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Abstract 
 

General-purpose computing on graphics processing 

units (GPGPU) has recently gained considerable 

attention in various domains such as bioinformatics, 

databases and distributed computing. GPGPU is based 

on using the GPU as a co-processor accelerator to 

offload computationally-intensive tasks from the CPU. 

This study starts from the observation that a number of 

GPU features (such as overlapping communication 

and computation, short lived buffer reuse, and 

harnessing multi-GPU systems) can be abstracted and 

reused across different GPGPU applications. 

This paper describes CrystalGPU, a modular 

framework that transparently enables applications to 

exploit a number of GPU optimizations. Our 

evaluation shows that CrystalGPU enables up to 16x 

speedup gains on synthetic benchmarks, while 

introducing negligible latency overhead.  

 

1 Introduction 
 

Today’s GPUs offer drastic reduction in 

computational costs compared with existing traditional 

CPUs. These savings encourage using GPUs as 

hardware accelerators to support computationally-

intensive applications like, for example, scientific 

applications [1] or distributed computing middleware 

[2].  In particular, GPUs are well suited to support 

stream processing applications, that is applications that 

process a continuous stream of data units, where the 

processing of a single data unit may exhibit intrinsic 

parallelism that can be exploited by offloading the 

computation to the GPU. Examples of such 

applications include video encoding/decoding [3] and 

deep packet inspection [4, 7]. 

Recent GPU models include a number of new 

capabilities that not only enable even lower 

computational costs, but also make GPUs an interesting 

computational platform for fine-granularity, 

latency-sensitive applications. For example, new GPU 

models have the ability to overlap computation and the 

communication with the host; thus offering the 

opportunity to hide communication overheads, a 

significant source of overheads for stream processing 

applications. Additionally, the newly introduced 

dual-GPU devices (e.g., NVIDIA’s GeForce 9800 

GX2) offer an additional level of parallelism by placing 

two GPUs on the same graphics card, and thus offer an 

opportunity to harness additional computing capacity. 

However, the efficient utilization of these 

capabilities is a challenging task that requires careful 

management of GPU resources by the application 

developer that leads to extra development effort and 

additional application complexity [5]. This is mainly 

due to the peculiar characteristics of current GPU 

architectures and development environments. For 

example, to effectively overlap computation and 

communication, the application needs to 

asynchronously launch a number of independent 

computation and data transfer tasks, which require the 

application to maintain additional state information to 

keep track of these asynchronous operations. Also, to 

employ dual-GPU devices, the application has to 

manually detect the available devices, and spread the 

work among them. 

This project proposes CrystalGPU, an execution 

framework that aims to simplify the task of GPU 

application developers by providing a higher level of 

abstraction, while, concurrently, maximizing GPU 

utilization. In particular, the framework runs entirely on 

the host machine and provides a layer between the 

application and the GPU, managing the execution of 

GPU operations (e.g., transferring data from/to the 

GPU and starting computations on the GPU). To this 

end, the framework seeks to transparently enable three 

optimizations that can speedup GPU applications: 

� First, reusing GPU memory buffers to amortize the 

cost of allocation and deallocation of short lived 

buffers. Al-Kiswany et al. [2] demonstrate that the 

percentage of total execution time spent on memory 

buffer allocations can be as high as 80% of the 

execution time. 



� Second, new GPU architectures and programming 

environments allow applications to overlap the 

communication and computation phases. Al-

Kiswany et al. [2] show that the communication 

overhead can be as high as 40% for data-intensive 

applications. Other studies have also demonstrated 

the significance of communication overhead when 

using the GPU [6-8]. In these cases, overlapping 

computation and communication creates the 

opportunity to hide the communication cost, 

maximizing the utilization of the GPU 

computational power as a result. 

� Third, multi-GPU systems have become common: 

Dual-GPU boards are commercially available and 

research groups started to prototype GPU clusters 

that assemble even more GPUs on the same 

workstation creating, as a result, an opportunity, to 

aggregate additional low-cost computing capacity. 

The contributions of this work are summarized as 

follows: 

� First, we present a high-level abstraction that aims to 

transparently maximize the utilization of a number 

of GPU features, while simplifying application 

developers’ task. We contend that, in addition to the 

processor/co-processor scenario we analyze in 

detail, the abstraction we propose can be easily 

applied in other situations that involve massively 

multicore hardware deployments, for example 

asymmetric multicores like IBM’s Cell Broadband 

Engine Architecture. 

� Second, our prototype of this abstraction brings 

valuable performance gains in a realistic usage 

scenario where the communication overhead is 

significant. Our prototype demonstrates an up to 16x 

performance improvements when integrated with 

StoreGPU: a GPU based library that accelerates a 

number of hashing based primitives commonly used 

in distributed storage systems. 

� Third, we make CrystalGPU available to the 

community
1
. This framework can be used by a wide 

range of applications including stream-processing 

applications and embarrassingly-parallel data 

processing. 

The rest of this paper is organized as follows. 

Section 2 presents related background to GPU 

programming and the type of applications we target. 

Section 3 discusses CrystalGPU’s API. Section 4 

presents the framework’s design. Section 5 presents our 

                                                           
1
 CrystalGPU is an open source project, the code can 

be found at http://netsyslab.ece.ubc.ca 

experimental results. Section 6 discusses related work. 

We conclude in Section 7. 

 

2 Background 
In this section, we present background related to 

GPU programming model (Section 2.1), and describe 

the type of applications that CrystalGPU targets 

(Section 2.2). 

 

2.1 GPU Programming 
 

Recently, GPUs underwent a radical evolution from 

a fixed-function, special-purpose pipeline dedicated to 

graphics applications to a fully programmable SIMD 

processor [9]. These changes transformed the GPUs 

into powerful engines that support offloading 

computations beyond graphics operations. 

In general, offloading computation to the GPU is a 

three-stage process. First, transferring input data to the 

GPU’s internal memory. GPUs do not have direct 

access to the host’s main memory; rather they can only 

access there onboard memory. Consequently, the 

application has to explicitly allocate buffers on the 

GPU local memory, and transfer the data to them 

through an I/O interface, such as the host’s PCI-

Express bus. Further, data transfer operations are 

performed using direct memory access (DMA) engine, 

which requires the application to have the data placed 

in the host’s pinned (i.e., non-pageable) memory. 

Therefore, it is important for the application to use 

pinned buffers for the data from the beginning, 

otherwise the device driver will perform an additional 

copy to an internal pinned buffer before transferring the 

data to the GPU.  

Second, processing. Once the data is transferred to 

the GPU’s internal memory, the application starts the 

computation by invoking the corresponding ‘kernel’, a 

function that when called is executed on the GPU. A 

number of optimizations can be applied at the kernel 

level (e.g., to enable efficient utilization of the GPU’s 

internal memory architecture, minimizing thread 

divergence, etc.), however, these application-level 

optimizations are beyond the scope of our work as we 

focus on higher-level optimizations agnostic to the 

details of the kernel implementation.  

Third, transferring the results from the GPU to the 

host’s main memory. After the kernel finishes 

execution, the application explicitly transfers the results 

through the I/O channel back to the host’s main 

memory. 

This three-stage process, collectively named herein 

a ‘job’, is repeated by a stream processing application 

for each new data block to be processed. Note that due 



to limitations in current GPGPU programming 

environments, a job can only be executed on a single 

GPU even in dual-GPU cards. Therefore, using multi-

GPU architectures requires the application to explicitly 

divide the data into two data sets, and perform two 

transfers and kernel invocations, one for each GPU. 

 

2.2 CrystalGPU Applications 
 

In this section, we discuss the type of applications 

that CrystalGPU targets. We classify the candidate 

applications as stream- and batch-processing 

applications depending on their real-time constraints. 

A. Stream processing applications. Streaming 

applications sequentially process a steady stream of 

small sized data units. Such applications pose real-time 

constraints that entail low-latency overheads. In this 

category, parallelism is based on two opportunities. 

First, the processing of each data unit represents a 

single job that may have some intrinsic parallelism. 

Second, accumulating a number of data units and 

processing them in parallel as a single job offers the 

tradeoff of increasing parallelism, and consequently the 

processing throughput, while also increasing the 

processing latency for individual jobs.  

One example in this category is video 

encoding/decoding. Recently, high-definition television 

(HDTV) broadcast has become popular. Such 

technology enables higher resolution than traditional 

broadcast formats, however it requires efficient video 

compression/decompression mechanisms to reduce 

transmission costs over the network. Van der Laan et 

al., [3] for example, present a GPU-accelerated video 

codec library that implements a number of common 

video compression/decompression techniques such as 

block motion compensation and frame arithmetic. 

Another example is using the GPU to accelerate 

distributed systems middleware-level techniques. For 

instance, a number of distributed storage systems (e.g., 

Venti [10], OceanStore [11]) employ a technique 

known as content-addressable storage: files are divided 

in chunks, which, in turn, are identified based on their 

content by using the hash of the chunk as the its 

identifier. Content-addressable storage simplifies the 

separation of file and chunk metadata, and facilitates 

the identification and elimination of duplicate chunks, 

hence minimizing the amount of data that storage 

systems need to manage and transfer. However, the 

overhead of computing chunk hashes may limit 

performance. Al-Kiswany et al. [2] presents StoreGPU, 

a library that accelerates a number of hashing based 

primitives that support content addressable storage. 

Deep packet inspection (DPI) is yet another 

example of streaming applications. A practical DPI 

solution must support high-speed packet inspection and 

impose low latency overheads. For example, the GPU 

can be used to accelerate a number of computationally 

expensive DPI operations such as header classification 

and signature matching algorithms [4, 7]. 

In the above presented use cases, the GPU is used to 

sequentially carry computations on a stream of data 

blocks (frames in the first, data chunks in the second, 

and packets in the third use case). CrystalGPU reduce 

the latency of such stream-processing applications by 

hiding the time spent on buffer allocations and data 

transfers to/from the GPU. Further, it enables increased 

throughput by efficiently harnessing multi-GPU 

architectures. 

B. Batch processing applications. We include in this 

category applications for which a large number of 

independent jobs are available for processing at any 

point in time and that individual jobs do not have 

latency constraints. In this case, parallelism can be 

easily extracted by bundling individual jobs into 

batches. Folding@Home [12] is an example of this 

category: it aims to analyze a large number of chunks 

of biological data, chunks are independent and are all 

available at the beginning of the analysis.  

For this category, CrystalGPU can enhance the 

utilization of the GPU by overlapping the computation 

for one batch with the data transfer for the next one; 

further, it enables transparent utilization of multi-GPU 

systems where multiple batches can be processed in 

parallel. 

 
Figure 1: CrystalGPU is a layer between the 

application and the GPU runtime. 

3 CrystalGPU API 
 

CrystalGPU framework is a management layer 

between the application and the GPU runtime (Figure 

1). The framework’s API aims for generality to 

facilitate support for wide range of applications. We 

achieve this goal via an interface that is agnostic to the 

upper level application. 

The framework’s API is influenced by the GPU’s 

programming model described in section 2.1. In 



general, job execution on the GPU is enabled by 

providing the application mechanisms to (i) define the 

input data, (ii) define the execution kernel, and (iii) 

claim the results. To facilitate these mechanisms 

CrystalGPU defines the job abstract data type (Figure 

2) which specifies the main parameters needed to 

describe a job. 

 
typedef struct job_s { 

   void *h_input; 

   void *h_output; 

   void *d_input; 

   void *d_output; 

   int input_size; 

   int output_size; 

   ... 

   void(*kernel_func)(struct job_s *); 

   void(*callback_func)(struct job_s *); 

} job_t; 

Figure 2: Job data type (C-Style). 

The h_input member of the job data type specifies 

the host buffer to be transferred to the destination GPU 

buffer d_input; likewise, d_output specifies the GPU 

results buffer to be transferred back to the host 

destination buffer h_output. Additionally, kernel_func 

specifies the application-specific kernel to be executed 

on the GPU, while callback_func specifies the callback 

function to be invoked when the job is done. 

Figure 3 illustrates the framework’s public interface. 

When initializing the framework, the application 

declares the maximum input/output buffer sizes it will 

use. The framework, accordingly, creates a buffer pool 

by pre-allocating a number of host and device buffers. 

The rationale behind the buffer pool is twofold. First, 

experience shows that GPU buffer allocation is 

expensive, especially for small scale computations [2]. 

By pre-allocating GPU buffers once at the beginning, 

the allocation time overhead gets amortized. In section 

5, we show that this optimization provides a significant 

speedup. Second, the GPU driver always needs to use 

buffers in pinned memory for DMA transfers between 

the host and the GPU. As a result, pre-allocating 

buffers directly in pinned memory, and making them 

available for the application in advance, saves the GPU 

driver from an extra memory copy to an internal pinned 

memory buffer, thus reducing data transfer overhead. 

The API enables the application to acquire and 

release pre-allocated buffers (encapsulated within a job 

instance) from the pool (job_get, job_put), submit a job 

to the framework to relay it to the GPU (job_submit), 

and to synchronously query or block on the status of a 

job (job_query, job_synch). Note that the later is in 

addition to the asynchronous notification enabled by 

the callback function described before; hence, allowing 

further flexibility for the application. 

 

Interface Description 

init(max_input_size,                                                  

     max_output_size) 

Initializes the framework, the 

parameters define the maximum 

size of the input/output pre-

allocated buffers. 

finalize() Cleans the framework’s state. 

job_t * job job_get() 
Gets a free job from the free pre-

allocated pool. 

job_put(job_t *job) 
Returns back a job to the free 

pool. 

job_submit(job_t *job) 
Submits a job to be dispatched to 

the GPU. 

job_synch(job_t *job) 
Blocks till the designated job 

finishes execution. 

job_query(job_t *job) 

Returns true if the job has 

finished execution, false 

otherwise. 

Figure 3: CrystalGPU public API. 

4 CrystalGPU Design 
 

Crystal CPU design aims for efficiency to maximize 

the utilization of the GPU. The design makes minimal 

assumptions about the internal GPU architecture, while 

focusing on avoiding spurious data copies and 

concurrency bottlenecks. 

We have implemented a prototype of CrystalGPU 

framework. The prototype is built atop of NVIDIA’s 

CUDA toolkit [13]; however other alternative low-

level GPU development toolkits (e.g., RapidMind [14] 

and OpenCL [15]) can also be used.  

The rest of this section discusses the challenges that 

influenced CrystalGPU internal design (section 4.1) 

and the framework’s internal details (section 4.2). 

 

4.1 Design Challenges 
 

CUDA supports asynchronous data transfers and 

kernel launches, which opens the opportunity to 

overlap data transfers and kernel execution across jobs. 

However, realizing the asynchronous operations’ 

potential entails a number of challenges: 

� Lack of asynchronous notification mechanism. 

Although CUDA supports asynchronous operations, 

it does not provide a notification mechanism to 

asynchronously interrupt the application when a 

GPU operation completes. Consequently, the 

application is required to periodically poll the 

CUDA run time library to query the status of a job. 

� Interleaved jobs execution. CUDA enables 

asynchronous mode for data transfer operation and 

kernel executions. This asynchronous mode can be 

used to overlap the data transfer of one job with the 

kernel execution of another, increasing the system 

overall throughput accordingly. However, to 

effectively achieve this overlap, the application 

needs to explicitly interleave the execution of a 



number of jobs (at least three). Interleaving the 

execution of jobs is done by asynchronously issuing 

input data transfer operations for all available jobs, 

invoking the kernel asynchronously for all jobs, and 

finally issuing the asynchronous result transfer back 

from the GPU for all the jobs. This interleaved job 

execution dramatically complicates application 

design and development.  

� Primitive support for multi-GPU systems. While 

recent GPU cards are fabricated with multiple GPU 

devices deployed on the same card (similarly 

multiple GPU cards can be deployed at one 

workstation), CUDA provides only primitive 

support for such multi-GPU systems. In order to use 

multiple GPUs, the application should decide, for 

each job, which GPU device it will be executed on. 

To this end, the application must track GPU device 

load, and implement a load balancing mechanism to 

achieve maximum hardware utilization. 

� Additional state to maintain. Finally, given the 

asynchronous nature of GPU operations, the 

application needs to keep track of jobs execution 

status throughout the job lifetime.  

The next section describes CrystalGPU design that 

transparently addresses these challenges. 

 

4.2 CrystalGPU Internal Design  
 

CrystalGPU design comprises a single driving 

module named the master.  The master module 

employs a number of host-side master threads, each 

assigned to manage one GPU device.  

The rationale behind this assignment is twofold. 

First, each master thread is responsible for querying its 

device for job completion status, and asynchronously 

notifying the application, using the callback function, 

once the job is done. This allows the client to make 

progress on the CPU in parallel; further, it relieves the 

application from job execution state bookkeeping. 

Second, having a dedicated control thread for each 

GPU facilitates transparent multi-GPU systems 

support. As detailed in the next paragraphs, the 

application submits a job to a shared outstanding 

queue, later the job is transparently handled by one of 

the master threads in such a way that balances the load 

across GPUs. We note that this multithreaded design 

requires a multi-core CPU to enable maximum 

parallelism across the master threads as well as the 

application’s host-side threads. 

The application requests services from the 

framework by submitting jobs and waiting for 

callbacks. The status of a job is maintained by the 

master using three queues. First, the idle queue 

maintains empty job instances (with pre-allocated 

buffers). Second, the outstanding queue contains 

ready-to-run jobs submitted by the application, but not 

dispatched to the GPUs yet. Third, running queue 

contains the jobs that are currently being executed on 

the GPUs. 

 
Figure 4: CrystalGPU execution pipeline. 

A master thread is chosen in a round robin scheme 

to execute the next job in the outstanding queue. The 

execution of a job forms a three stage pipeline (Figure 

4) that corresponds to the stages described in section 2. 

Therefore, having three or more jobs available always 

for execution is necessary to fill the pipeline and 

maximize the utilization of the GPU by overlapping the 

communication of one job with the computation of 

another. Note that the framework does not control the 

time spent on each stage of the pipeline as this is 

related to the characteristics of the application. As a 

result, having a balanced pipeline (i.e., one with equal 

communication and computation overheads) is 

necessary to efficiently exploit the opportunity of 

overlapping communication and computation. 

 

5 Experimental Evaluation 
 

We evaluate our prototype using a NVIDIA 

GeForce 9800GX2 GPU (released March 2008). The 

card is a dual GPU composed of two internal GeForce 

8800 GTS GPUs. The host is Intel quad-core 2.66 GHz 

machine with PCI Express 2.0 x16 bus. Note that the 

two internal GPUs share the same PCI bus. 

The experiments aim to evaluate the overhead 

introduced by the framework (section 5.1) as well as 

the performance gains enabled by the framework in one 

of the usage scenarios described earlier, namely when 

integrated with the StoreGPU library (section 5.2). 

Finally, for all experiments, we report averages over 

at least 30 runs with 95% confidence intervals.  

 

5.1 Overhead 
 

The first experiment aims to evaluate the overhead 

introduced by CrystalGPU. To this end, we run an 

experiment that measures the time spent in the 

CrystalGPU layer while executing a single job with and 

without the framework. The job involves: (i) 

transferring a specific data size to the GPU, (ii) 

executing a dummy kernel with insignificant execution 



time, and (iii) transferring the same amount of data 

back to the CPU. 

 
Figure 5: CrystalGPU overhead while executing a 

single job with very low execution time. Top plot: 

percentage of total execution time. Bottom plot: 

absolute microseconds spent in CrystalGPU layer. 

Figure 5 shows the overhead while varying the data 

size. The results show that the framework introduces 

constant latency overhead irrespective of the data size 

(slightly less than 70µs), the result of threading and 

managing jobs in queues. This overhead corresponds to 

a significant share of the total execution time for small 

data sizes (up to 35%).  

Nevertheless, in a realistic scenario, like the one we 

describe in the next section, a single job execution time 

is in the order of milliseconds, even for small data 

sizes. This is due to the larger kernel execution time in 

real applications. This renders the framework’s latency 

overhead insignificant. Further, for the type of 

applications we target in which we have more than one 

job submitted sequentially back to back or as a group, 

the overhead introduced by the framework on one job 

is completely hidden by the kernel execution time of a 

former one as only one job can be executed on the 

GPU processing units at a time. 

 

5.2 Application-level Performance 
 

This section evaluates the performance gains 

achieved by StoreGPU library when integrated with 

CrystalGPU framework. The integration required 

modifying the StoreGPU library from directly calling 

CUDA functions to calling CrystalGPU’s interface. 

These changes were fairly localized and minimal. 

We note that the workload StoreGPU serves (e.g., 

computing the hash value for a stream of large data 

blocks) is similar to other stream processing 

applications like DPI and video encoding/decoding.  

StoreGPU accelerates a number of hashing-based 

primitives popular in storage systems that use content-

based addressing and is optimized to run on the GPU. 

Here, however, we do not explore these optimizations; 

rather, we use a fully optimized StoreGPU version to 

explore the performance gains enabled by three 

techniques at the CrystalGPU framework level: (i) 

reusing memory buffers, (ii) overlapping computation 

and communication, and (iii) using multi-GPU 

architectures. 

 
Figure 6: Fraction of execution time spent on each 

stage for SHA1 direct hashing algorithm. 

Figure 6 demonstrates the percentage of execution 

time spent at each execution stage using the original 

implementation provided by the StoreGPU library 

(direct hashing based on SHA1). The hash computation 

is carried in five main stages: GPU and CPU pinned 

memory allocation, data copy into the GPU, kernel 

execution, results copy out to the host machine, and 

post processing on the CPU. Note that the original 

StoreGPU version employs blocking data transfer 

operations, which hinder the ability to overlap data 

transfer operations and kernel executions.  

For all data sizes, the ratio of time spent on memory 

allocations on both the GPU and the CPU is high (up to 

85% for small data blocks and at least 38% for the 

larger data sizes). Further, the figure demonstrates that 

the corresponding execution pipeline (i.e., copy in, 

kernel, and copy out) is not balanced as the kernel 

execution time dominates the pipeline. Still, as the data 

size increases, the proportional time spent on the copy 

in stage becomes closer to that spent on kernel 

execution time, making the pipeline more balanced. 

Figure 7 shows the speedup obtained when using 

CrystalGPU framework for a stream of 10 jobs 

compared to the performance of the original StoreGPU 

implementation as a baseline. The figure demonstrates 

that by exploiting buffer reuse, CrystalGPU is able to 

amortize memory management costs; enabling, as a 

result, more than 6x speedup for small data blocks 

(corresponding to 85% savings), and more than 1.6x 

for larger data sizes (corresponding to 38% savings). 

Enabling the overlap feature allows for an additional 

speedup increase that corresponds to the portion of 



time spent on data transfer operations (up to 8x for 

small data blocks and at least 3x for larger data 

blocks). 

 
Figure 7: Achieved speedup for SHA1 for a stream 

of 10 jobs. The baseline is the original StoreGPU 

implementation (values below 1 are slowdown). The 

figure also presents the performance when run on 

one CPU core.  

Also, using both GPUs available in the card 

increases the speedup further, this time by exploiting 

additional resources. For small data blocks, the 

speedup almost doubles; however, for larger blocks the 

speedup gains are limited by two factors. First, the ratio 

of time spent on data transfers increases as we increase 

the data size, thus placing more contention on the 

shared I/O channel. The second factor relates to the 

increased ratio of time spent on the post-processing 

stage, which is executed on the CPU. 

We note that the absolute kernel execution time of a 

single SHA1 hashing job ranges from 0.5ms for the 

smallest data size to 10ms for the largest. In all cases, 

the kernel execution time is much larger than the 70µs 

overhead introduced by the framework, hence, 

rendering this overhead insignificant. 

It is interesting to note that while the original  

StoreGPU performance lags behind the CPU 

performance for small data sizes (less than 1MB), 

enabling all Crystal GPU optimizations achieves 

significant speedup for all data sizes. 

Figure 8 explores the achieved speedup for a stream 

of jobs that hashes a block of 1MB while varying the 

stream length. For a stream of one job, the only feature 

that brings speedup is buffer reuse, which is intuitive. 

However, increasing the stream size enables the other 

two features to contribute additional speedup, while 

buffer reuse has constant effect. On the one hand, the 

overlap feature is able to hide the relatively small 

percentage of time spent on data transfers (Figure 6), 

increasing the speedup by up to 1x (from 7x to 8x). On 

the other hand, enabling the dual GPU feature almost 

doubles the speedup immediately after increasing the 

stream size above 1. 

The above experiment demonstrates that long 

streams are not required to benefit from most of the 

speed up enabled by the framework, hence making the 

framework beneficial even for bursty workloads. 

 
Figure 8: Achieved speedup for SHA1 hashing for a 

block of 1MB while varying the stream length 

(values below 1 are slowdown). Note that for this 

data size, the CPU and the original StoreGPU 

implementation have the exact same performance. 

6 Related Work 
 

Using GPUs for general purpose programming has 

recently gained considerable attention. This has led to 

the emergence of a number of frameworks and 

development environments that simplify the task of 

software developers to program algorithms for GPUs. 

Examples of such development frameworks include 

NVIDIA’s CUDA [13], Apple’s OpenCL [15] and 

RapidMind Development Platform [14], in addition to 

environments developed in academia such as 

BrookGPU [16] and Sh [17]. 

Our work is different in that it operates at a higher 

level than the above-mentioned development 

frameworks as it uses the services provided by such 

tools. Specifically, CrystalGPU provides a higher level 

abstraction that aims to transparently exploit a number 

of opportunities while viewing the GPU as an abstract 

computing device. 

Building frameworks and higher level abstractions 

is an approach often adopted to extend the lower level 

mechanisms with semantics required by the higher 

level layers. For instance, frameworks could be built to 

provide priority based scheduling for computing, 

storage or networking resources [18], or to present a 

scalar computing device as a vector processor. Among 

the frameworks related to our work, Thompson et. al. 

[19] develop a framework to abstract graphical 

processing GPUs (GPUs without general purpose 

computing support) as vector processing accelerators, 



effectively hiding the graphical processing pipeline 

details and enabling general purpose computation on 

GPUs that do not support general purpose computing.  

 

7 Summary and Future Work 
 

We have described CrystalGPU, an execution 

framework that enables GPGPU applications to 

transparently maximize the utilization of the GPU. The 

framework is based on three opportunities. First, 

reusing GPU memory buffers to reduce the cost of 

allocation/deallocation of short lived buffers. Second, 

overlapping communication and computation to hide 

the communication overhead. Third, harnessing the 

computational power of multi-GPU systems. 

Through a use-case application, namely StoreGPU, 

we demonstrate that CrystalGPU is able to efficiently 

facilitate the above-mentioned opportunities enabling 

an up to 16x speedup. 

The results CrystalGPU achieved encourage us 

extend CrystalGPU framework with a more flexible 

scheduling mechanism. Current CrystalGPU version 

implements simple FIFO scheduling policy between 

jobs. However, some applications may require 

prioritizing the processing of specific jobs or enforce 

processing deadlines. For instance, in MPEG video 

encoding, the application may prefer to process the “I” 

frames (the encoding base frames) at higher priority. 

Similarly, a deep packet inspection application may 

require prioritized processing of packets that belong to 

certain classes of service. To this end, we aim to extend 

CrystalGPU’s interface to enable passing application 

specific information that allows the application to 

customize job scheduling, hence enhancing 

application’s performance. 
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