-

Threaded Sensor Node Operating Systems, In

Proceedings of the Fifth IEEE International Conference

on Pervasive Computing and Communications

Workshops, Washington, DC, USA, 2007.

[11] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a

lightweight and flexible operating system for tiny

networked sensors. In proceedings of Emnets-I, 2004.

[12] Zhou, H. and Hou K. LIMOS: a Lightweight Multi-

threading Operating System dedicated to Wireless

Sensor Networks, In Proceedings of the International

Conference on Wireless Communications, Networking

and Mobile Computing, 2007.

[13] Krishna Chintalapudi, Tat Fu, Jeongyeup Paek, Nupur

Kothari, Sumit Rangwala, John Caffrey, Ramesh

Govindan, Erik Johnson, and Sami Masri, “Monitoring

Civil Structures with a Wireless Sensor Network”, IEEE

Journal on Internet Computing, March-April 2006.

