
CrystalGPU: Transparent and Efficient Utilization of GPU Power

Abdullah Gharaibeh, Samer Al-Kiswany, Matei Ripeanu

Electrical and Computer Engineering Department

The University of British Columbia

{abdullah, samera, matei}@ece.ubc.ca

Abstract

General-purpose computing on graphics processing

units (GPGPU) has recently gained considerable

attention in various domains such as bioinformatics,

databases and distributed computing. GPGPU is based

on using the GPU as a co-processor accelerator to

offload computationally-intensive tasks from the CPU.

This study starts from the observation that a number of

GPU features (such as overlapping communication

and computation, short lived buffer reuse, and

harnessing multi-GPU systems) can be abstracted and

reused across different GPGPU applications.

This paper describes CrystalGPU, a modular

framework that transparently enables applications to

exploit a number of GPU optimizations. Our

evaluation shows that CrystalGPU enables up to 16x

speedup gains on synthetic benchmarks, while

introducing negligible latency overhead.

1 Introduction

Today’s GPUs offer drastic reduction in

computational costs compared with existing traditional

CPUs. These savings encourage using GPUs as

hardware accelerators to support computationally-

intensive applications like, for example, scientific

applications [1] or distributed computing middleware

[2]. In particular, GPUs are well suited to support

stream processing applications, that is applications that

process a continuous stream of data units, where the

processing of a single data unit may exhibit intrinsic

parallelism that can be exploited by offloading the

computation to the GPU. Examples of such

applications include video encoding/decoding [3] and

deep packet inspection [4, 7].

Recent GPU models include a number of new

capabilities that not only enable even lower

computational costs, but also make GPUs an interesting

computational platform for fine-granularity,

latency-sensitive applications. For example, new GPU

models have the ability to overlap computation and the

communication with the host; thus offering the

opportunity to hide communication overheads, a

significant source of overheads for stream processing

applications. Additionally, the newly introduced

dual-GPU devices (e.g., NVIDIA’s GeForce 9800

GX2) offer an additional level of parallelism by placing

two GPUs on the same graphics card, and thus offer an

opportunity to harness additional computing capacity.

However, the efficient utilization of these

capabilities is a challenging task that requires careful

management of GPU resources by the application

developer that leads to extra development effort and

additional application complexity [5]. This is mainly

due to the peculiar characteristics of current GPU

architectures and development environments. For

example, to effectively overlap computation and

communication, the application needs to

asynchronously launch a number of independent

computation and data transfer tasks, which require the

application to maintain additional state information to

keep track of these asynchronous operations. Also, to

employ dual-GPU devices, the application has to

manually detect the available devices, and spread the

work among them.

This project proposes CrystalGPU, an execution

framework that aims to simplify the task of GPU

application developers by providing a higher level of

abstraction, while, concurrently, maximizing GPU

utilization. In particular, the framework runs entirely on

the host machine and provides a layer between the

application and the GPU, managing the execution of

GPU operations (e.g., transferring data from/to the

GPU and starting computations on the GPU). To this

end, the framework seeks to transparently enable three

optimizations that can speedup GPU applications:

� First, reusing GPU memory buffers to amortize the

cost of allocation and deallocation of short lived

buffers. Al-Kiswany et al. [2] demonstrate that the

percentage of total execution time spent on memory

buffer allocations can be as high as 80% of the

execution time.

� Second, new GPU architectures and programming

environments allow applications to overlap the

communication and computation phases. Al-

Kiswany et al. [2] show that the communication

overhead can be as high as 40% for data-intensive

applications. Other studies have also demonstrated

the significance of communication overhead when

using the GPU [6-8]. In these cases, overlapping

computation and communication creates the

opportunity to hide the communication cost,

maximizing the utilization of the GPU

computational power as a result.

� Third, multi-GPU systems have become common:

Dual-GPU boards are commercially available and

research groups started to prototype GPU clusters

that assemble even more GPUs on the same

workstation creating, as a result, an opportunity, to

aggregate additional low-cost computing capacity.

The contributions of this work are summarized as

follows:

� First, we present a high-level abstraction that aims to

transparently maximize the utilization of a number

of GPU features, while simplifying application

developers’ task. We contend that, in addition to the

processor/co-processor scenario we analyze in

detail, the abstraction we propose can be easily

applied in other situations that involve massively

multicore hardware deployments, for example

asymmetric multicores like IBM’s Cell Broadband

Engine Architecture.

� Second, our prototype of this abstraction brings

valuable performance gains in a realistic usage

scenario where the communication overhead is

significant. Our prototype demonstrates an up to 16x

performance improvements when integrated with

StoreGPU: a GPU based library that accelerates a

number of hashing based primitives commonly used

in distributed storage systems.

� Third, we make CrystalGPU available to the

community
1
. This framework can be used by a wide

range of applications including stream-processing

applications and embarrassingly-parallel data

processing.

The rest of this paper is organized as follows.

Section 2 presents related background to GPU

programming and the type of applications we target.

Section 3 discusses CrystalGPU’s API. Section 4

presents the framework’s design. Section 5 presents our

1
 CrystalGPU is an open source project, the code can

be found at http://netsyslab.ece.ubc.ca

experimental results. Section 6 discusses related work.

We conclude in Section 7.

2 Background
In this section, we present background related to

GPU programming model (Section 2.1), and describe

the type of applications that CrystalGPU targets

(Section 2.2).

2.1 GPU Programming

Recently, GPUs underwent a radical evolution from

a fixed-function, special-purpose pipeline dedicated to

graphics applications to a fully programmable SIMD

processor [9]. These changes transformed the GPUs

into powerful engines that support offloading

computations beyond graphics operations.

In general, offloading computation to the GPU is a

three-stage process. First, transferring input data to the

GPU’s internal memory. GPUs do not have direct

access to the host’s main memory; rather they can only

access there onboard memory. Consequently, the

application has to explicitly allocate buffers on the

GPU local memory, and transfer the data to them

through an I/O interface, such as the host’s PCI-

Express bus. Further, data transfer operations are

performed using direct memory access (DMA) engine,

which requires the application to have the data placed

in the host’s pinned (i.e., non-pageable) memory.

Therefore, it is important for the application to use

pinned buffers for the data from the beginning,

otherwise the device driver will perform an additional

copy to an internal pinned buffer before transferring the

data to the GPU.

Second, processing. Once the data is transferred to

the GPU’s internal memory, the application starts the

computation by invoking the corresponding ‘kernel’, a

function that when called is executed on the GPU. A

number of optimizations can be applied at the kernel

level (e.g., to enable efficient utilization of the GPU’s

internal memory architecture, minimizing thread

divergence, etc.), however, these application-level

optimizations are beyond the scope of our work as we

focus on higher-level optimizations agnostic to the

details of the kernel implementation.

Third, transferring the results from the GPU to the

host’s main memory. After the kernel finishes

execution, the application explicitly transfers the results

through the I/O channel back to the host’s main

memory.

This three-stage process, collectively named herein

a ‘job’, is repeated by a stream processing application

for each new data block to be processed. Note that due

to limitations in current GPGPU programming

environments, a job can only be executed on a single

GPU even in dual-GPU cards. Therefore, using multi-

GPU architectures requires the application to explicitly

divide the data into two data sets, and perform two

transfers and kernel invocations, one for each GPU.

2.2 CrystalGPU Applications

In this section, we discuss the type of applications

that CrystalGPU targets. We classify the candidate

applications as stream- and batch-processing

applications depending on their real-time constraints.

A. Stream processing applications. Streaming

applications sequentially process a steady stream of

small sized data units. Such applications pose real-time

constraints that entail low-latency overheads. In this

category, parallelism is based on two opportunities.

First, the processing of each data unit represents a

single job that may have some intrinsic parallelism.

Second, accumulating a number of data units and

processing them in parallel as a single job offers the

tradeoff of increasing parallelism, and consequently the

processing throughput, while also increasing the

processing latency for individual jobs.

One example in this category is video

encoding/decoding. Recently, high-definition television

(HDTV) broadcast has become popular. Such

technology enables higher resolution than traditional

broadcast formats, however it requires efficient video

compression/decompression mechanisms to reduce

transmission costs over the network. Van der Laan et

al., [3] for example, present a GPU-accelerated video

codec library that implements a number of common

video compression/decompression techniques such as

block motion compensation and frame arithmetic.

Another example is using the GPU to accelerate

distributed systems middleware-level techniques. For

instance, a number of distributed storage systems (e.g.,

Venti [10], OceanStore [11]) employ a technique

known as content-addressable storage: files are divided

in chunks, which, in turn, are identified based on their

content by using the hash of the chunk as the its

identifier. Content-addressable storage simplifies the

separation of file and chunk metadata, and facilitates

the identification and elimination of duplicate chunks,

hence minimizing the amount of data that storage

systems need to manage and transfer. However, the

overhead of computing chunk hashes may limit

performance. Al-Kiswany et al. [2] presents StoreGPU,

a library that accelerates a number of hashing based

primitives that support content addressable storage.

Deep packet inspection (DPI) is yet another

example of streaming applications. A practical DPI

solution must support high-speed packet inspection and

impose low latency overheads. For example, the GPU

can be used to accelerate a number of computationally

expensive DPI operations such as header classification

and signature matching algorithms [4, 7].

In the above presented use cases, the GPU is used to

sequentially carry computations on a stream of data

blocks (frames in the first, data chunks in the second,

and packets in the third use case). CrystalGPU reduce

the latency of such stream-processing applications by

hiding the time spent on buffer allocations and data

transfers to/from the GPU. Further, it enables increased

throughput by efficiently harnessing multi-GPU

architectures.

B. Batch processing applications. We include in this

category applications for which a large number of

independent jobs are available for processing at any

point in time and that individual jobs do not have

latency constraints. In this case, parallelism can be

easily extracted by bundling individual jobs into

batches. Folding@Home [12] is an example of this

category: it aims to analyze a large number of chunks

of biological data, chunks are independent and are all

available at the beginning of the analysis.

For this category, CrystalGPU can enhance the

utilization of the GPU by overlapping the computation

for one batch with the data transfer for the next one;

further, it enables transparent utilization of multi-GPU

systems where multiple batches can be processed in

parallel.

Figure 1: CrystalGPU is a layer between the

application and the GPU runtime.

3 CrystalGPU API

CrystalGPU framework is a management layer

between the application and the GPU runtime (Figure

1). The framework’s API aims for generality to

facilitate support for wide range of applications. We

achieve this goal via an interface that is agnostic to the

upper level application.

The framework’s API is influenced by the GPU’s

programming model described in section 2.1. In

general, job execution on the GPU is enabled by

providing the application mechanisms to (i) define the

input data, (ii) define the execution kernel, and (iii)

claim the results. To facilitate these mechanisms

CrystalGPU defines the job abstract data type (Figure

2) which specifies the main parameters needed to

describe a job.

typedef struct job_s {

 void *h_input;

 void *h_output;

 void *d_input;

 void *d_output;

 int input_size;

 int output_size;

 ...

 void(*kernel_func)(struct job_s *);

 void(*callback_func)(struct job_s *);

} job_t;

Figure 2: Job data type (C-Style).

The h_input member of the job data type specifies

the host buffer to be transferred to the destination GPU

buffer d_input; likewise, d_output specifies the GPU

results buffer to be transferred back to the host

destination buffer h_output. Additionally, kernel_func

specifies the application-specific kernel to be executed

on the GPU, while callback_func specifies the callback

function to be invoked when the job is done.

Figure 3 illustrates the framework’s public interface.

When initializing the framework, the application

declares the maximum input/output buffer sizes it will

use. The framework, accordingly, creates a buffer pool

by pre-allocating a number of host and device buffers.

The rationale behind the buffer pool is twofold. First,

experience shows that GPU buffer allocation is

expensive, especially for small scale computations [2].

By pre-allocating GPU buffers once at the beginning,

the allocation time overhead gets amortized. In section

5, we show that this optimization provides a significant

speedup. Second, the GPU driver always needs to use

buffers in pinned memory for DMA transfers between

the host and the GPU. As a result, pre-allocating

buffers directly in pinned memory, and making them

available for the application in advance, saves the GPU

driver from an extra memory copy to an internal pinned

memory buffer, thus reducing data transfer overhead.

The API enables the application to acquire and

release pre-allocated buffers (encapsulated within a job

instance) from the pool (job_get, job_put), submit a job

to the framework to relay it to the GPU (job_submit),

and to synchronously query or block on the status of a

job (job_query, job_synch). Note that the later is in

addition to the asynchronous notification enabled by

the callback function described before; hence, allowing

further flexibility for the application.

Interface Description

init(max_input_size,

 max_output_size)

Initializes the framework, the

parameters define the maximum

size of the input/output pre-

allocated buffers.

finalize() Cleans the framework’s state.

job_t * job job_get()
Gets a free job from the free pre-

allocated pool.

job_put(job_t *job)
Returns back a job to the free

pool.

job_submit(job_t *job)
Submits a job to be dispatched to

the GPU.

job_synch(job_t *job)
Blocks till the designated job

finishes execution.

job_query(job_t *job)

Returns true if the job has

finished execution, false

otherwise.

Figure 3: CrystalGPU public API.

4 CrystalGPU Design

Crystal CPU design aims for efficiency to maximize

the utilization of the GPU. The design makes minimal

assumptions about the internal GPU architecture, while

focusing on avoiding spurious data copies and

concurrency bottlenecks.

We have implemented a prototype of CrystalGPU

framework. The prototype is built atop of NVIDIA’s

CUDA toolkit [13]; however other alternative low-

level GPU development toolkits (e.g., RapidMind [14]

and OpenCL [15]) can also be used.

The rest of this section discusses the challenges that

influenced CrystalGPU internal design (section 4.1)

and the framework’s internal details (section 4.2).

4.1 Design Challenges

CUDA supports asynchronous data transfers and

kernel launches, which opens the opportunity to

overlap data transfers and kernel execution across jobs.

However, realizing the asynchronous operations’

potential entails a number of challenges:

� Lack of asynchronous notification mechanism.

Although CUDA supports asynchronous operations,

it does not provide a notification mechanism to

asynchronously interrupt the application when a

GPU operation completes. Consequently, the

application is required to periodically poll the

CUDA run time library to query the status of a job.

� Interleaved jobs execution. CUDA enables

asynchronous mode for data transfer operation and

kernel executions. This asynchronous mode can be

used to overlap the data transfer of one job with the

kernel execution of another, increasing the system

overall throughput accordingly. However, to

effectively achieve this overlap, the application

needs to explicitly interleave the execution of a

number of jobs (at least three). Interleaving the

execution of jobs is done by asynchronously issuing

input data transfer operations for all available jobs,

invoking the kernel asynchronously for all jobs, and

finally issuing the asynchronous result transfer back

from the GPU for all the jobs. This interleaved job

execution dramatically complicates application

design and development.

� Primitive support for multi-GPU systems. While

recent GPU cards are fabricated with multiple GPU

devices deployed on the same card (similarly

multiple GPU cards can be deployed at one

workstation), CUDA provides only primitive

support for such multi-GPU systems. In order to use

multiple GPUs, the application should decide, for

each job, which GPU device it will be executed on.

To this end, the application must track GPU device

load, and implement a load balancing mechanism to

achieve maximum hardware utilization.

� Additional state to maintain. Finally, given the

asynchronous nature of GPU operations, the

application needs to keep track of jobs execution

status throughout the job lifetime.

The next section describes CrystalGPU design that

transparently addresses these challenges.

4.2 CrystalGPU Internal Design

CrystalGPU design comprises a single driving

module named the master. The master module

employs a number of host-side master threads, each

assigned to manage one GPU device.

The rationale behind this assignment is twofold.

First, each master thread is responsible for querying its

device for job completion status, and asynchronously

notifying the application, using the callback function,

once the job is done. This allows the client to make

progress on the CPU in parallel; further, it relieves the

application from job execution state bookkeeping.

Second, having a dedicated control thread for each

GPU facilitates transparent multi-GPU systems

support. As detailed in the next paragraphs, the

application submits a job to a shared outstanding

queue, later the job is transparently handled by one of

the master threads in such a way that balances the load

across GPUs. We note that this multithreaded design

requires a multi-core CPU to enable maximum

parallelism across the master threads as well as the

application’s host-side threads.

The application requests services from the

framework by submitting jobs and waiting for

callbacks. The status of a job is maintained by the

master using three queues. First, the idle queue

maintains empty job instances (with pre-allocated

buffers). Second, the outstanding queue contains

ready-to-run jobs submitted by the application, but not

dispatched to the GPUs yet. Third, running queue

contains the jobs that are currently being executed on

the GPUs.

Figure 4: CrystalGPU execution pipeline.

A master thread is chosen in a round robin scheme

to execute the next job in the outstanding queue. The

execution of a job forms a three stage pipeline (Figure

4) that corresponds to the stages described in section 2.

Therefore, having three or more jobs available always

for execution is necessary to fill the pipeline and

maximize the utilization of the GPU by overlapping the

communication of one job with the computation of

another. Note that the framework does not control the

time spent on each stage of the pipeline as this is

related to the characteristics of the application. As a

result, having a balanced pipeline (i.e., one with equal

communication and computation overheads) is

necessary to efficiently exploit the opportunity of

overlapping communication and computation.

5 Experimental Evaluation

We evaluate our prototype using a NVIDIA

GeForce 9800GX2 GPU (released March 2008). The

card is a dual GPU composed of two internal GeForce

8800 GTS GPUs. The host is Intel quad-core 2.66 GHz

machine with PCI Express 2.0 x16 bus. Note that the

two internal GPUs share the same PCI bus.

The experiments aim to evaluate the overhead

introduced by the framework (section 5.1) as well as

the performance gains enabled by the framework in one

of the usage scenarios described earlier, namely when

integrated with the StoreGPU library (section 5.2).

Finally, for all experiments, we report averages over

at least 30 runs with 95% confidence intervals.

5.1 Overhead

The first experiment aims to evaluate the overhead

introduced by CrystalGPU. To this end, we run an

experiment that measures the time spent in the

CrystalGPU layer while executing a single job with and

without the framework. The job involves: (i)

transferring a specific data size to the GPU, (ii)

executing a dummy kernel with insignificant execution

time, and (iii) transferring the same amount of data

back to the CPU.

Figure 5: CrystalGPU overhead while executing a

single job with very low execution time. Top plot:

percentage of total execution time. Bottom plot:

absolute microseconds spent in CrystalGPU layer.

Figure 5 shows the overhead while varying the data

size. The results show that the framework introduces

constant latency overhead irrespective of the data size

(slightly less than 70µs), the result of threading and

managing jobs in queues. This overhead corresponds to

a significant share of the total execution time for small

data sizes (up to 35%).

Nevertheless, in a realistic scenario, like the one we

describe in the next section, a single job execution time

is in the order of milliseconds, even for small data

sizes. This is due to the larger kernel execution time in

real applications. This renders the framework’s latency

overhead insignificant. Further, for the type of

applications we target in which we have more than one

job submitted sequentially back to back or as a group,

the overhead introduced by the framework on one job

is completely hidden by the kernel execution time of a

former one as only one job can be executed on the

GPU processing units at a time.

5.2 Application-level Performance

This section evaluates the performance gains

achieved by StoreGPU library when integrated with

CrystalGPU framework. The integration required

modifying the StoreGPU library from directly calling

CUDA functions to calling CrystalGPU’s interface.

These changes were fairly localized and minimal.

We note that the workload StoreGPU serves (e.g.,

computing the hash value for a stream of large data

blocks) is similar to other stream processing

applications like DPI and video encoding/decoding.

StoreGPU accelerates a number of hashing-based

primitives popular in storage systems that use content-

based addressing and is optimized to run on the GPU.

Here, however, we do not explore these optimizations;

rather, we use a fully optimized StoreGPU version to

explore the performance gains enabled by three

techniques at the CrystalGPU framework level: (i)

reusing memory buffers, (ii) overlapping computation

and communication, and (iii) using multi-GPU

architectures.

Figure 6: Fraction of execution time spent on each

stage for SHA1 direct hashing algorithm.

Figure 6 demonstrates the percentage of execution

time spent at each execution stage using the original

implementation provided by the StoreGPU library

(direct hashing based on SHA1). The hash computation

is carried in five main stages: GPU and CPU pinned

memory allocation, data copy into the GPU, kernel

execution, results copy out to the host machine, and

post processing on the CPU. Note that the original

StoreGPU version employs blocking data transfer

operations, which hinder the ability to overlap data

transfer operations and kernel executions.

For all data sizes, the ratio of time spent on memory

allocations on both the GPU and the CPU is high (up to

85% for small data blocks and at least 38% for the

larger data sizes). Further, the figure demonstrates that

the corresponding execution pipeline (i.e., copy in,

kernel, and copy out) is not balanced as the kernel

execution time dominates the pipeline. Still, as the data

size increases, the proportional time spent on the copy

in stage becomes closer to that spent on kernel

execution time, making the pipeline more balanced.

Figure 7 shows the speedup obtained when using

CrystalGPU framework for a stream of 10 jobs

compared to the performance of the original StoreGPU

implementation as a baseline. The figure demonstrates

that by exploiting buffer reuse, CrystalGPU is able to

amortize memory management costs; enabling, as a

result, more than 6x speedup for small data blocks

(corresponding to 85% savings), and more than 1.6x

for larger data sizes (corresponding to 38% savings).

Enabling the overlap feature allows for an additional

speedup increase that corresponds to the portion of

time spent on data transfer operations (up to 8x for

small data blocks and at least 3x for larger data

blocks).

Figure 7: Achieved speedup for SHA1 for a stream

of 10 jobs. The baseline is the original StoreGPU

implementation (values below 1 are slowdown). The

figure also presents the performance when run on

one CPU core.

Also, using both GPUs available in the card

increases the speedup further, this time by exploiting

additional resources. For small data blocks, the

speedup almost doubles; however, for larger blocks the

speedup gains are limited by two factors. First, the ratio

of time spent on data transfers increases as we increase

the data size, thus placing more contention on the

shared I/O channel. The second factor relates to the

increased ratio of time spent on the post-processing

stage, which is executed on the CPU.

We note that the absolute kernel execution time of a

single SHA1 hashing job ranges from 0.5ms for the

smallest data size to 10ms for the largest. In all cases,

the kernel execution time is much larger than the 70µs

overhead introduced by the framework, hence,

rendering this overhead insignificant.

It is interesting to note that while the original

StoreGPU performance lags behind the CPU

performance for small data sizes (less than 1MB),

enabling all Crystal GPU optimizations achieves

significant speedup for all data sizes.

Figure 8 explores the achieved speedup for a stream

of jobs that hashes a block of 1MB while varying the

stream length. For a stream of one job, the only feature

that brings speedup is buffer reuse, which is intuitive.

However, increasing the stream size enables the other

two features to contribute additional speedup, while

buffer reuse has constant effect. On the one hand, the

overlap feature is able to hide the relatively small

percentage of time spent on data transfers (Figure 6),

increasing the speedup by up to 1x (from 7x to 8x). On

the other hand, enabling the dual GPU feature almost

doubles the speedup immediately after increasing the

stream size above 1.

The above experiment demonstrates that long

streams are not required to benefit from most of the

speed up enabled by the framework, hence making the

framework beneficial even for bursty workloads.

Figure 8: Achieved speedup for SHA1 hashing for a

block of 1MB while varying the stream length

(values below 1 are slowdown). Note that for this

data size, the CPU and the original StoreGPU

implementation have the exact same performance.

6 Related Work

Using GPUs for general purpose programming has

recently gained considerable attention. This has led to

the emergence of a number of frameworks and

development environments that simplify the task of

software developers to program algorithms for GPUs.

Examples of such development frameworks include

NVIDIA’s CUDA [13], Apple’s OpenCL [15] and

RapidMind Development Platform [14], in addition to

environments developed in academia such as

BrookGPU [16] and Sh [17].

Our work is different in that it operates at a higher

level than the above-mentioned development

frameworks as it uses the services provided by such

tools. Specifically, CrystalGPU provides a higher level

abstraction that aims to transparently exploit a number

of opportunities while viewing the GPU as an abstract

computing device.

Building frameworks and higher level abstractions

is an approach often adopted to extend the lower level

mechanisms with semantics required by the higher

level layers. For instance, frameworks could be built to

provide priority based scheduling for computing,

storage or networking resources [18], or to present a

scalar computing device as a vector processor. Among

the frameworks related to our work, Thompson et. al.

[19] develop a framework to abstract graphical

processing GPUs (GPUs without general purpose

computing support) as vector processing accelerators,

effectively hiding the graphical processing pipeline

details and enabling general purpose computation on

GPUs that do not support general purpose computing.

7 Summary and Future Work

We have described CrystalGPU, an execution

framework that enables GPGPU applications to

transparently maximize the utilization of the GPU. The

framework is based on three opportunities. First,

reusing GPU memory buffers to reduce the cost of

allocation/deallocation of short lived buffers. Second,

overlapping communication and computation to hide

the communication overhead. Third, harnessing the

computational power of multi-GPU systems.

Through a use-case application, namely StoreGPU,

we demonstrate that CrystalGPU is able to efficiently

facilitate the above-mentioned opportunities enabling

an up to 16x speedup.

The results CrystalGPU achieved encourage us

extend CrystalGPU framework with a more flexible

scheduling mechanism. Current CrystalGPU version

implements simple FIFO scheduling policy between

jobs. However, some applications may require

prioritizing the processing of specific jobs or enforce

processing deadlines. For instance, in MPEG video

encoding, the application may prefer to process the “I”

frames (the encoding base frames) at higher priority.

Similarly, a deep packet inspection application may

require prioritized processing of packets that belong to

certain classes of service. To this end, we aim to extend

CrystalGPU’s interface to enable passing application

specific information that allows the application to

customize job scheduling, hence enhancing

application’s performance.

8 References

[1] J. D. Owens, et al., "A survey of general-purpose

computation on graphics hardware," in Computer

Graphics Forum, 2007, pp. 80-113.

[2] S. Al-Kiswany, et al., "StoreGPU: Exploiting

graphics processing units to accelerate distributed

storage systems," in Proceedings of the 17th

International Symposium on High Performance

Distributed Computing, 2008, pp. 165-174.

[3] W. J. van der Laan,

"http://www.cs.rug.nl/~wladimir/sc-cuda/,"

[4] G. Vasiliadis, et al., "Gnort: High performance

network intrusion detection using graphics

processors," in Proceedings of the 11th

International Symposium on Recent Advances in

Intrusion Detection, 2008, pp. 116-134.

[5] S. Ryoo, et al., "Optimization principles and

application performance evaluation of a

multithreaded GPU using CUDA," in Proceedings

of the 13th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming,

2008, pp. 73-82.

[6] I. Buck, et al., "GPUBench: Evaluating GPU

performance for numerical and scientific

applications," in Proceedings of the 2004 ACM

Workshop on General-Purpose Computing on

Graphics Processors, 2004,

[7] N. Goyal, et al., "Signature Matching in Network

Processing using SIMD/GPU Architectures,"

[8] D. Göddeke, et al., "Exploring weak scalability for

FEM calculations on a GPU-enhanced cluster,"

Parallel Computing, 2007.

[9] J. D. Owens, et al., "GPU Computing," Proc IEEE,

vol. 96, pp. 879-899, 2008.

[10] S. Quinlan and S. Dorward, "Venti: A new

approach to archival storage," in Proceedings of the

FAST 2002 Conference on File and Storage

Technologies, 2002,

[11] J. Kubiatowicz, et al., "OceanStore: an

architecture for global-scale persistent storage,"

ACM SIGARCH Computer Architecture News, vol.

28, pp. 190-201, 2000.

[12] S. M. Larson, et al., "Folding@ Home and

Genome@ Home: Using distributed computing to

tackle previously intractable problems in

computational biology," Eprint arXiv: 0901.0866,

2009.

[13] C. NVIDIA, "Compute Unified Device

Architecture Programming Guide," Nvidia, June,

2007.

[14] M. Monteyne and R. M. Inc, "RapidMind Multi-

Core Develpment Platform," 2007.

[15] A. Munshi, "OpenCL: Parallel computing on the

GPU and CPU," SIGGRAPH’08: ACM

SIGGRAPH 2008 Classes, 2008.

[16] I. Buck, et al., BrookGPU, 2002.

[17] M. McCool and S. Du Toit, Metaprogramming

GPUs with Sh. AK Peters, Ltd., 2004,

[18] L. Huang, et al., "Multi-dimensional storage

virtualization," in Proceedings of the Joint

International Conference on Measurement and

Modeling of Computer Systems, 2004, pp. 14-24.

[19] C. J. Thompson, et al., "Using modern graphics

architectures for general-purpose computing: A

framework and analysis," in Proceedings of the

35th Annual ACM/IEEE International Symposium

on Microarchitecture, 2002, pp. 306-317.

