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Abstract Good robot performance often relies upon the
selection of design parameters that lead to a well conditioned
Jacobian or impedance “design” matrix. In this paper, a new
design matrix normalization technique is presented to handle the
problem of non-homogeneous physical units and to provide a
means of specifying a performance based design goal. The
technique pre- and post-multiplies a design matrix by scaling
matrices corresponding to a range of joint and task-space
variables. The task-space scale factors are used to set relative
required strength or speed along any axes of end-point motion
while the joint-space scale factors are treated as free design
parameters to improve isotropy through non-homogeneous
actuation. The effect of scaling on actual designs is illustrated by a
number of design examples using a global search method
previously developed by the authors.

I.  INTRODUCTION

Many robot design variables such as structure (serial vs.
parallel), geometry, actuators (rotary vs. prismatic) and
reduction ratios contribute to the way a robot behaves.
Unfortunately, any change that enhances one performance
attribute will almost always detract from another. Stiffness, for
example, is improved by using a parallel robot instead of a
serial robot but workspace size suffers. This trade-off that
occurs with virtually every design variable suggests that a
universally optimum device does not exist. Optimality only
exists in the context of a specific application since different
applications make different performance demands. This paper
describes how a robot can be designed for a particular
application by integrating application specific performance
requirements into the performance function. It shows how to
specify desired relative capabilities with respect to individual
workspace dimensions and how to improve the solution
through non-homogeneous actuation. The technique also
normalizes physical units to ensure a meaningful result.

Methods for handling non-uniform workspace dimensions
have been suggested by Gosselin [6], Tandirci et al [14],
Angeles [1], Ma and Angeles [10], Angeles et al [2] and Doty
et al [4]. They address the problem pointed out by Lipkin and
Duffy [9] that a measure such as the condition number of the
Jacobian matrix is of little practical significance in the presence
of non-uniform physical units. This occurs when a robot can
both translate and rotate its end-effector or when it contains
both rotary and prismatic actuators. To accommodate this,
Gosselin [6] defines a new Jacobian that transforms actuator
velocities into the linear velocities of two points on the end-
effector. He does not, however, indicate how one should choose
these points. Tandirci et al [14] normalize the Jacobian by
dividing a “Characteristic Length” (CL) out of all translational

elements. The CL that produces the best performance measure
is dubbed the “Natural Length” (NL) by Ma and Angeles [10]
and is used for design optimization. When the NL of a platform
manipulator is not derivable, it is approximated by the average
platform radius. Angeles [1] calculates the NL for a serial
manipulator by averaging the distances between the operating
point and all active joint axes while Angeles et al [2] find a
serial manipulator’s NL by making it a free design parameter.
Doty et al [4] propose a method of inverting non-square
matrices with mixed physical units so that the solution is both
unit and frame invariant. The method achieves physical unit
consistency but does not differentiate between quantities with
similar units but dissimilar magnitudes.

Although much past work (i.e. Doty et al [4]) suggests that
scaling matrices possess an arbitrary quality when used to
address the unit inconsistency problem, it is argued here that
scaling is not arbitrary if the intended use of the device is not
arbitrary. It is shown here that when a specific performance
goal exists, the choice of scale factors greatly affects the
performance measure and, if chosen properly, can result in a
drastic improvement in performance. The scaling matrices
proposed here remove all physical units and enable one to
specify the desired performance of a device and solve for its
optimum actuator sizes. This method is the first of its kind to
simultaneously consider both geometric and actuator
parameters in robot design optimization. It is demonstrated
through the use of a relevant, workspace inclusive, global
performance measure and an optimization algorithm
previously developed by the authors to make meaningful
comparisons of different robot devices.

Section II of this paper discusses the definition of global (i.e.
workspace inclusive) isotropy and the optimization algorithm
that is used in all design examples. Section III describes the
proposed scaling matrices that are the focus of this paper. The
task-space scaling matrix and its effect on robot design is
described in Section IV, while the joint-space scaling matrix is
described in Section V with a summary and conclusions in
Section VI.

II.  OPTIMIZING FOR GLOBAL ISOTROPY

Many relationships exist for quantifying robot performance.
They include, but are not limited to, the Jacobian J(x) (1) that
relates actuator rates  to end-effector velocity , its transpose
(2) which relates end-effector force/torque to actuator
force/torque τ and the impedance  (3) presented by the
robot to its environment where  might contain mass,
stiffness and damping terms.
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Relationships (1) to (3) are matrix transformations that are
functions of x (i.e. position dependent) and are non-diagonal
(i.e. direction dependent) in general. Minimizing the non-
uniformity associated with these dependencies is often the
primary goal in robot design optimizations. For example, one
would like the velocity of a welding robot to be accurate and
consistent. It should, therefore, have an isotropic (i.e. direction
independent) Jacobian (1) that does not change much at any
position in its workspace.

While there are many ways to measure isotropy, a number of
which are discussed in [8], the most common is the condition
number which describes worst-case behaviour at a position. In
the case of the Jacobian, the condition number (ratio between
the largest and smallest singular values) describes the ratio
between the highest and lowest effective transmission ratios
occurring in all directions. For consistency, accuracy, direction
independence and maximum distance from kinematic
singularities, this ratio should be as close as possible to unity.
The condition number approaches infinity as the robot nears a
singular position and has a value of one when the robot is
perfectly isotropic.

Isotropy is evaluated here using the “Global Isotropy Index” or
GII (4) which is a more stringent measure than the condition
number since the GII is workspace-inclusive whereas the
condition number is position dependent. The GII, evaluated for
a robot design parameter p, is the ratio between the smallest
and largest singular values in the workspace W and is defined
between 0 and 1 corresponding to singular behaviour and
perfect isotropy, respectively.

For an underactuated or redundant robot with a non-square
design matrix, a GII similar to (4) can also be defined, but this
is beyond the scope of this paper.

To obtain a position independent worst-case optimum, the
computational requirements of global searching and the
difficulty of integrating over the workspace [7] are avoided by
using the Culling algorithm described in [12], [13] to
maximize the GII. The Culling algorithm is a discrete minimax
optimization algorithm that requires no prior knowledge or
prediction of function values but relies solely on explicit
function evaluations. It finds the parameter  (5) that
produces the best GII within a discrete parameter space P:

It starts by placing conservative upper (6) and lower (7) bounds
on the minimum and maximum singular values for each

parameter in the parameter space. In (6) and (7) the overbar
and underscore represent upper and lower bounds.

It then computes the actual minimum and maximum singular
values and GII for an arbitrarily chosen parameter  by
computing its singular values at all positions in the workspace.
The positions  and  which minimize and maximize the
singular values of  and  are then used to
compute the singular values for all other parameters in . This
lowers the upper bound  and raises the lower bound

. All parameters whose ratio of bound values are less
than the GII of  cannot be the global optimum (8) and are
culled from the parameter space .

The actual minimum  and maximum
 singular values and GII are computed for

the parameter with the largest bound ratio. If this parameter has
a superior GII, it replaces . Regardless of its GII, the
positions  and  which minimize and maximize the singular
values are used to adjust the upper and lower bounds of the
remaining parameters and the process is repeated. When all but
one parameter have been eliminated by (8), the remaining
parameter is, by default, the global optimum.

Note that the discrete parameter  is a vector containing any
number of physical design parameters with a parameter space

 that spans all possible combinations within prescribed upper
and lower limits and sampling resolutions. Therefore, the
Culling algorithm places no limit on the number of free
variables. It can also be used with any performance function, is
insensitive to initial conditions and has been found to be
extremely efficient at solving robot optimization problems
[12], [13].

For all design examples in this paper, the Culling algorithm is
used to optimize the GII of the Jacobian J(x) in (2) with task-
space requirements specified in terms of forces and torques.

III.  PERFORMANCE BASED MATRIX SCALING

Lipkin and Duffy [9] point out that the condition number of the
Jacobian holds little practical significance when its elements
have non-uniform physical units. This occurs when a robot is
capable of both translating and rotating its end-effector or
when it is comprised of both rotary and prismatic actuators.
Furthermore, even when physical units are uniform, the
singular values only evaluate the uniformity of actuator
responsibilities given a task-space event of unit magnitude and
arbitrary direction. They do not address the more general case
of non-uniform actuator capabilities and/or task-space
responsibilities. To remove this limitation, a more general
description of desired robot performance is formulated and a
conformity measure is derived.
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A common robot design criteria is isotropy of end-point forces.
For the sake of simplicity, assume that only forces  (i.e. no
torques) are produced at the end-effector and that only torques

 are generated by the actuators (i.e. all rotary actuators) so
that physical units are homogeneous. The more general case
will be considered later. A robot is said to have an isotropic
force profile at a position if the length of the joint-space torque
vector (RMS value of all joint torques) is constant for any task-
space force of unit magnitude. A perfectly isotropic force
profile is, therefore, illustrated by the mapping shown in Fig.
1a. The ratio of singular values of a robot’s Jacobian  at a
position  describes how closely  approximates the
transformation shown in Fig. 1a.

Fig. 1a is representative of an ideal isotropic mapping only if
the intended use of the manipulator demands forces of equal
magnitude in all directions. For some applications, it may be
preferable that the robot be capable of larger forces along one
axis than it is along another (e.g. a device affected by gravity).
The ideal force/torque transformation for a device with non-
homogeneous task-space force requirements would map an
ellipse in task-space into a circle in joint-space. A mapping
such as this would suggest that the kinematic chain has a
mechanical advantage along the direction corresponding to the
major axis of the task-space ellipse. Of course, the axes of the
desired task-space force ellipse may not align with the
coordinate system of the design matrix task-space variables
resulting in a desired transformation shown in Fig. 1b.

Fig. 1b is representative of an ideal isotropic mapping only if
the actuators have uniform torque capabilities. If the actuators
have different torque capabilities, the stronger of the two would
be under-utilized. Fig. 1b would, therefore, be undesirable for
most serial manipulators since they typically use actuators of
various sizes. Full actuator utilization would require that the
task-space ellipse be mapped into a joint-space ellipse as
shown in Fig. 1c, where the major axis of the joint-space
ellipse aligns with the axis of the stronger actuator. Note that as
long as there is no cross-coupling between actuators, the axes
of the joint-space torque ellipse always align with the joint-
space coordinate frame. Fig. 1c, therefore, illustrates a general
representation of an ideal task-space to joint-space mapping
given variations in both task-space requirements along
different directions and individual actuator capabilities. Note
that a similar argument is easily applied to non-uniform
velocity, acceleration, resolution, and other task and joint-
space quantities.

Conformance of a robot’s Jacobian to a desired mapping
between two ellipsoids such as that shown in Fig. 1c cannot be
determined by singular values alone. If, however, a new
transformation matrix  is derived that transforms
percentages of maximum values (i.e. , ) rather than the
actual values themselves (i.e. , ), even the more general
representation of desired isotropic behaviour such as that
shown in Fig. 1c takes on the familiar form shown in Fig. 1d
since percentages are always unity bounded.

The GII of the transformation in Fig. 1d is easily computed
from the minimum and maximum singular values in the
workspace which corresponds to the ratio of the inner to outer

radius of the object formed by superimposing all of the
percentage torque ellipses in the workspace on top of one
another. The GII ensures that all percentage torque ellipses are
similar in both shape and size.

The normalized transformation matrix  is computed by
separating the vectors of task-space forces and joint-space
torques (2) into diagonal scaling matrices (  and ) with
maximum values along the diagonal, a task-space rotation
matrix  which rotates the desired force ellipse’s axes into
the design matrix’s task-space coordinate frame, and vectors
(  and ) of unity bounded percentages (9). Because all
scaling matrices are pulled from the task and joint-space
vectors (  and ), ,  and  are  matrices where

 is the number of active degrees of freedom and  is an
 matrix where  is the number of actuators. This holds

regardless of whether  is square or whether the device is
over or under-actuated. (9) is rearranged in (10) using
definition (11) to derive the normalized transformation matrix

 (12).

For a two dimensional robot, , , ,  and  are
expanded in (13) through (17) where  and  are the
maximum desired forces along the  and  axes which define
a reference frame rotated  radians from the  and  axes,
and  are the maximum torque capabilities of actuators 1 and
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2,  and  are the percentages of maximum force along
the  and  axes and  and  are the percentages of
maximum torque of actuators 1 and 2.

Note that  may not be static as shown in (13). For example,
it is configuration dependent if the task-space performance
specifications are specified in end-effector coordinates. On the
other hand, if the performance specifications are specified in
base coordinates, (i.e ),  becomes the identity,
becomes diagonal (18) and  and  become equal to  and

 (19):

Since the homogeneous Jacobian  (12) transforms
percentages into percentages, it is unitless and easily adapted
to the more general case where mixed physical units are
originally present .  Consider,  for  example,  a  6-DOF
manipulator with rotary odd numbered joints and prismatic
even numbered joints. , , ,  and  are shown in
equations (20) through (24) where R is the  rotation
matrix which rotates the desired force ellipse axes into the
design matrix task-space coordinate frame. Note that desired
torques specified about a point non-collocated with the
reference end-point results in off-diagonal terms in  (20).

Although the Jacobian is used here for design examples, the
 and  matrices can be used to normalize and scale any

transformation matrix such as (1) or (3) but will contain
quantities other than forces and torques. For example, to
normalize a mass matrix D(x) (25) (i.e.  (26)),
contains maximum end-effector forces/torques and
contains maximum end-effector accelerations (27). Note that in
(27),  contains maximum end-effector forces which are task-

space quantities. Therefore,  is really a second task-space
matrix. Its notation is maintained for the sake of simplicity.
Similarly, to normalize the velocity Jacobian  (1),
contains maximum joint rates while  contains maximum
end-effector velocities.

Note that scalar multiples do not affect ratios of singular values
so one element of  and  can be factored out with the
remaining elements representing relative values. Also note that
these matrices are easily adapted to serial manipulators by
rearranging their order (30) to account for the way the Jacobian
is normally defined for a serial mechanism (28):

IV.  THE TASK-SPACE SCALING MATRIX: ST

The task-space scaling matrix  is used to define the desired
task-space performance capabilities of the device. Consider,
for example, the three degree-of-freedom (3-DOF) parallel
planar manipulator shown in Fig. 3. The geometry of the
device is described by five design parameters,  through
and  and the workspace of the device is constrained by two
translational, ,  and one rotational limit . Although
additional geometric parameters exist for this robot, they are
fixed (i.e. 120˚ separation between actuators on the platform
and the base) to make parameter optimization more
manageable. The Jacobian matrix of the manipulator in Fig. 3
is defined by (31) and is computed using equations (48)
through (59) in Appendix A, part A.

Since isotropy always improves when the radius of the base is
increased,  is fixed at 20cm. The robot parameters  through

and  are found to optimize the GII inside a square
workspace ( ,  = ±5cm,  = ±30˚). To observe the
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effect of different task-space requirements on the optimum
geometry, the optimization is carried out many times using
different  matrices. In all cases, the force requirements are
kept equal in both directions while the torque requirements are
va r i ed .  S ince  equa l  f o r ce  r equ i r emen t s  make
inconsequential, it  is set to the identity. Substituting

 into the maximum force/torque vector  in
(32) and dividing through by  (ratios of singular values are
invariant to scalar multiples) produces the  matrix shown in
(33). For  varied between 0.1cm and 10.0cm, the
optimum geometries and GIIs are shown in Fig. 4.

The optimum platform offset angle  stays relatively constant
at approximately 90˚ and the platform is nearly equilateral in
all cases. Its size increases linearly with  which is, on
average, 1.27 times the mean platform radius. This is expected
since a larger platform radius provides the actuators with
additional leverage on the platform centre and increases the
task-space torque capabilities . Fig. 4, therefore,
supports the proposition that assigning values to the  matrix
in accordance with a desired task-space performance
specification produces a device that is particularly well suited
to that performance specification.

Note that since  (33) places equal weighting upon all
translational elements and all rotational elements, it is a special
case that is mathematically equivalent to scaling by a
Characteristic Length (CL) [14] equal to . If one was
to disregard the scale factor (i.e. the CL or ), as done in
the past, one would be led to conclude that the platform radius
corresponding to the NL (CL of 0.7cm which maximizes the
GII in Fig. 4) represents a globally optimum solution and that
any two designs with similar GIIs should have similar
performance characteristics. This obviously cannot be true
since a platform radius of 5.3cm is clearly capable of higher
torques than a platform radius of 0.4cm, but both produce the

same GII. Thus, as expected, the optimum mechanism design
varies significantly with the performance specification that is
described by the scale factor(s) which, therefore, must not be
ignored.

Since the  matrix does not just normalize physical units but
also specifies a performance goal, it has practical application in
all task-space dimensions, not just those with dissimilar
physical units. Consider, for example, an assembly robot that
lifts a part onto a shaft and locks it in place. Translational force
requirements are not  homogeneous since horizontal
positioning forces need only address the mass of the payload
while vertical positioning forces must also overcome gravity.
The torque requirements are different still and correspond to
the torque needed to lock the part into place. An example
matrix that accounts for an angle of  between the
manipulator’s  axis and the real world’s vertical ( ) axis is
shown in (34) and an example  matrix for the requirements
in (35) is shown in (36) which are used to re-optimize the robot
in Fig. 3. Note that the  matrix (37) produced from  (34)
and  (36) scales both translational and rotational elements
and is not mathematically equivalent to multiplication by a CL.

The optimum robot geometry has , ,
 and  with a GII of 0.158. Unlike the

devices described in Fig. 4, the optimum geometry for this
application (shown in Fig. 5a) has asymmetric platform
dimensions. This solution is not obvious and illustrates the
power of the  matrix to tailor robot design parameters
toward satisfying arbitrary task-space requirements. Note from
Fig. 5b that if the task-space requirements are mirrored across
the manipulator’s  axis ( ), the optimum geometry

, , ,  produces an
identical GII (0.158). This is the mirror image of the original
solution, just as one would expect. Any other rotation angle,
however, produces a completely different optimum geometry
(e.g. , , , ,  GII  =
0.155 for ) as shown in Fig. 5c.

V.  THE JOINT-SPACE SCALING MATRIX: SJ

The joint-space scaling matrix  is used to find the optimal
actuators for a device. This accounts for a fundamental
difference between  and .  is a means of defining good
performance while  is a means of achieving good
performance. The  matrix, therefore, contains free design
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parameters that can be chosen simultaneously with geometric
design parameters to arrive at the optimum solution.

To illustrate this, the robot design of Fig. 3 is re-visited using
the  matrix in (37) with  derived from the maximum
actuator force vector  shown in (38) where  through
are the maximum force capabilities of actuators 1 through 3.
Dividing out a constant  produces the  matrix in (39).
With  and  treated as free design parameters, an
optimum geometry with , ,  and

, optimum actuator scale factors of
and , and a GII of 0.22 is obtained. Recall that
the optimum GII was only 0.158 when the  matrix was not
included (i.e. homogeneous actuators). A diagram of the
optimized device with the proposed actuator scaling is shown
in Fig. 5d.

Although the  matrix (i.e. non-homogeneous actuation)
improved the GII of the parallel manipulator by a substantial
39%, it is even more effective with serial manipulators. In
practice, serial manipulators rarely use the same actuators
throughout because torque requirements tend to diminish for
actuators distal to the base. It is for this same reason that they
often produce dismal condition numbers since neglecting to
include an  matrix evaluates the device as though it is fitted
with homogeneous actuators. Consider, for example, the 3-
DOF planar serial manipulator shown in Fig. 6 which has three
design parameters,  through . The Jacobian matrix of the
manipulator in Fig. 6 is defined by (40) and is computed using
equations (60) through (66) in Appendix A, part B.

The workspace is centred a fixed distance y0 of 5cm above the
base actuator q1 and the robot parameters  through  are
found to optimize the GII inside a square workspace ( ,
= ±5cm) at any angle ( = ±180˚). The force requirements
along the  and  axes are kept equal ( ) while

the torque requirements  are varied using the  matrix in
(33) (i.e. identity  matrix). The results are shown in Fig. 7.

The GII in Fig. 7 peaks at 0.163 and drops to 0.006 at low
 ratios. These results suggest that the serial device is

unsuitable for applications with low torque requirements
regardless of its geometry. These poor results, however, are not
due to an intrinsic deficiency of the device but are largely due
to inappropriate actuation. Performance is significantly
improved by including the  matrix with free variables along
the diagonal as shown in (41). Note that the  matrix in (41)
is normalized with respect to  since  is likely to have the
lowest torque requirements since it is furthest from the base.

Re-optimizing the serial robot with the two additional free
parameters in (41) results in the design presented in Fig. 8.
Notice the improvement in GII values which now vary from
0.17 to 0.28 with stronger actuators at the q1 and q2 joints. The
non-homogeneously actuated device actually turns in its best
resu l t s  a t  low  ra t ios  wi th  an  up  to 46 - fo ld
improvement in its GII over its homogeneously actuated
counterpart.

Actuator scaling can cause physical dimensions (i.e.  and )
to grow without bound since this is analogous to shrinking the
workspace size which has a favourable effect on isotropy. To
avoid this when designing devices with inhomogeneous
actuators, physical constraints must be imposed. In Fig. 8,

Fig. 5.  Asymmetric 3-DOF Planar Parallel Manipulator
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physical dimensions are limited to 10cm so that a fair
comparison can be made with Fig. 7. In practice, one might
choose to fix the actuator ratios in accordance with practical
considerations such as availability, size or weight. For
example,  is fixed at twice  and  is fixed at twice  by
using the  matrix shown in (43). Using the non-homogenous
task-space requirements described by the  matrix in (42),
the optimum geometry has ,  and
with a GII of 0.104.

One might also fix both  and  when optimizing an
impedance (3) or mass matrix (26) since both sides of the
equation contain task-space quantities. Consider, for example,
the 2-DOF planar serial manipulator shown in Fig. 6 which has
two design parameters,  and . The mass matrix D is
computed using equations (67) through (71) in Appendix A,
part C and is scaled using (44) and (45).

By assigning  to the identity, the desired effective masses
along  and  can be specified by assigning  to the desired
acceleration for an applied unit force. The results of three
example optimizations are shown in Table I with ,  =
±5cm and y0=5cm. A linkage mass of 10 g/cm and an actuator
mass of 50 g are used to compute D.

The resulting GIIs show that the device is well suited to having
uniform mass or to be lighter along  than it is along  but is
not easily made lighter along  than it is along .

Because  is typically used to remove the physical units from
joint-space, it ensures a meaningful result even when a
manipulator combines rotary and prismatic actuators.
Consider, for example, the 3-DOF serial manipulator shown in
Fig. 9 which has only one geometric design parameter .
Since q2 applies a force rather than a torque, it is optimized
using the  matrix shown in (46). The Jacobian matrix of the
manipulator in Fig. 9 is defined by (47) and is computed using
equations (72) through (76) in Appendix A, part D.

For ,  = ±5cm , = ±180˚ ,  y0=5cm and the
force/torque requirements in (42), the optimum robot has  =
0cm ,  and  with a GII of
0.203. This robot shows a significantly (95%) better GII than
the homogeneous serial arm (Fig. 6) but in practice may suffer
from larger inertia due to its prismatic upper-arm.

VI.  DISCUSSION

By converting explicit joint and task-space values into scaling
matrices of maximum values and vectors of percentages, a
meaningful and dimensionless condition number is derived
from the singular values of the normalized Jacobian or other
(i.e. mass, impedance) performance matrix. The scaling
matrices,  and , remove physical units from both the task
and actuation spaces, provide a means of specifying desired
behaviour along each task-space dimension and provide a
means of scaling actuators for improved performance.
Optimization of the scaled, unitless performance matrix (i.e. ,

, , etc.) ensures that the task-space specifications are
optimally satisfied using the best choice of robot actuators.

It is shown by example that the optimum geometry is adjusted
predictably by different  matrices when the performance
implications of different geometries are self-evident. It is,
therefore, concluded that the  matrix does, in fact, have the
proposed effect on robot designs and shows great potential for
selecting robot parameters in cases where no such obviousness
exists.

Table I
Inertial Optimization Results for RR Manipulator

Desired Acceleration Optimum

i axis j axis l1 l2 GII

1.0 1.0 7.9 8.7 0.096

1.5 1.0 7.5 8.9 0.069

1.0 1.5 8.7 8.3 0.082

Fig. 8.  Optimum Scaled Serial Manipulator
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It is also shown by example that the  matrix can be used to
scale individual actuator capabilities to improve performance.

 is shown to be insensitive to mixed physical units in joint-
space and is demonstrated to be most effective when designing
serial devices. Improvements in the isotropy index of up to two
orders of magnitude have been observed as a direct result of
actuator scaling.

VII.  Appendix A

A. Jacobian of Planar Parallel Manipulator

The Jacobian (31) of the planar parallel manipulator in Fig. 3 is
computed from (48) using the terms defined in (49) through
(59) and the origin and frame assignments shown in Fig. 10.

B. Jacobian of Planar RRR Serial Manipulator

The Jacobian (40) of the planar serial manipulator in Fig. 6 is
computed from (60) using the terms defined in (61) through
(66) and the origin and frame assignments shown in Fig. 11
where all joint angles are set to zero.

C. Mass Matrix of Planar RR Serial Manipulator

In [3] a mass matrix  (67) is computed for an RR serial
elbow manipulator (68) where m1 and m2 are point masses
located at the ends of link l1 and l2 respectively.  is
transformed from joint space (67) to task-space (69), (70)
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Fig. 10.  Frames of Planar Parallel Manipulator
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using the Jacobian (71) from [11] and the assumption that the
derivative of the Jacobian is small enough to be neglected.

D. Jacobian of Planar RPR Serial Manipulator

The Jacobian (47) of the planar serial manipulator in Fig. 9 is
computed from (72) using the terms defined in (73) through
(76) and the origin and frame assignments shown in Fig. 12
where all joint angles are set to zero.

ACKNOWLEDGEMENT

This work was supported by the Canadian IRIS Network of
Centres of Excellence projects, HMI-6 and IS-8 and a
scholarship from the Natural Sciences and Engineering
Research Council of Canada (NSERC).

REFERENCES

[1] J. Angeles, “Kinematic Isotropy in Humans and Machines”, Proc.
IFToMM 9th World Cong. Theory of Mach. & Mech. (Milan, Italy), V. 1,

pp. XLII-XLIX, Aug. 29 - Sept. 2, 1995.
[2] J. Angeles, F. Ranjbaran, R.V. Patel, “On the Design of the Kinematic

Structure of Seven-Axes Redundant Manipulators for Maximum
Conditioning”, Proc. IEEE Int. Conf. Robotics & Auto. (Nice, France),
pp. 494-499, May 10-15, 1992.

[3] J.J. Craig, “Introduction to Robotics Mechanics and Control”, 2nd Ed.,
Addison-Wesley, 1989.

[4] K. Doty, C. Melchiorri, C. Bonevento, “A Theory of Generalized
Inverses Applied to Robotics”, The Int. J. of Robotics Res., V. 12, No. 1,
pp. 1-19, Feb. 1993.

[5] J .  Doyle ,  “Analys is  of  Feedback Systems wi th  St ructured
Uncertainties”, IEE Proc., V. 129, Pt. D, No. 6, Nov. 1982.

[6] C. Gosselin, “Dexterity Indices for Planar and Spatial Robotic
Manipulators”, Proc. IEEE Int. Conf. Robotics & Auto. (Cincinnati,
Ohio), pp. 650-655, May 13-18, 1990.

[7] C. Gosselin, J. Angeles, “A Global Performance Index for the
Kinematic Optimization of Robot Manipulators”, Trans. ASME, J.
Mech. Des., V. 113, pp. 220-226, Sept. 1991.

[8] J-O. Kim, P.K. Khosla, “Dexterity Measures for Design and Control of
Manipulators”, Proc. IROS ‘91, IEEE/RSJ Int. Workshop Intell. Robots
& Sys. (Osaka, Japan), pp. 758-763, Nov. 3-5, 1991.

[9] H. Lipkin, J. Duffy, “Hybrid Twist and Wrench Control for a Robotic
Manipulator”, Trans. ASME, J. Mech., Trans. & Auto. in Design, V. 110,
pp. 138-144, June 1988.

[10] O. Ma, J. Angeles, “Optimum Architecture Design of Platform
Manipulators”, Proc. IEEE Int. Conf. Advanced Robotics, 1991.

[11] M.W. Spong, M. Vidyasagar, “Robot Dynamics and Control”, John
Wiley & Sons, 1989.

[12] L. Stocco, S.E. Salcudean, F. Sassani “Fast Constrained Global
Minimax Optimization of Robot Parameters”, Robotica, V. 16, pp. 595-
605, 1998.

[13] L. Stocco, S.E. Salcudean, F. Sassani “Mechanism Design for Global
Isotropy with Applications to Haptic Interfaces”, Proc. ASME Winter
Annual Meeting. (Dallas, Texas), V. 61, pp. 115-122, Nov. 15-21, 1997.

[14] M. Tandirci, J. Angeles, F. Ranjbaran, “The Characterstic Point and the
Characteristic Length of Robotic Manipulators”, Proc. ASME 22nd

Biennial Conf. Robotics, Spatial Mechanisms & Mech. Sys. (Scotsdale,
Arizona), V. 45, pp. 203-208, Sept. 13-16, 1992.

D'
d'11 d'12

d'21 d'22

=

(67)

(68)

(69)

(70)

(71)

d'11 l2
2
m2 2l1l2m2 q2( )cos l1

2
m1 m2+( )+ +=

d'12 d'21 l2
2
m2 l1l2m2 q2( )cos+= =

d'22 l2
2
m2=

J
l1– q1( )sin l2 q1 q2+( )sin– l– 2 q1 q2+( )sin

l1 q1( )cos l2 q1 q2+( )cos+ l2 q1 q2+( )cos
=

τ D' q̇̇=

f Dẋ̇=
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