
Integrating Security in FreeLoader Distributed File 

System 
Abdullah Gharaibeh 

abdullah@ece.ubc.ca 

Electrical and Computer Engineering Department 

University of British Columbia 

 
Abstract—FreeLoader is a high performance read-dominant 

distributed file system that utilizes free disk space on desktop 

workstations. The system is designed for maximum scalability 

and high connectivity by taking into account the write-once-read-

many property of specific use cases. While still in the prototyping 

stage, FreeLoader security has not been addressed until recently. 

In this work we develop a threat model for FreeLoader following 

the CIAA (Confidentiality, integrity, availability and 

authentication) threat modeling process. Based on our threat 

model, and the threats we decide are worth to mitigate, a set of 

security requirements are derived; moreover, we make the first 

attempt to design and implement a security model for 

FreeLoader. 

 

I. INTRODUCTION 

FreeLoader [1] utilizes available storage space on 

commodity desktops while aggregating network bandwidth to 

achieve a fast, low cost storage solution that can be used as an 

alternative to existing expensive storage systems like Storage 

Area Networks (SAN). Hence, the main FreeLoader’s use 

case is as a cache/scratch space for scientific data sets, where 

data sets are usually write-once-read-many; in addition, these 

data sets are shared within the same research group, which 

often have shared interest on specific data sets. Therefore, 

means for protecting the system should be provided to 

facilitate this sharing. 

 

II. FREELOADER OVERVIEW 

This section provides an overview of the current 

FreeLoader design as implemented in the latest release.  

FreeLoader consists of three main components: A single 

manager, a set of benefactors and a set of clients that access 

the system. Figure 1 illustrates the design. Files are divided 

into fixed-size chunks (typically 1MB) distributed among the 

benefactors where they are stored as regular files. The 

manager maintains all file system metadata such as available 

storage space, file system namespace, file attributes, the 

mapping from files to chunks and the mapping from chunks to 

benefactors. From the client side, FreeLoader provides two 

implementations: A command line client and a traditional file 

system interface using FUSE (File system User SpacE) Linux 

kernel module [8]. 

A typical write operation is performed as follows:  

1. The client asks the manager for a file handle for the 

new file. A file handle is a 32bit integer identifier 

unique per file.  

2. The manager increments its internal file handle counter 

and replies with a new identifier.  

3. The client asks the manager for a set of benefactors 

that will provide the disk space for the new file. 

4. The manager replies with a list of benefactors that will 

hold the new file’s chunks. This list is named a 

chunkmap. 

5. The client divides the file into chunks and pushes them 

to the benefactors according to the chunkmap sent by 

the manager in the previous step. 

6. Finally, the client commits the chunkmap back to the 

manager asserting the write operation. Only in this step 

the actual storage space status is updated in the 

manager. Moreover, the manager doesn’t have any 

state information to relate this chunkmap with the one 

previously sent in step 4. 

 

A typical read operation is performed as follows:  

1. The client asks the manager which benefactors hold the 

chunks of a specific file.  

2. The manager responds with the set of benefactors that 

hold the file’s chunks.  

3. The client pulls the data from the benefactors directly.  
 

All requests and replies are performed using TCP as a 

transport protocol. Also, note that the client never read or 

write data through the manager. One more important point to 

Figure 1: FreeLoader Modules 

 



mention is that the number of available benefactors has a 

direct effect on FreeLoader performance. Having more 

benefactors in the system gives more parallelism, hence 

increased performance and visa versa. Therefore, when 

creating a new chunkmap for a write operation (step 4), the 

algorithm that maps chunks to benefactors will try to balance 

the load across the benefactors. 

III. THREAT MODEL 

In this section, we identify a set of possible attacks or 

threats that can be mounted against FreeLoader distributed file 

system following the CIAA (confidentiality, integrity, 

availability and authentication) approach. As mentioned 

before, we will base our analysis on the current FreeLoader 

prototype implementation. While the focus of this section is 

on threat modelling, we do briefly provide references to 

possible protection techniques. 

A. Confidentiality Attacks 

Confidentiality attacks are passive attacks that expose 

confidential data to the view of unauthorized readers [9]. 

These kinds of attacks don’t alter the system content, but 

affect the security level and distribution of the content. 

FreeLoader is a distributed system where different 

components of the system communicate using a shared 

network; hence, the main confidentiality attack is sniffing the 

network traffic. FreeLoader traffic can be divided into two 

main categories: control traffic generated between the 

manager and both the clients and the benefactors, and data 

traffic generated between the clients and the benefactors. 

In addition to traffic sniffing, any user has access to the 

donated space in a benefactor machine (which is typically a 

designated folder), has full access to the chunks stored in that 

space. 

The obvious solution to confidentiality attacks is to use 

cryptography. For example, instead of using pure TCP 

connections as a transport protocol, Secure Socket Layer 

(SSL) [RFC 2246] can be employed to provide secure 

communication across the three system components. 

Moreover, the client can encrypt the chunks before pushing 

them to the benefactors so that clients with the correct key can 

make it comprehensible. Old encryption algorithms like 3-

DES are very expensive; however, newer algorithms like AES 

allow much better performance and are easier to implement 

efficiently [10]. 

B. Integrity Attacks 

Integrity attacks attempt to modify information in the 

system without proper authorization.  

A possible integrity attack, which is common to all 

distributed systems, is a man-in-the-middle attack in which 

the attacker makes independent connections between any two 

components in the system and relay messages between them. 

For example, an attacker can intercept the messages sent by a 

client to the manager and change its parameters. 

Also, as mentioned in the previous section, a user has 

access to the donated space in a benefactor machine, has full 

access to the chunks stored in that machine, which means that 

a malicious user can manipulate with the chunks. 

Message Integrity Codes (MIC), which is a short 

cryptographic checksum, can be used to achieve message 

integrity. Also, the manager can store per-chunk checksums to 

increase chunk integrity while stored in the benefactor. 

C. Availability Attacks 

Availability attacks attempt to make system services 

unavailable to legitimate users for a period of time. 

As mentioned in the overview section, a write operation 

starts with the client asking the manager for a new file 

identifier. An attacker may create many fake files to exhaust 

the file identifier space. Moreover, an attacker can exhaust the 

storage space by continuously reserving and committing back 

the chunkmap (steps 3 and 6 in the write operation) without 

even writing a single byte to the benefactors which means that 

this attack can be done in no time. Also, a malicious client can 

hinder the system performance by exhausting the disk space 

of a specific set of benefactors, thus reducing parallelism. This 

can be done by asking the manager for a chunkmap (step 4 in 

the write operation) and repeatedly performing steps 1 and 6 

(asking for a new file id and committing the same chunkmap) 

until all disk space donated by this set of benefactors is 

exhausted. 

The first attack is difficult to defend against because it 

takes the form of a legitimate content with bad intent. The 

second one can be eliminated by requiring the client to present 

a chunk hash signed by the host benefactor for each 

committed chunk; further, the last attack can be minimized by 

enforcing a predefined storage quota for each client. 

D. Authentication Attacks 

Authentication attacks occur when an attacker masquerades 

as a legitimate end-user. FreeLoader doesn’t implement any 

sort of authentication until now. However, we will discuss few 

common authentication attacks that should be considered 

when introducing authentication to the system. 

The first traditional attack is brute force attack where the 

attacker tries every possible combination of characters to meet 

the password or the key.  Dictionary attacks fall in this 

category also. Another possible attack is replay attacks in 

which messages are recorded and then retransmitted to trick 

the user into unauthorized operations. 

Selecting the appropriate key size or password strength is 

vital to increase resistance against brute-force attacks, while 

replay attacks can be avoided by using timestamps. 

Kerberos [11] is a widely deployed approach for 

authentication in distributed environments. Global Security 

Services API (GSS-API) [RFC 2743 and RFC 2744] is yet 

another approach that provides a mechanism agnostic 

interface for security services. The latter will be discussed in 

more detail in the next section. 

IV. ASSUMPTIONS, REQUIREMENTS AND MECHANISMS 

FreeLoader is an ongoing project. First prototypes of the 

system focused on feasibility and performance. Next phases of 

the project will focus on robustness and security. In this 



section we present our assumptions and requirements about 

the deployment environment; moreover, we provide an 

overview to the main mechanism used to develop our secure 

protocol. 

A. Assumptions 

Before discussing the requirements, we first introduce our 

design assumptions and considerations: First, we assume that 

the manager is a trusted machine, managed by a trusted 

administrator. Second, FreeLoader is not responsible for data 

confidentiality, i.e. data will be stored unencrypted in the 

benefactors; however, the higher level application can always 

encrypt the data before pushing it to the benefactors. These 

two assumptions are made (and will most probably preserved 

in the next versions of the model) as a trade off to simplicity 

and performance. Third, since Freeloader is open source, we 

assume that an adversary can, as a client or a benefactor, 

modify the code for malicious purposes; further, an adversary 

can passively or actively sniff network traffic to mount 

spoofing attacks. 

B. Design Requirements 

The following is a set of requirements based on which the 

model is developed and the mechanism is chosen: 

 

1. Acceptable performance degradation: Security 

overhead must be minimized in order to preserve 

Freeloader’s main design goal, performance. 

2. Scalability: Introducing security to the system 

shouldn’t impact its scalability. This means that 

Freeloader should provide acceptable performance 

while achieving security in large scale deployments. 

3. Authentication and Authorization: clients should be 

authenticated and authorized for accessing the system’s 

resources. 

4. Data integrity: The client should always be able to 

assure that all chunks stored in the benefactors are 

consistent and correct.  

5. Accountability: The solution should be able to 

determine who is responsible for a corrupted file: the 

client or the benefactor. However, accountability 

among clients is not addressed in this work such as the 

responsibility for last file modification. 

6. Usability: Access to FreeLoader shouldn’t significantly 

change. As mentioned before, FreeLoader provides a 

convenient client interface using FUSE Linux module 

which support traditional file system API. 

7. Easy integration with the Grid environment: We want 

to be able to run FreeLoader as a service in Grid 

deployments. 

C. Mechanisms 

The Generic Security Services Application Program 

Interface (GSS-API) provides access to security services in a 

generic fashion. GSS-API defines services and primitives at a 

level independent of the underlying mechanism and 

programming language environment. Kerberos [11] is one 

mechanism that can be used to implement the GSS-API 

among other mechanisms. The GNU Generic Security 

Services Library manual [12] defines four major steps to use 

the API (Figure 2 summarizes the protocol): 

1. The application acquires a set of credentials with 

which it may prove its identity to other processes such 

as X.509 certificate or a Kerberos ticket (Depending on 

the low level mechanism used to implement the 

interface). 

2. Communication between two applications starts with 

establishing a security context using their credentials. 

The security context is established by exchanging 

opaque messages called tokens that hide the 

implementation details from the application. These 

tokens can be exchanged over an insecure channel as 

the lower level mechanism should guarantee message 

security. At the end of this step, authentication is 

accomplished and a security context is established 

(which is basically a shared symmetric session key). 

Authentication can be either one-way or two-way 

(mutual) depending on the parameters specified at the 

beginning of this step. 

3. Once the context is established, both applications can 

exchange messages with different levels of protection: 

integrity and data authentication and confidentiality. 

The API provides two main functions for message 

protection: gss_wrap which applies the required quality 

of protection to the application data, and gss_unwrap 

that converts the message back to application data. 

4. At the end of the communication session, both 

applications delete the security context. 

 

The advantage of using the GSS-API instead of a native 

implementation of a specific mechanism is that it will be 

easier to port an application across different mechanisms; 

even across different versions or implementations of the same 

mechanism. For example, Kerberos V has several not 

compatible implementations. However, the GSS-API only 

standardizes authentication, and not authorization. 

Another important advantage is that the Grid Security 

Infrastructure (GSI) [13], which is used by the Globus toolkit 

[14] (A toolkit to build computing grids), adopts the GSS-API 

as a standard interface to access its security services; hence, it 

 

Figure 2: GSS-API Protocol 

 



will be easy to integrate FreeLoader with Globus toolkit as a 

new storage service. 

The GSI implementation of the GSS-API is based upon 

SSL/TLS protocol and X.509 certificates. In this work, we use 

this implementation to provide two security requirements: 

user authentication and message protection; in addition, we 

assume that all parties have certificates issued by a common 

trusted certificate authority. 

V. SECURITY MODEL 

In this section, we describe our modified protocol to 

accomplish the previously declared set of requirements. The 

protocol is described in the context of a write operation 

(Figure 3) and is detailed below: 

 

1. The write operation starts with mutual authentication 

between the client and the manager. At the end of this 

step, both parties are certain that they know each 

others' identity and public key; moreover, a security 

context is established between them. As illustrated 

previously in the GSS-API section, all messages 

between the client and the manager in the next steps 

will be protected within this context (Basically signed 

and optionally encrypted), hence achieving 

communication integrity and confidentiality. 

2. The client sends a reserve space request to the manager 

asking for free space from the benefactor pool. Note 

that this space is not related to a specific file; rather it 

is a generic space that can be used by the client to store 

chunks of any file. Typically a client would reserve 

space once per group of files. As a response, the 

manager replies with a set of benefactors, which the 

client can push its data to; along side a signed 

authorization ticket. Mainly, an authorization ticket 

contains the client's name and a timestamp that limits 

the validity period of the ticket to a predefined amount 

of time. 

3. Next, the client asks the manager for a file id for the 

new file. The manager replies with a new file id 

exactly as described previously in section II. 

4. The client mutually authenticates with the benefactors 

that are going to host its data. As stated in the first step, 

a security context is also established with each 

benefactor and all subsequent messages are optionally 

protected within this context. 

5. Once successfully authenticated, the client sends the 

authorization ticket previously obtained from the 

manager to all benefactors selected to store the file. 

Each benefactor will verify that the ticket is signed by 

the manager and that it is not expired; further, the 

client name contained in the ticket is checked against 

the identity of the currently authenticated client. Once 

successfully done, a positive acknowledgment will be 

sent by the benefactors to the client in order to start 

sending the data; otherwise, the write operation fails. 

6. In this step, the client divides the data into fixed-size 

chunks (which is currently set to 1MB) and pushes the 

chunks to the benefactors. Note that the chunks are 

also sent within the previously established security 

context to achieve different levels of protection. For 

each received chunk, the benefactor will send back a 

signed chunk receipt to the client. A chunk receipt 

mainly contains the benefactor's name, the chunk's 

hash, and the corresponding file id. 

7. In the end, and after pushing all the file's chunks, the 

client composes a chunkmap for the file. A chunkmap 

identifies the responsible benefactor and chunk receipt 

for each chunk. The chunkmap, together with the file 

id and the intended file path, are sent to the manager in 

order to commit the write operation. The manager 

consults its internal policy decision module to check 

whether the client has the permission to write to the 

specified path. If authorized, the chunkmap is checked 

for consistency by verifying the signatures of each 

chunk receipt against the specified responsible 

benefactor, and that all chunk receipts belong to the 

same file id. Once successfully verified, the chunkmap 

is stored as part of the file’s metadata. Otherwise, the 

manager will reject the commit request. 

 

The read protocol differs from the abovementioned write 

protocol in three places: First, instead of steps 2 and 3 in the 

write protocol, the client will send a read request for a specific 

file path to the manager, and the manager replies with the 

file’s chunkmap signed by its private key. Second, in step 5, 

the client presents the signed chunkmap to the benefactors 

instead of the manager’s authorization ticket. Third, in step 6 

the data flow is from the benefactors to the client and there 

will be no commit in the end. 

 

Figure 3: Write protocol 

 



VI. EVALUATION 

A. Security Analysis 

The new protocol provides authentication, authorization, 

message protection, data integrity and accountability.  

Authentication is achieved by requiring any two 

communicating entities to mutually authenticate before 

starting a communication session. The details of the 

authentication protocol depend on the specific mechanism 

used to implement the GSS-API interface. In our case, we 

have chosen the GSI implementation of the GSS-API 

interface, and the details of the authentication protocol is 

detailed in [16]. 

Authorization in our system is two fold: First, whether the 

client has the right to modify (or read) a file’s metadata 

maintained by the manager. Second, whether the client has the 

right to write (or read) chunks to the benefactors. The first part 

is achieved by assuming that the manager will consult a policy 

decision module to check for a request’s authority. Our 

protocol doesn’t assume any specific implementation for this 

module which can be represented as an ACL or an external 

authorization service such as CAS (Community Authorization 

Service) [17]. The second authorization part is achieved by 

requiring the client to present an authorization ticket signed by 

the manager (or a signed chunkmap in case of a read 

operation) to the intended benefactor; thus, and as described in 

the previous section, the benefactor can verify the client’s 

authority by checking the identity specified in the ticket 

against the identity of the requesting client and that the ticket 

is not expired. 

One result of the authentication phase is the establishment 

of a security context in which all messages between the 

communicating parties are protected (signed and optionally 

encrypted), hence achieving message integrity. In the same 

vein, we preserve data integrity by having the manager to 

maintain per chunk fingerprint hash which is received as part 

of the chunk receipt in the commit phase (step 7 in the write 

protocol). Therefore, a client can check for data integrity by 

hashing the read chunk and comparing it with the hash 

maintained by the manager. 

Accountability for a corrupted chunk is accomplished by 

employing chunk receipts. As detailed in the protocol, a chunk 

receipt represents a proof that the client has pushed the 

specified chunk to the benefactor; moreover, since the receipt 

is signed by the host benefactor, the client can’t modify the 

receipt in case he wants to accuse the benefactor later on for 

bad chunk preservation; therefore, whenever a chunk hash 

doesn’t match the one maintained by the manager, there is one 

party to blame, the benefactor. 

On the other hand, our protocol doesn’t provide explicit 

countermeasures against availability attacks where we depend 

on two underdevelopment FreeLoader features that can 

minimize the effect of these attacks. First, a synchronization 

protocol named garbage collection between the manager and 

the benefactors. This protocol synchronizes metadata status 

stored in the manager with the actual storage usage in the 

benefactors. Garbage collection is assumed to run once every 

specific configurable amount of time; hence, any fake 

commits done by a malicious client are reverted once garbage 

collection is done. Second, client quota in which each client is 

allocated a predefined maximum storage space; thus, a 

malicious client with intent to reduce parallelism (by always 

streaming to a specific set of benefactors to exhaust their 

donated space) is limited with his quota. Moreover, this attack 

has a very limited effect in large scale deployments where 

hundreds of benefactors exist. 

One last point to mention is that accessing FreeLoader is 

not significantly changed. The manager, the clients and the 

benefactors should all have valid certificates from a common 

trusted CA. In a small deployment, an administrator can 

install a local certificate authority for this purpose such as 

SimpleCA [15]. 

B. Performance Evaluation 

We evaluate our prototype using a cluster of nine nodes. 

Each node is a Dell PowerEdge 1950 machine equipped with 

1Gbps Ethernet card, a 2.33GHz Intel Xeon Quad-core CPU 

with a 1333MHz FSB (Front Side Bus) and 4GB of memory. 

For all configurations we report averages and standard 

deviations (using error bars in plots) over 15 runs. 

Our security protocol provides three main features: 

Authentication, integrity and accountability. As mentioned 

before, authentication is achieved by steps 1 and 4 in the write 

protocol. Channel integrity is achieve by sending all network 

traffic within the established security context (which basically 

uses MIC (Message Integrity Code)), while file integrity is 

accomplished by storing chunk hashes in the manager. 

Finally, accountability is achieved using chunk receipts in 

steps 6 and 7.  

In this evaluation, we measure the throughput of a write 

operation while incrementally enabling each of the 

abovementioned features in order to quantify their 

performance impact; consequently, we define three different 

security configurations: (i) Authentication (ii) Authentication 

and Integrity (iii) Authentication, Integrity and 

Accountability. Furthermore, we note that FreeLoader’s 

implementation decouples the application write I/O from the 

actual file transfer over the network that stores the file on the 

benefactors [18]; therefore, two performance metrics are 

defined to compare the various alternatives of our security 

protocol. First, the observed application bandwidth is the write 

bandwidth observed by the application in which the file size is 

divided by the time interval between the application-level 

open() and close() system calls. Second, the achieved storage 

bandwidth uses the time interval between file open() and until 

the file is stored safely in the benefactors (i.e., all remote I/O 

operations have completed). 

Figure 4 presents the observed and achieved storage 

throughput for the three configurations compared to the 

original FreeLoader protocol. The figure shows a very bad 

performance where the throughput degradation is in the range 

of one order of magnitude. This is due to the very expensive 

mutual authentication operation, especially between the client 

and the benefactors, which incorporates a great number of 

public key cryptography operations. For example, a 1 GB file 

with a chunk size of 1MB requires 1K chunks to be pushed to 



the benefactors, which mean 1K mutual authentication 

operations between the client and the benefactors. 

Additionally, the experiment shows no differences among the 

three security configurations. This is also attributed to the 

mutual authentication overhead which dominates the 

protocol’s overall operating cost. 

 

Figure 5: Average and achieved write throughput for one 

client and four benefactors while caching the context. 

To solve this problem, we cache the context established 

between any two entities after the first mutual authentication. 

This cache is maintained for a configurable period of time 

before expiration. This period can be set to an absolute value 

(half an hour for example) or for the duration of streaming a 

single file. This optimization enhances greatly the 

performance of the system as it eliminates a large number of 

redundant authentications while maintaining the protocol’s 

characteristics. Figure 5 presents the effect of caching on the 

observed and achieved write throughput. 

C. Protocol Scalability 

To assess the scalability of our protocol, we measure the 

throughput of FreeLoader with increasing number of 

benefactors (from one to eight benefactors). Figures 6 and 7 

show the observed and achieved throughput respectively. Note 

that after adding the third benefactor, the original FreeLoader 

protocol saturates as we are limited with the network card 

maximum speed (1Gbps). The figures show that the 

throughput of our protocol ramp-up successfully with 

increasing number of benefactors as it achieves less than 10% 

degradation in performance for the three features and around 

3% degradation for the authentication feature only. 

 

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8

Number of Benefactors

T
h

ro
u

g
h

p
u

t 
(M

B
/S

e
c

)

Original

Authentication

Authentication + Inegrity

Authentication + Inegrity

+ Accountability

 

Figure 6: Average observed write throughput with

increasing number of benefactors. 

 

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

Number of Benefactors

T
h

ro
u

g
h

p
u

t 
(M

B
/S

e
c
)

Original

Authentication

Authentication + Inegrity

Authentication + Inegrity

+ Accountability

 

Figure 7: Average achieved write throughput with increasing 

number of benefactors. 

 

D. Effect of file size 

Figure 8 shows the effect of file size on the throughput. 

Note that when adding the accountability feature, the 

throughput ramps up much slowly because of the need to 

produce chunk receipts by the benefactors which involves 

 

Figure 4: Average observed and achieved write 

throughput for one client and four benefactors. 

 



hashing the chunks and encrypting the hash, among other 

parameters, using the private key of the benefactor. 

Achieved Throughput (Eight Benefactors)

0

20

40

60

80

100

120

1 2 4 8 16 32 64 128 256 512 1024

File Size (MB)

T
h

ro
u

g
h

p
u

t 
(M

B
/S

e
c

)

Original

Authentication

Authentication +

Integrity

Authentication +

Integrity + Accountability

 

Figure 8: Average achieved write throughput with 

increasing file size. 

 

VII. RELATED WORK 

Networked File System (NFS) [5] is one of the most 

popular distributed file systems. The early versions of NFS 

implement a very weak security model. NFS relies on the IP 

address to authenticate the client hosts making it vulnerable to 

address forgery; moreover, the system relies on the client 

machine to authenticate the user making it vulnerable to any 

user who has compromised the client machine. The new 

version of the protocol, NFSv4, dictates many new changes to 

the previous versions. For example, it mandates the use of 

Kerberos V5 support for user authentication.  

Andrew File System (AFS) [6] was developed to provide a 

scalable file system. AFS uses Kerberos for authentication and 

implements access control lists on directories for users and 

groups.  

Self-certifying File System (SFS) [7] is a global and 

decentralized distributed file system. SFS provides transparent 

encryption of communication and authentication. It is 

designed to operate securely between separate administrative 

domains. 

VIII. CONCLUSION 

This paper presents a threat model and a design and 

implementation of a secure protocol for FreeLoader 

distributed file system. We have presented a security analysis 

for the protocol and performance evaluation that shows 

reasonable performance degradation in small deployments, 

and close to original performance in larger deployments. 

 

REFERENCES 

[1] Vazhkudai, S.S.; Xiaosong Ma; Freeh, V.W.; Strickland, 

J.W.; Tammineedi, N.; Scott, S.L., "FreeLoader: 

Scavenging Desktop Storage Resources for Scientific 

Data," Supercomputing, 2005. Proceedings of the 

ACM/IEEE SC 2005 Conference, vol., no., pp. 56-56, 

12-18 Nov. 2005. 

[2] Hasan, R., Myagmar, S., Lee, A. J., and Yurcik, W. 

2005. Toward a threat model for storage systems. In 

Proceedings of the 2005 ACM Workshop on Storage 

Security and Survivability (Fairfax, VA, USA, 

November 11 - 11, 2005). StorageSS '05. ACM, New 

York, NY, 94-102. 

[3] S. Myagmar, A. J. Lee, and W. Yurcik. Threat Modeling 

as a Basis for Security Requirements (SREIS). In 

Symposium on Requirements Engineering for 

Information Security, 2005. 

[4] F. Swiderski and W. Snyder. Threat Modeling. 

Microsoft Press, 2004. 

[5] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. 

Eisler, D. Noveck, D. Robinson, and R. Thurlow. The 

NFS version 4 protocol. SANE 2000, May 2000. 

[6] J. Howard. An overview of the Andrew file system. In 

Proceedings of the USENIX Winter Technical 

Conference, Dallas, TX, February 1998. 

[7] M. Kaminsky, G. Savvides, D. Mazie´res, and M. F. 

Kaashoek. Decentralized user authentication in a global 

file system. In Proceedings of the 19th ACM 

Symposium on Operating Systems Principles, 2003. 

[8] FUSE, Filesystem in Userspace, 

http://fuse.sourceforge.net/. 2008. 

[9] Ballardie, T. and J. Crowcroft, “Multicast-Specific 

Security Threats and Counter-Measures,” Symposium on 

Network and Distributed System Security, February 

1995. 

[10] Tucek, J.; Stanton, P.; Haubert, E.; Hasan, R.; 

Brumbaugh, L.; Yurcik, W., "Trade-offs in protecting 

storage: a meta-data comparison of cryptographic, 

backup/versioning, immutable/tamper-proof, and 

redundant storage solutions," Mass Storage Systems and 

Technologies, 2005. Proceedings. 22nd IEEE / 13th 

NASA Goddard Conference, pp. 329-340, 11-14 April 

2005. 

[11] J. G. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: 

An authentication service for open network systems,” in 

Proc. USENIX Winter Conf., Feb. 1988, pp. 191–202. 

[12] GNU Generic Security Service Library, 

http://www.gnu.org/software/gss/manual/index.html. 

2008. 

[13] Butler, R.; Welch, V.; Engert, D.; Foster, I.; Tuecke, S.; 

Volmer, J.; Kesselman, C., "A national-scale 

authentication infrastructure," Computer, vol.33, no.12, 

pp. 60-66, Dec 2000. 

[14] I. Foster and C. Kesselman. Globus: A Metacomputing 

Infrastructure Toolkit. International Journal of 

Supercomputer Applications, 11(4):115-128, 1997. 

[15] SimpleCA, A simple certificate authority, 

http://www.vpnc.org/SimpleCA/. 2008. 

[16] http://www-unix.globus.org/toolkit/security/. 2008. 

[17] Pearlman, L., Welch, V., Foster, I., Kesselman, C., and 

Tuecke, S. 2002. A Community Authorization Service 

for Group Collaboration. In Proceedings of the 3rd 



international Workshop on Policies for Distributed 

Systems and Networks (Policy'02) (June 05 - 07, 2002). 

POLICY. IEEE Computer Society, Washington, DC, 50. 

[18] stdchk: A Checkpoint Storage System for Desktop Grid 

Computing, Samer Al-Kiswany, Matei Ripeanu, 

Sudharshan Vazhkudai, Abdullah Gharaibeh, 

International Conference on Distributed Computing 

Systems (ICDCS 08), Beijing, China, June 17-20, 2008. 


