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ABSTRACT 

 

This paper proposes methodologies for better utilization of 

sensor nodes for large scale applications that requires good 

time sensitivity, memory utilization and adaptability. In real-

time applications such as motion sensing, the operating 

system of sensor nodes needs to be reprogrammable to 

accommodate sudden variations in the environment. In this 

project, we have decoupled application parameters for 

Wireless Sensor Networks (WSN) and have developed a 

library for the LiteOS (a fairly recent WSN operating 

system) kernel to provide an interface to the user to make 

applications reactive to the changing environment. We have 

also implemented a stack sharing mechanism in LiteOS that 

supports Y-Threads, a combination of events and threads. 

Current WSN operating systems support either event-driven 

or thread-based approach which can sometimes be 

inadequate. The implementation of shared-stack and 

decoupling application parameters from the kernel on 

LiteOS shows significant performance improvement over a 

class of applications that might otherwise over-burden the 

low-power sensor nodes.  

Index Terms— Wireless Sensor Network, Decoupling, 

Multithreading. 

 

1. INTRODUCTION 

 

Typically, the commonly available sensor-nodes are 

battery operated and have very limited memory, often only a 

few kilobytes. While using sensor nodes for such large-scale 

applications where multiple application threads are involved, 

the limited memory available within the nodes will be easily 

overwhelmed. Further, the applications are inherently 

concurrent, thereby affecting the reliability (predictability) 

of the system. Thus the operating system must ideally be 

optimized to support concurrency, save memory and 

conserve energy.  

There are numerous approaches to reduce energy 

requirements in a wireless sensor network environment. 

Wang et. al [1] analyze common energy conservation 

mechanisms at the operating system for wireless-sensor 

network for large-scale deployments with harsh 

environmental conditions. The ideal way to reduce energy 

requirements is to program the application to activate the 

sensor less frequently. In case of some abnormal behavior, it 

is important to make the sensor operate at a higher frequency 

so that we do not miss this event. Current research does not 

suggest any method of decoupling the task parameters from 

the application and the only way out would be to redeploy 

the application with the new parameters. This would mean 

that a task at the sensor network’s base station (sink) has to 

continuously monitor the sensed data and react in case there 

is an event of elevated interest. We have tried to come up 

with a solution to this problem. We provide an interface to 

application programmers for changing application 

parameters seamlessly without having to redeploy. This 

covers our first goal for this project.  

The other goal of our project is to optimize memory 

usage in multithreaded operating systems for the highly 

resource constrained sensor motes. To support concurrency, 

WSN operating systems implement either a multithreading 

model or an event driven model or a restricted combination 

of both. LiteOS [2], a fairly recent WSN operating system, 

provides UNIX like abstraction and supports multithreading 

but does not use any kind of stack optimization techniques. 

In LiteOS, a private stack is allocated for each thread 

assuming the worst case execution behavior of that thread. 

But not all threads use the amount allocated and even if they 

use, they might not use it at the same time. In this project we 

have implemented a shared stack mechanism for optimizing 

stack usage in LiteOS. In particular, we have implemented 

Y-threads [3] that support separate small stacks for the 

blocking portions of each thread and a common shared stack 

for the non-blocking computations. 

 

2. APPLICATION DECOUPLING 

 

We envision that LiteOS should be flexible to allow the 

application to set task parameters during execution time 

without the need to reload the application with respect to the 

environmental change. By permitting the application to 

modify the kernel, the sensor nodes can be programmed to 

switch to a different operating mode. This is accomplished 

by providing a system call interface to the LiteOS kernel to 

accommodate application demands.   

Further, the detection of an event of elevated interest can be 

sensed by the application by comparing the data with the 

threshold set in the application itself. When the criterion is 



met, the application will make a system call to the operating 

system asking it to change one or more of its task attributes. 

The operating system will address this call by changing the 

task attributes. For example, on the event of a system call, 

the operating system may change the priority of a task. This 

way, the communication overhead of the network is reduced 

as the application need not be re-ported and it becomes 

smart enough to sense and redefine itself.  

 

2.1. Motivation for application decoupling on LiteOS 

 

Depending upon the characteristics of the application, the 

following performance gains are obtained when we 

implement application decoupling on LiteOS. 

The latency between the event of sensing and 

communicating the data to the sink, the sink re-deploying the 

application and the sensor to start sensing with the new 

attributes is very high. In order to reduce the latency 

significantly, the sensing event is triggered frequently when 

there is an event of high interest, and not when the 

environment is normal and static. 

This dynamic approach is implemented by decoupling 

the application and its parameters. The current WSN 

operating systems do not provide enough decoupling 

between the application and its parameters. Therefore, the 

users do not have enough control over the application. Using 

a set of special interfaces at the kernel level of the operating 

system, the user is provided the feature to write a simple 

extension to the application which can modify its behavior 

on the occurrence of certain special events. 

The original scheme is quite energy inefficient because 

of repeated triggering of the sensor units even when there is 

no variation in the data that is collected. Apart from that, 

transmission of sensed data to the base station draws up a lot 

of energy from the resource constrained nodes. Here, the 

application is made smart, aiming to reduce energy 

consumption by not sensing frequently when the 

environment is stable.  

 

2.2. Implementation of parameter decoupling 

 

In order to implement our parameter decoupling and 

intelligent sensing ideas, we explored the code base of 

LiteOS and implementation of the LiteOS operating system 

on micaz motes. Also, in order to compare it with other 

advanced sensor network operating system, we compared 

the implementation of LiteOS with Nano-Rk [4] and TinyOS 

[5]. Even though these operating systems have similar goals, 

both these operating systems are quite different from 

LiteOS’s implementation in terms of thread handling and 

scheduling.  Hence we consider them to be good comparison 

platforms for our project.  

In LiteOS, the main aim seems to be focused on 

programmability and usability from the perspective of the 

developers and users of the system. To this end, the 

developers of LiteOS have added a lot of features to allow 

programmers to program the motes and visualize how their 

application is performing. They have added UI aids for 

deploying and monitoring applications. The debugging 

support provided is also very nice. One of their aims seems 

to make their operating system compatible even for the 

smallest motes available. To this end, they have tried to keep 

the code footprint as minimal as possible.  An application 

running on LiteOS can simply start a thread and call one of 

the sensing functions implemented in the LiteOS library and 

then start transmitting the same to the base station. The 

entire operation is executed in a while(1) loop with hard-

coded intervals for which the thread is expected to sleep. 

The code snippet below would explain the same. 

while (1) { 

 reading = get_light();  

  radioSend(1, 0xffff, 2, &reading); 

 sleepThread(125); 

 } 

As we can visualize, a fixed sleep interval is placed after 

every sensing activity. One of the aims of our exercise is to 

decouple this parameter from the application. Also, the 

LiteOS scheduler is very simple and does not ensure any 

timing guarantees on the task at hand. For example, the 

priority of the task is set by the scheduler and not by the 

application. We would like to abstract this functionality so 

that tasks can run with elevated priority as and when needed. 

To achieve this aim, we would like to extend or add a new 

library class to LiteOS which would have the interface to 

allow applications to make system calls and change 

parameters which are otherwise set by default in the kernel. 

(We are at present developing this library and designing an 

application to demonstrate.) 

In comparison to LiteOS, Nano-Rk has a much larger 

code footprint; applications also need to set several 

scheduling parameters which makes them highly decoupled 

but complex at the same time. The scheduler is also much 

advanced compared to LiteOS and schedules applications 

using rate monotonic scheduling which is priority based. The 

scheduler is responsible for maintaining timing guarantees as 

set through the application. The snippet below shows a 

typical Nano-Rk task instance. 

void nrk_create_taskset() { 

 nrk_task_set_entry_function( &TaskOne, Task1); 

 nrk_task_set_stk(&TaskOne,Stack1,  

   NRK_APP_STACKSIZE); 

 TaskOne.prio = 1; 

 TaskOne.FirstActivation = TRUE; 

 TaskOne.Type = BASIC_TASK; 

 TaskOne.SchType = PREEMPTIVE; 

 TaskOne.period.secs = 0; 

 TaskOne.period.nano_secs = 250; 

 TaskOne.cpu_reserve.secs = 1; 

 TaskOne.cpu_reserve.nano_secs=50* 



          NANOS_PER_MS; 

 TaskOne.offset.secs = 0; 

 TaskOne.offset.nano_secs= 0; 

 nrk_activate_task (&TaskOne); 

} 

So, as we can see, parameters are fixed and hardcoded in the 

application again. Once this task is submitted to the kernel, it 

is scheduled to meet all the timing requirements that are set. 

So, the programmer has to redeploy the task in order to 

change any of these attributes. Similar to LiteOS, a new 

library that allows applications to make system calls to the 

kernel and change some of the attributes that are set here 

would be beneficial from the programmer’s point of view. 

The task would now be able to sense an interesting event 

and direct the kernel to change some of its parameters such 

as the cpu_reserve or the period. 

 

2.2.1. Decoupling Library 

We have implemented a library in LiteOS called 

appControl. This library provides an interface to application 

developers to make system calls to the kernel and elevate the 

priority of the task at hand.  The application developer can 

now choose from a number of functions. The current 

supported tasks are listed below: 

Increase the priority of the task to make it the task 

running at highest priority. To implement this, the kernel 

basically iterates over all the threads running and assigns a 

priority which is a unit value greater than the highest priority 

task running currently on the kernel. [Function: 

ElevatePrioSetMaxPriority] 

while (1) 

  {   

   reading = get_light();  

   yellowToggle(); 

   if (reading < 10 && state == 0) 

   { 

    ElevatePrioSetMaxPriority(); 

    sleepThread(500); 

    state = 1; 

   }else{ 

    if(state == 1){ 

    normalizePriority(oldPrio); 

    } 

  state = 0; 

   sleepThread(1000); 

   } 

  } 

The above code shows two system calls: 

ElevatePrioSetMaxPriority and normalizePriority which are 

a part of our library. The implementation of these functions 

is shown below: 

void ElevatePrio_setMaxPriority(){ 

 int credits = 0; 

 int i; 

 for (i = 0; i < LITE_MAX_THREADS; i++) 

    { 

        if (thread_table[i].state == STATE_ACTIVE) 

        { 

            if (credits < thread_table[i].priority) 

            { 

                credits = thread_table[i].priority; 

            } 

        } 

    }  

 credits = credits + 1; 

 if(current_thread->priority >= credits || 

current_thread->remaincredits >= credits){ 

  // do nothing 

 }else { 

 current_thread->priority = credits; 

 current_thread->remaincredits = credits; 

 } 

} 

 

Allow the programmer to increase the priority by a given 

amount.  The CPU time is shared between tasks in 

proportion to the priorities. For example if there are three 

tasks with priorities P1, P2 and P3, the CPU time will be 

shared as P1:P2:P3. Now if the programmer wants to 

increase the priority P1 by an amount x, the tasks will share 

CPU time in the ratio P1+ x : P2 : P3. Hence, the task with 

Priority P1 will now enjoy a larger ratio of the CPU time 

compared to the other threads. [Function: 

elevatePrioSetUserPriority] 

 

Allow the programmer to boost the task for one single 

time. This will make the task which requires priority be 

boosted for a very short time. Internally, a system call 

increases the remainingcredits variable by an amount 

requested by the application. So the task will enjoy higher 

priority till its credits are consumed. The application 

developer has the freedom to increase the remaining credits 

by an amount as desired by him once or he can keep on 

increasing as long as the interesting event is taking place. 

(Multiple calls can be prevented by keeping a flag which 

checks if a system call has already been made. This is shown 

in the code segment below). [Function: 

elevatePrioSetRemCredits] 

 

if (reading < 10 && state == 0) { 

    elevatePrioForTimeInterval(sleepTime); 

    sleepThread(5000); 

    state = 1; 

} 

else{ 

  state = 0; 

    sleepThread(1000); 

 } 



Allow the programmers to increase the frequency which 

allows a task to run with lower sleep time. This can be easily 

achieved in the application itself by providing a small 

condition that changes the sleep time of the thread. No 

separate modifications in the kernel and library are required 

for this. 

Allow a thread the privilege to set all other threads to 

sleep while it keeps running. This is achieved through a 

system call where the current thread makes a system call and 

asks the kernel to put all the other threads to sleep for a 

required interval of time and leave itself with the entire CPU 

time. This function should only be used in critical cases 

where you want only your thread to run on the CPU. 

[Function: elevatePrioForTimeInterval] 

 

Like priority elevation, mechanisms should be there to 

decrease the priority to normal once the critical period is 

past. To do this, another system call is invoked which 

diminishes the increased priority of the task to its old value. 

[Function: normalizePriority] 

Continuing effort: Looking more on the lines of flexibility, 

some scheduling algorithms can work better than others and 

provisions to change the scheduling algorithm with a system 

call may prove to be a reasonable and efficient scheme for 

several applications. 

2.3. Problems 

 

The priority elevation through system calls and intelligent 

applications may prove to be a great help for application 

developers and maintainers as a lot of energy is saved as 

tasks need not be re-deployed on the motes. This saves a lot 

of energy. But while experimenting we came across various 

bugs which if encountered could defeat the purpose of the 

decoupling library. Some of the bugs are listed below. 

 

2.4.1. Concurrent requests 

One of the uncertainties of the system is what would happen 

if two threads want extra CPU resources at the same time? 

This would potentially lead to a race condition and if the 

first thread puts the other threads to sleep, they may miss an 

interesting event of their own. The only solution to this is 

that application developers should use elevate priority 

methods in case they have potential threads that may also 

call the same function at the same time. They should put 

other threads to sleep only in case of some critical 

applications. 

 

2.4.2. Stack overflow 

Another problem is the problem with stack overflow. A user 

thread may be initially allotted a small amount of stack but 

once the thread starts making system calls, the stack 

requirement increases as all these called functions execute 

on the thread stack. Hence threads that have the potential to 

make a lot of system calls should be allotted higher amounts 

of stack. Another method to tackle this problem is the use of 

run to completion routines discussed in the next section. 

Also, instead of making continuous system calls flags should 

be used. 

 

2.4. Extensions and future work 

 

Similar to LiteOS, the ideas of decoupling and priority 

elevation can be applied to other operating systems. In this 

project we could evaluate only one other operating system 

which is Nano-RK. Nano-RK is similar in terms of LiteOS 

in terms that it offers fixed priority scheduling but unlike 

LiteOS, allows the user to set a lot of parameters at the 

application level. These parameters include the task’s period 

(i.e. frequency with which the task should operate), 

cpu_reserve (i.e. the amount of CPU time that need to be 

reserved for the task), as well as the scheduling type which is 

preemptive or non-preemptive. Once a task is deployed, 

these parameters remain associated with the task till the task 

is killed and redeployed. Similar to the library we have built 

for LiteOS, a library can be built for Nano-RK that can make 

system calls to change these parameters for the task. 

When a task in Nano-Rk is executing, it can retrieve its own 

task Id (The function nrk_get_pid() performs this lookup 

where it retrieves the id through nrk_cur_task_TCB-

>task_ID). Once the task id is retrieved, the remaining 

parameters can be easily set by changing attributes of the 

task object in the nrk_task_TCB datastructure. [eg. 

nrk_task_TCB[task_ID].cpu_remaining= 

new_cpu_remaining]. 

Since, we were able to extend our idea to one other 

popular operating system, we expect that we can extend it to 

other operating systems as well. 

Another interesting extension is to provide a two way 

communication in the system. At the time applications make 

system calls asking for priority elevation, we cannot 

guarantee that all requests would be honored. The kernel 

will decide at the runtime whether the application can or 

cannot increase the priority of its thread. As a further 

enhancement, the node in concern here could alert 

neighboring nodes to start a similar activity or change their 

attributes in a similar fashion. Though this could be a very 

interesting act, there could be serious security issues 

involved as hackers could hack and application and turn the 

whole network awry. 

 

2.5. Evaluation 

 



Evaluating the decoupling scheme was one of the tough jobs 

in this project. The library indeed helps to fulfill the 

application redeploying problem and makes transitions much 

easier and smoother but on the other hand, the application 

developer now has to foresee several scenarios and make the 

application respondent to each of them. The complexity of 

the applications is definitely increased. The code footprint is 

also larger but by a very narrow amount (34.4% has become 

35.1% after the addition of system call priority elevation 

support). The memory footprint is an important index since 

LiteOS boasts of its portability to the smallest nodes because 

of its small memory requirement. 

 

Figure 1: Memory footprint as a percentage of total flash 

memory after implementing application parameter 

decoupling and stack optimizations using Y-Threads. 

 

We also measured the time required for porting the kernel 

on the motes with and without the changes, and they are the 

same. Hence, we can safely say that the additional code does 

not cause any significant overhead. One of the major 

improvements that application decoupling offers is that it 

removes the latency for re-deploying an application. The 

only cost which the system pays is a single system call. 

 

3. Y-THREADS 

 

Nitta et. al. [3] proposes Y-Threads that separates the 

control and computational portion of each thread and uses a 

separate stack for each portion. Y-Threads are preemptive 

multithreads that run in a small private stack and all the non-

blocking routines are executed in a separate common stack. 

Thus Y-Threads support preemptive multithreading and at 

the same time make efficient use of the limited RAM. 

The observation behind using Y-Threads is that the 

control portions of applications require a small amount of 

stack which can be pre-allocated to each thread. To execute 

the computational portions of the threads the kernel provides 

a separate shared stack. Thus Y-Threads are just like the 

normal threads with the exception that the majority of work 

in Y-Threads is done by Run to Completion Routines (RCR) 

that are executed in the shared stack.  Consider the following 

example: 

/*Normal Implementation*/ 

 

while(1) {                         

 recv_radio_msg(&msg); 

 leds_greenToggle(); 

    processMsg(&msg); 

} 

 

/*RCR Implementation*/ 

 

while(1) {                    

 recv_radio_msg(&msg); 

 leds_greenToggle(); 

    rcr_call(processMsg, &msg); 

} 

Here a thread accepts a message and then calls a routine 

processMsg() to process the message. This processMsg() 

routine involves some computation and requires memory. In 

the Y-Thread based stack sharing mechanism this routine 

will be executed as a RCR routine and will be executed in a 

shared stack (Figure 2). The shared stack is allocated by the 

kernel and is used to execute all such routines from different 

threads.  

 

Figure 2: Step1: Thread 1 is executing in its own stack, Step 

2: Thread 1 makes an rcr_call, Step 3: Execution is started 

in the shared stack, Step 4: rcr_call() returns,  Step 5: 

Execution is resumed in thread’s own stack. The arrow 

indicates the execution of a thread in the stack. 

 

3.1. Implementation 

 

We have implemented Y-Threads in LiteOS. We have 

modified the operating system kernel and the thread library 

and verified our system by running it in MicaZ wireless 

sensor motes with AVR processors. The MicaZ motes have 

only 4096 bytes of RAM among which the basic LiteOS 

kernel (before our modifications) occupies 2562 bytes [6]. 

The kernel stack grows from the highest RAM address and it 

is recommended to reserve addresses higher than 3650 for 

the kernel stack. Thus applications actually have 

approximately 1K RAM available for all purposes. Since the 

amount of RAM is very limited it is really necessary to 



optimize RAM usage in these motes and this is exactly what 

Y-Threads do.  

To support Y-Threads the operating system needs to have 

support for two basic functions; one for creating the Y-

Threads and one for executing the run to completion 

routines; the functions are specified below: 

/*Interface to create threads with their own private stacks*/ 

 

typedef void (*y_thread_task) (void); 

void createThread(y_thread_task task, uint16_t *ram_start, 

uint16_t *stack_pointer, uint16_t priority, char 

*thread_name) 

 

/*Interface to execute run to completion routines in the 

shared stack*/ 

 

typedef void (*rcrFunction) (void *rcrData); 

void rcrCall (rcrFunction func, void *rcrData) 

Since Y-Threads are created just like normal threads, the 

createThread() method in LiteOS was completely suitable 

for creating Y-Threads as well. To support the RCRs we 

have modified the threads library in LiteOS and added the 

new function rcrCall(). rcrCall() takes as arguments the 

pointer of the function to be executed in the shared stack and 

a pointer to the data to be passed to that function and passes 

these parameters to the kernel through registers. The system 

call corresponding to this library function is implemented in 

the kernel; the system call retrieves the parameters from the 

registers, switches the stack pointer (__SP__) register so that 

__SP__ register points to the shared stack and then executes 

the function pointed to by the retrieved function pointer. 

Almost all of the codes in both the library function and the 

system call are written in inline assembly for the AVR 

processor. The pseudocode of the system call is as follows: 

/*System call to execute a function in the shared stack*/ 

 

Function  rcr_call() 

Begin 

 Start atomic execution 

 Retrieve function pointer and data from registers 

 SWAP_STACK_POINTER(backupStackPtr, 

sharedStackPtr) 
 Push rcr data onto the shared stack 

 Execute ICALL instruction 

 Pop rcr data from the shared stack 

 SWAP_STACK_POINTER(sharedStackPtr, 

backupStackPtr) 
 End atomic execution 

End 

 

SWAP_STACK_POINTER is a macro written in inline 

assembly that saves the value of the current stack pointer 

register (__SP__) in the first parameter given and loads 

value of the second parameter into the __SP__ register. Thus 

after the first call to the SWAP_STACK_POINTER() macro 

the __SP__ register is backed up in the backupStackPtr and 

a pointer to the shared stack is loaded into the __SP__ 

register. The actual thread stack pointer is restored when the 

RCR returns. The RCRs are assumed to be non-blocking and 

cannot be preempted. Thus the whole execution in the 

shared stack is done atomically. 

 

3.2. Observations 

 

The Y-Thread implementation requires the availability of 

a shared stack to execute the RCRs. The shared stack is 

actually a chunk of memory reserved by the kernel. There 

are two possibilities to implement the shared stack: 

(1) Maintain a shared stack always, and 

(2) Create the shared stack whenever necessary and 

release the memory when the shared stack is no longer 

needed. 

Nitta et. al. proposed the first approach in [3]. The 

problem with this approach is that not all applications will 

require the shared stack; but the kernel will maintain a 

shared stack always even when the applications do not need 

it. Wireless sensor motes usually have very small amounts of 

RAM and maintaining a shared stack when it is not needed 

results in overkill of limited RAM.  

To account for this we have added two more functions to the 

thread library, one for requesting the initial setup of the 

shared stack and one for releasing the shared stack when it is 

no longer needed. In particular we have added the following 

library functions: 

/*Interface for initializing the shared stack*/ 

 

initSharedStack(uint16_t size) 

 

/*Interface for releasing the shared stack*/ 

 

releaseSharedStack() 

 

When the kernel receives the first call from any thread 

requesting the initialization of a shared stack, it allocates the 

specified amount of memory and maintains it as the shared 

stack. The kernel maintains a counter that counts how many 

threads are using the shared stack and the counter is 

increased during each call to initSharedStack() and is 

decreased during each call to releaseSharedStack(). When 

all the threads release the shared stack the kernel frees up the 

memory that was allocated for the shared stack. 

The advantage of this approach is that it is robust and is 

suited to both Y-Threads and normal threads. If no thread 

needs a shared stack, no memory will be allocated, and there 

will be almost no overhead (other than the increased OS 

code footprint) for supporting Y-Threads. The disadvantage 

of this approach lies in the overhead of two system calls per 

Y-Thread; one for requesting the shared stack and the other 

for releasing it. Another problem with this approach is that if 



the shared stack initialization request arrives at some point 

when the memory is already fragmented, the kernel may fail 

to allocate the chunk required for the stack.  

One work around to avoid the extra system calls would be to 

incorporate this information in the thread creation and 

destruction system calls. For example, the createThread() 

function can be easily extended to accept one more 

parameter specifying whether it needs a shared stack or not. 

This functionality is not implemented yet. 

 

3.3. Limitations of Y-Threads 

 

The most important limitation of Y-Threads is that it is 

not suitable for all types of applications. Y-Threads can only 

reduce RAM usage when the threads execute some compute 

intensive tasks that can be moved to the shared stack. Most 

basic WSN applications just take readings from some 

sensors such as temperature or light sensors and send the 

readings back to the base station where the readings are 

actually processed. Y-Threads can add no benefit to these 

applications. However, the wireless sensor motes are 

becoming more powerful these days and many compute 

intensive applications are being developed for the motes 

which can be benefitted from Y-Threads. An important task 

for all sensor networks is time synchronization [7] which 

involves floating point computation and memory overhead. 

This task can easily be ported to the shared stack. Sensor 

network applications also perform Fourier Transformation 

(in motion/event detection), Cyclic Redundancy Checks to 

ensure reliability in health/military services and 

compression/decompression of images to reduce energy 

consumption in data transfer. All of these applications will 

be benefitted from the Y-Thread based shared stack 

approach. 

Another limitation of Y-Threads lies in the overhead of extra 

system calls. Since no thread can be preempted while being 

executed in the shared stack; the tasks that are executed in 

the shared stack should be small. Each execution request of 

these tasks incurs a system call overhead which results in 

more CPU cycles and additional energy consumption. 

 

3.4. Evaluation 

 

To verify the correctness of our implementation we have 

used the benchmarks that come with the LiteOS distribution. 

We modified the applications by wrapping up the regular 

function calls with rcr_calls and verified that the 

applications behave as expected. 

However, these applications actually do not involve any 

processing that requires memory and hence are not suitable 

to evaluate the benefit of shared stack. Unfortunately, 

memory intensive WSN benchmarks (references can be 

found in [8]) are not available. So, we were not able to run 

any experiment regarding this. To provide an estimation of 

how much memory can be saved from shared shack we have 

analyzed the Fourier Transform (FT) application from the 

MiBench benchmark suite. We have found that the 

fourierTransform() function uses more than 90 bytes of stack 

only for the local variables and the nested function calls. The 

basic stack requirement of any thread in the MicaZ motes is 

around 50 bytes (including stack space for saving 32 

registers on a context switch). Thus we can allocate two 

more threads by executing the FT function in the shared 

stack. Obviously, the shared stack needs to allocate the 

memory, but that memory will be allocated only once and 

will be used by multiple such threads. 

 

3.5. Future work 

 

In the currently implemented version of Y-Threads only 

run to completion routines are executed in the shared stack. 

An extension of this project is to implement the RCRs as 

non blocking routines (NBR).  When implemented as NBRs 

Y-Threads remain preemptable even when running in the 

shared stack; the only restriction is that the routines cannot 

block while running in the shared stack. To implement 

NBRs the current top of the NBR stack must be stored 

during a context switch.  

Another extension is to implement a completely shared stack 

for all threads. In a completely shared stack no thread will 

be allocated with a private stack; instead all threads will run 

on the same shared stack implemented by the kernel. A 

thread’s stack will be eventually fragmented due to 

preemption and the kernel will have the responsibility to link 

the chunks that are used by that thread. For each thread, a 

doubly linked list can be used to identify its chunks in the 

shared stack. This extension requires support from the 

hardware; it can also be done using compiler support by 

wrapping up the Push and Pop operations. But in that case a 

table lookup and an if-else logic need to be incorporated 

with each push and pop operation which will incur a lot of 

CPU overhead. 

 

4. CONCLUSION 

 

In this project we have provided library and kernel support 

to decouple application parameters in wireless sensor 

network applications. Decoupling enables the application 

developers to make their applications adaptable to the 

changing environment. It saves a lot of energy and time; 

since applications can now change their attributes on the fly 

and need not be re-deployed. We have successfully added 

the decoupling support in LiteOS, a UNIX based operating 

system for WSN. 

We have also implemented a shared stack based memory 

optimization technique (Y-Thread) in LiteOS. The Y-Thread 

approach allocates a small amount of dedicated stack to each 

thread and enables the execution of any run to completion 

routine in a kernel provided shared stack. By re-using the 



shared stack, the Y-Threads based approach makes efficient 

utilization of the limited RAM in wireless sensor nodes. 
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