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Toward Relative Mass With a Pulley-Based
Differential Transmission

Leo J. Stocco, Member, IEEE, and Matthew J. Yedlin, Member, IEEE

Abstract—In the well-known electromechanical analogy that
converts between electrical and mechanical system representa-
tions, mass is the dual of a grounded capacitor. Consequently, any
electrical circuit that contains ungrounded capacitors, such as a
filter, does not have a mechanical equivalent. A new mechanical
system element representing a pulley-based differential transmis-
sion is proposed, which, when connected to a mass, is shown to
simulate a capacitor in the general case. This new differential mass
model provides an additional conceptual framework to model com-
plex mechanical systems such as robotic manipulators.

Index Terms—Dual, electromechanical system analogy,
grounded capacitor, relative mass, system model.

I. INTRODUCTION

EQUIVALENT circuit modeling in mechanical, electri-
cal, and electromechanical circuits has its origins in the

Maxwell model of solids and the development of the concept
of impedance and its generalization, reactance. The idea of de-
composing driving-point impedances into terms that represent
simple electrical elements began with Foster [1] with the con-
cept that the poles and zeros of a reactance function determine
its frequency response. In 1931, Brune [2] described the condi-
tions for network synthesis, given a positive real matrix rational
impedance or admittance function. The application of network
synthesis, in the context of circuit simulation (both electrical and
mechanical), was introduced by Paynter [3] with the introduc-
tion of bond graphs and the concept of effort and flow variables
implemented in a graphical setting. Bond graph theory and ap-
plication have continued to develop, with the classical systems
dynamics text by Karnopp et al. [4], the book by Wellstead [5],
and enhanced application and theoretical developments [6], [7].
With the advent of computer technology, in particular, object-
oriented modeling, simulation languages have been developed
and applied to the bond graph methodology [8]–[10]. The ap-
plication of engineering electromechanical system simulations
is numerous, and it includes magnetic circuits [11], mechatron-
ics, and electromechanical transducers [12], [13]. Extensions to
descriptions of classical engineering systems via the graphical
representation of the underlying differential equations include
the comparison of different methodologies to model multibody
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systems [14], synthesis of active elements for mechanical sys-
tems [15] and microelectromechanical systems [16], and, most
recently, the application of differential geometry and Hamil-
tonian dynamics to the creation of a power-conservative geo-
metric structure [17]. The efficacy of the application of com-
prehensive engineering system modeling technology cannot be
overlooked in the pedagogical context, given the increased as-
similation of material that is required in current engineering
curricula [18], [19].

A proposal to derive a relative mass model and apply it to
the modeling of robot manipulators was originally presented by
Stocco and Yedlin [20]. A more complete development of the
idea is presented here by starting with the often neglected refer-
ence terminal of the mass symbol and interpreting the problem
as a need for a mechanical isolation transformer. It is then shown
that the proposed model enables one to implement a fundamen-
tal system, such as a mechanical bandpass filter, which would
not otherwise be possible. Finally, more complete robot exam-
ples are presented here that include fewer simplifications than
in the previous work. Note from the examples presented that
the proposed relative mass model provides no new capabilities
that do not already exist with electrical circuit models or bond
graphs. This proposal merely gives a similar level of freedom to
those with a personal preference for mechanical system models.

Section II of this paper describes conventional electrome-
chanical analogies and points out a shortcoming in the mass
model. In Section III, a new pulley-based differential transmis-
sion model is proposed that can be added to the mass model
to overcome its shortcoming. Section IV shows how the differ-
ential mass can be used to represent mass properties of robot
manipulators with off-diagonal terms in their mass matrices,
while Section V presents concluding remarks and suggests other
applications of this study.

II. MOTIVATION

The ability to define an electromechanical equivalent circuit
has important applications in electrical circuit analysis, me-
chanical system analysis, and electromechanical system design.
It can be used to represent a hybrid electromechanical system as
a pure electrical circuit that can then be simulated by a circuit
analysis tool such as SPICE. It is also a potent teaching tool
since it spans two seemingly dissimilar areas of study with a
common set of fundamentals. The background behind the tech-
nique can be found in a large number of textbooks (see [21] for
example) on system modeling and control.

The idea stems from the parallelism in the differential equa-
tions that describe electrical and mechanical systems, each of
which involve an across variable, a through variable, and an
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impedance or admittance variable. In electrical circuits, voltage
E(s) is the across variable and current I(s) is the through vari-
able. In mechanical systems, there are two schools of thought.
One approach treats velocity V (s) as the across variable and
force F (s) as the through variable (i.e., flow [22]). This results
in the correspondence between resistance R and damping B,
inductance L and stiffness K, and capacitance C and mass M ,
as given in (1)–(3) below. Here, these equations are referred to
as the mass/capacitor (M /C) analogy and are given by

E(s) = I(s)R, V (s) = F (s)
1
B

(1)

E(s) = I(s)sL, V (s) = F (s)
s

K
(2)

E(s) = I(s)
1

sC
, V (s) = F (s)

1
sM

. (3)

An alternate approach treats force as the across variable and
velocity as the through variable. This results in the correspon-
dence between resistance and damping, inductance and mass,
and capacitance and stiffness, as given in (4)–(6) below. Here,
these equations are referred to as the mass/inductor (M /L)
analogy and are given by

E(s) = I(s)R, F (s) = V (s)B (4)

E(s) = I(s)sL, F (s) = V (s)sM (5)

E(s) = I(s)
1

sC
, F (s) = V (s)

K

s
. (6)

This mathematical similarity stems from the fact that each
element is an impedance to the transmission of energy, be it
electrical or mechanical, with either a proportional (1) and (4),
integral (3) and (6), or differential (2) and (5) relationship be-
tween the across and through variables. As such, the product of
the across and through variables corresponds to the rate of en-
ergy being dissipated, where an imaginary value denotes energy
that is stored and returned without loss, which is given in (7),
shown below, for an electrical system and in (8), also shown
below, for a mechanical system. Note that this property holds
for both the M /C and M /L analogies:

units(EI) = V ·A =
J ·C
C · s =

J
s

(7)

units(V F ) =
m
s
·N =

m
s
· kg ·m

s2 =
kg ·m2

s3 =
J
s
. (8)

The two analogies are summarized by the s-domain repre-
sentations of Ohm’s Law, as shown in Table I. Note that, in
practice, velocities sum in series, while forces sum in parallel.
For example, two velocity sources may not be placed in paral-
lel since an object cannot simultaneously move at two different
velocities with respect to a common reference. By a similar rea-
soning, two force sources may not be placed in series with one
another. Nevertheless, the M /L analogy equates forces to volt-
ages that do sum in series and velocities to currents that do sum
in parallel. In the M /C analogy, on the other hand, all across
and impedance variables (electrical and mechanical) sum in se-
ries, while all through and admittance variables sum in parallel.

TABLE I
ACROSS AND THROUGH VARIABLES

Fig. 1. Equivalent open- and short-circuit models.

Since this is considerably more intuitive, the M /C analogy is
used throughout this paper unless otherwise specified.

To derive an analogous system involves replacing each com-
ponent in the original system with its equivalent in the alternate
domain. This, of course, requires topological consistency be-
tween components that are to be substituted for one another.
Resistors, inductors, and capacitors all share the following three
fundamental traits.

1) They have exactly two terminals that can be connected to
any node in a circuit.

2) They are symmetrical about their two terminals (i.e., flip-
ping a device over does not affect its response).

3) They obey Ohm’s law in the s-domain.
Since voltage is a relative measurement, Ohm’s law is better

represented by (9), where E1(s) and E2(s) are the two terminal
voltages of an element with impedance Z(s). It follows that
the traits listed earlier are not independent of one another, since
Ohm’s law (trait 3) can only be defined for a two-terminal device
(trait 1) and holds for both positive and negative voltages and
currents (trait 2), which can be given by

E2(s) − E1(s) = I(s)Z(s). (9)

Ohm’s law also implies that any impedance whose terminals
are shorted together will have zero voltage drop across it and,
therefore, zero current through it. Since the impedance passes no
current, it simulates an open circuit (see Z1 in Fig. 1). Similarly,
any impedance with either of its terminals left floating will
have zero current through it and, therefore, zero voltage drop
across it. Since the impedance experiences no voltage drop, it
simulates a short circuit (see Z2 in Fig. 1). Note that replacing
Z1 in Fig. 1 with a short circuit would allow current to flow and
would contradict Ohm’s law. Similarly, replacing Z2 with an
open circuit would allow the positive terminal of eo to float (i.e.,
have an arbitrary voltage) and result in a potentially nonzero
voltage drop across Z2 .
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Fig. 2. Electromechanical equivalents.

Fig. 3. Implied behavior of mass symbol during translation.

Voltage and current sources share the following two traits.
1) They have exactly two terminals.
2) They are directional with respect to their two terminals

(i.e., flipping a device over changes its sign).
Unlike passive components, there are restrictions on how

sources may be connected. For example, connecting two dissim-
ilar voltage sources in parallel or two dissimilar current sources
in series will result in an unsolvable circuit. By the M /C anal-
ogy, the commonly accepted electromechanical equivalents are
shown in Fig. 2. Additional symbols exist for angular motion,
but the linear motion symbols shown above are more commonly
used.

All components in Fig. 2 have two terminals and obey Ohm’s
law. Note, however, that the mass symbol contains a reference
terminal, which is very often neglected. This reference terminal
was originally proposed to maintain consistency between com-
ponents (i.e., a mass symbol can extend similar to a spring or
damper, as illustrated in Fig. 3) and to indicate that the energy
stored in a mass corresponds to its velocity with respect to an
unambiguous reference.

The reason to neglect the reference terminal is because, for
any object that exists on earth, the reference is always earth.
Consider the example of a payload Mp traveling on a slippery
train car Mt , as shown in Fig. 4. It is a simple matter to change
the reference point of the spring and damper so that they store
and/or dissipate energy when the payload moves with respect
to the ground [see Fig. 4(a)] or when the payload moves with
respect to the train car [see Fig. 4(b)]. However, the energy stored
in the payload always depends on its velocity with respect to
the ground. It is independent of the velocity of the train car,
regardless of how the system is configured.

Since the reference terminal of the mass is always connected
to ground, it is commonly omitted. This implicit connection
impacts the symmetry of the mass symbol. Consider the me-

Fig. 4. Train car and payload example.

Fig. 5. Force/mass example.

Fig. 6. Parallel mass example.

chanical system shown in Fig. 5(a) that involves a force applied
to a mass. Flipping the mass over (i.e., interchanging its ter-
minals) implicitly moves the earth ground from the left to the
right [see Fig. 5(b)]. Theoretically, the ground could be left in
its original position, as shown in Fig. 5(c), to imply that the
mass is taken to be the reference position (n1) and that the force
is effectively pushing the earth (n2) away from the reference.
Although unconventional, this is the mechanical representation
of a floating ground, which is common in electric circuits and
is theoretically acceptable.

However, if a second mass is introduced, as shown in Fig. 6(a),
flipping one of the masses over [see M2 in Fig. 6(b)] creates a
conflict. In Fig. 6(b), M1 is connected to the reference of M2
and vice versa. In order for the force f to translate M1 with
respect to its own reference, it must also translate the references
of M1 and M2 with respect to one another. In other words, the
earth must be pushed away from itself. This is similar to the
conflict when two electrical sources are connected incorrectly
and result in a system with no physical meaning. As a minimum
requirement, all masses in a mechanical system should share a
common reference node since they represent a common entity.

Consequently, a standard rule-of-thumb when converting a
mechanical system to an analogous electrical circuit is to start by
replacing all masses by grounded capacitors, as shown in Fig. 7.
This fixes the reference voltage of the capacitor to zero and guar-
antees correspondence between the following two equations:

E2(s) − E1(s) = E2(s) − 0 = E2(s) = I(s)
1

sC
(10)

V2(s) − V1(s) = V2(s) − 0 = V2(s) = F (s)
1

sM
. (11)
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Fig. 7. Capacitor/mass equivalent models.

Fig. 8. Bandpass filter example.

Since no connectivity restrictions exist for capacitors, a ca-
pacitor can always be used to simulate a mass but a mass cannot
always be used to simulate a capacitor. Consider, for example,
the bandpass filter in Fig. 8. Here, R1 , R2 , and C2 are replaced
by B1 , B2 , and M , respectively, in the equivalent mechanical
system, but there is no component that can be used in place of
C1 , since it does not share a node with C2 that can be used to
represent earth ground.

Note that the bandpass filter shown in Fig. 8 can be repre-
sented in the mechanical domain if the M /C analogy is aban-
doned in favor of the M /L analogy that replaces capacitors by
springs instead of masses. However, topological consistency is
lost since serial connections become parallel connections and
vice versa, and even this ceases to be an option if inductors are
added to the circuit shown in Fig. 8.

III. PULLEY-BASED DIFFERENTIAL TRANSMISSION MODEL

It would be useful to have a mechanical component that sim-
ulates a capacitor, in general, so that any electrical circuit, even
one that contains capacitors with no common nodes, can be
represented by an equivalent mechanical system. It should have
two symmetric terminals, should obey Ohm’s law, and should
be able to accommodate a nonzero velocity at both terminals
simultaneously. In other words, it should have no connectivity
constraints.

In circuit design, the usual way to eliminate a ground ref-
erence is by adding an isolation transformer. For example, the
grounded capacitor shown in Fig. 9 is made to act like an un-
grounded capacitor by connecting it to an isolation transformer.
Similarly, the implicit ground reference of a mass could be
eliminated by connecting it to the mechanical equivalent of an
isolation transformer.

A transformer scales up voltage and scales down current by
its winding ratio similar to a mechanical gearbox that scales up
velocity and scales down force by its tooth count ratio. With

Fig. 9. Achieving relative mass with a mechanical isolation transformer.

Fig. 10. Transformer and gearbox analogy.

unity winding and tooth ratios, the models shown in Fig. 10 and
described by (12)–(15) are equivalent

ω2 = ω0 (12)

τ2 = τ0 (13)

e2 = e0 (14)

i2 = i1 . (15)

Note that the mechanical system shown in Fig. 10 represents
an ideal 1:1 transmission system with no friction, backlash, or
contact dynamics whatsoever. A gearbox is used in this example
to indicate that there is no slippage, but two identical pulleys
joined by an ideal timing belt would be valid as well.

Note, however, that the transformer in shown Fig. 10 is not
an isolation transformer, since its input and output ports share
a common reference node (e1 = er ). The same can be said for
the gearbox since both gears (A and B) are fixed to a common
reference body C. This mechanical constraint is removed by
making gear B a planetary gear by mounting it on a rotating
member E, which rotates at a velocity ω1 about a common axis
with gear D, as shown in Fig. 11. Combining (16) and (17)
results in (18)

ω1 − ω4 = ω2 − ω1 (16)

ω4 = −ω0 (17)

ω0 = ω2 − 2ω1 (18)
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Fig. 11. Electromechanical differential transmissions.

Fig. 12. Linear motion differential transmission.

which is similar to the equation for an isolation transformer (20)

e0 − er = e2 − e1 (19)

e0 = e2 − e1 ; er = 0 (20)

except for the factor of 2, which multiplies the reference velocity
ω1 .

To correspond with the more commonly used linear motion
symbols shown in Fig. 2, a linear version of the isolation trans-
former is proposed, as shown in Fig. 12, which has a similar
velocity relationship (22), shown below, as the planetary gear-
box shown in Fig. 11 [see (18)]:

v1 =
1
2
(v2 − v0) (21)

v0 = v2 − 2v1 . (22)

Similar to the planetary gearbox, the linear transmission has
the same equation as the electrical isolation transformer, except
for the factor of 2 applied to velocity of node n1 . Note, however,
that setting v0 to 0 in (22) (i.e., connecting node n0 to ground)
results in the following equation:

v2 = 2v1 . (23)

Therefore, an additional pulley can be added to the system,
as shown in Fig. 13, to scale down the velocity of node n1
by a factor of 2, thereby resulting in a velocity equation (26),
shown below, that exactly mirrors that of the electrical isolation
transformer (20). The resulting system is a linear differential
transmission where node n0 is translated at a velocity equal to
the difference between the velocities of nodes n1 and n2 and is
given by

v0 = v2 − 2v3 (24)

v1 = 2v3 (25)

v0 = v2 − v1 . (26)

Fig. 13. Unity-gain linear motion differential transmission.

Fig. 14. Free-body diagram of center pulleys and stiff member.

Fig. 15. Differential mass model.

Since the proposed transmission system shown in Fig. 13 is
intended to model an ideal electric isolation transformer, there-
fore, all cables and pulleys have zero mass and friction, and
the cable is infinitely stiff and long. There is zero gravity and
the ideal cables do not buckle under a compressive load; there-
fore, the system always holds its shape, regardless of whether
cable forces are compressive or tensile. This idealized model is
not unlike an ideal spring that is massless, linear, and neither
bottoms out nor reaches full extension or an ideal damper that
is massless, infinitely long, and friction-free. In addition, it is
later shown that the ideal cables in the proposed model may be
replaced by ones that need not resist buckling.

Since the connection at node n3 is a stiff member, a free-body
diagram can be drawn for the member and pulleys (see Fig. 14).
Since the pulleys have neither mass nor friction, therefore, no
reaction forces can occur, and both the pulleys and cables are
in a constant state of equilibrium. Equation (27), shown below,
follows from the fact that a cable in equilibrium has a common
tension throughout, and (28), also shown below, follows from
the absence of reaction forces. Combining (27) and (28) results
in (29), shown below, which states that the tension in both cables
is equal:

f1 = f2 , f3 = f4 (27)

f1 + f2 = f3 + f4 (28)

f1 = f2 = f3 = f4 . (29)

Connecting a mass to the proposed differential transmission
results in the system shown in Fig. 15, where equal velocities at
nodes n1 and n2 will not cause any translation of the mass, but
only a translation of the two massless pulleys. A difference in
the two velocities, however, will cause the mass to be translated
by the difference.

Although the system shown in Fig. 15 uses “unrealistic” ca-
bles that can be compressed without buckling, this system is,
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Fig. 16. Pull–pull transmission system.

Fig. 17. Block diagrams of differential mass with explicit and implicit ground
references.

in fact, physically realizable. Consider the pulley system shown
in Fig. 16(a) that cannot be pushed without buckling. Adding
a return path to the cable [see Fig. 16(b)] keeps the cable in
tension at all times, thereby allowing one to “push” on the ca-
ble without buckling. Pull–pull transmission systems, such as
capstan drives, commonly apply this technique to exploit the
benefits of cable-based actuation. Although return paths could
be added to Fig. 15, they would not help to provide intuition;
therefore, it is preferred that return paths be assumed.

Differentiating (26) results in (30) and (31), shown below,
which is transformed to the s-domain in (32), also shown below.
Note that in (32), F is the tensile force, which is equal in both
cables:

v̇0(t) = v̇m (t) = am (t) =
f

M
(30)

v̇2 − v̇1 =
f

M
(31)

V2(s) − V1(s) = F (s)
1

sM
. (32)

Equation (32) is simply Ohm’s law for a mass (11) with the
V1(s) = 0 constraint removed. This result exactly matches the
equation for a “not necessarily grounded” capacitor (10).

The block diagrams shown in Fig. 17 may be used to represent
the differential mass element that may or may not include an
explicit ground reference, which is implied when an explicit
ground reference is absent. Unlike the mass shown in Fig. 2,
the two terminals of the differential mass (n1 and n2) can be
connected to any node in a mechanical circuit.

The instantaneous power in the differential mass Pd(t) (33),
shown below, is computed by substituting (30) into the equation
for mechanical power. This corresponds to the instantaneous
power in a capacitor Pc(t), shown below in (34). From (32),
the complex impedance Zd(s) of the differential mass can be
obtained directly (35), shown below, and is given by

Pd(t) =
work

unit time
= f(t)v(t) = Mam (t)vm (t)

= M
f(t)
M

(v2(t) − v1(t)) = f(t)(v2(t) − v1(t)) (33)

Fig. 18. Isolated BK network.

Fig. 19. Mechanical model of a bandpass filter.

Pc(t) = i(t)(e2(t) − e1(t)) (34)

Zd(s) =
1

Ms
. (35)

The proposed differential mass is thereby shown to contain
two symmetric, interchangeable terminals, to obey Ohm’s law,
and to satisfy the same differential equation as a mass but with
an arbitrary reference velocity, thereby making it a general me-
chanical equivalent of a capacitor.

Of course, an isolation transformer may be used to remove the
ground reference from any electrical network. In other words,
the proposed pulley model shown in Fig. 13 could be used
to remove the ground reference from any mechanical network
and not just a mass. For example, adding a pulley system to
the grounded BK (spring/damper) network shown in Fig. 18(a)
results in the equivalent of the ungrounded BK network shown
in Fig. 18(b).

The proposed differential mass element can be applied to the
bandpass filter example shown in Fig. 8. Substituting a differ-
ential mass for the unknown element results shown in Fig. 19,
which may be analyzed similar to an electric circuit. At very low
frequencies [see (36) below], the impedances of both the con-
ventional and differential masses approach infinity (37), shown
below, and due to the finite impedance of damper B2 , all of
the input velocity is “dropped” across the differential mass M2
[see (38), shown below]. In other words, the masses simulate
mechanical open circuits similar to the capacitors in Fig. 8.

At very high frequencies [see (39), shown below], the
impedances of both the conventional and differential masses
approach zero (40), shown below, and all of the input velocity is
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Fig. 20. Redundant rotary and prismatic actuator.

“dropped” across damper B1 [see (41), shown below]. In other
words, the masses simulate mechanical short circuits similar to
the capacitors in Fig. 8. At all other frequencies, the output ve-
locity vo is nonzero and finite, and a mechanical bandpass filter
is realized:

v2 = vin (ω = 0) (36)

ZM 2 (s) =
1

M2(j0)
= ∞ (37)

v2 − v1 = vin (38)

v2 = vin (ω = ∞) (39)

ZM 1 (s) = ZM 2 (s) =
1

M(j∞)
= 0 (40)

v1 − v0 = vin . (41)

IV. APPLICATION TO A ROBOT MASS MATRIX

A. Serial 1-DOF Robots

Due to the constraints associated with conventional mass,
there are mechanical systems which cannot be described by a
mechanical system diagram. Elaborate transmission systems,
such as robotic manipulators, may contain mass elements that
are only present when relative motion occurs between individ-
ual motion stages. Systems such as these can only be modeled
using electric circuits since capacitors can be used to model this
property but conventional masses cannot.

Let us consider the simplified dynamics of a 2-degree-of-
freedom (2-DOF) robot [see (42) and (43), shown below], where
M is the mass matrix, B is the damping matrix, F is a vector
of joint forces/torques, R is a vector of joint rates, and s is the
Laplace operator. Gravitational and Coriolis effects are assumed
to be negligible for the purpose of this example. If the damping
in the system is dominated by the actuator damping coefficients
(typical for a serial manipulator), B is a diagonal matrix (43).
M , on the other hand, represents the effective mass perceived by
each joint and may not be diagonal or otherwise easily simplified
and is given by

F = BR + MsR (42)[
f1

f2

]
=

[
b1 0

0 b2

] [
r1

r2

]
+ Ms

[
r1

r2

]
. (43)

For simple kinematic arrangements, such as a redundant
1-DOF rotary [see Fig. 20(a)] or prismatic [see Fig. 20(b)]

Fig. 21. System models of redundant actuators.

actuator with a distal actuator mass/moment m1 and load mass/
moment m2 , the mass matrix M is given in (44), shown below.
The system may be modeled by the mechanical system diagram
or its electrical equivalent, as shown in Fig. 21,

M =
[

m1 m2
m2 m2

]
. (44)

Performing nodal analysis on the circuit shown in Fig. 21
results in (45), shown below, by inspection. Note, however,
that (45) contains the term i1 − i2 as well as v2 , which corre-
sponds to the endpoint velocity in the mechanical system, or,
in other words, the sum of the joint rates r1 + r2 . To obtain a
correspondence between electrical and mechanical component
values, the dynamic equation (43) is rearranged in (46), shown
below, where the associated damping B′ and mass M ′ matrices
are given in (47) and (48), also shown below. From (47), the
admittances g1 and g2 and capacitances c1 and c2 correspond to
the equivalent damping and mass values b′1 and b′2 and m′

1 and
m′

2 , respectively [see (49), shown below]:[
i1 − i2

i2

]
=

[
g1 + g2 −g2

−g2 g2

] [
v1

v2

]
+

[
c1 0

0 c2

]
s

[
v1

v2

]

(45)[
f1 − f2

f2

]
= B′

[
r1

r1 + r2

]
+ M ′s

[
r1

r1 + r2

]
(46)

B′ =
[

b′1 + b′2 −b′2

−b′2 b′2

]
=

[
b1 + b2 −b2

−b2 b2

]
(47)

M ′ =
[

m′
1 0

0 m′
2

]
=

[
m1 + m2 0

0 m2

]
(48)




b′1

b′2

m′
1

m′
2


 =




b1

b2

m1 + m2

m2


 . (49)

In this example, it is possible to model the system using con-
ventional masses but only because the manipulator has a single1
DOF; therefore, M ′ is diagonal, and there is no cross-coupling
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Fig. 22. 2-DOF serial robot.

Fig. 23. Electrical model of 2-DOF serial robot.

between actuators. In general, however, effective mass is not
always decoupled and the off-diagonal elements of M ′ may be
nonzero. When this is the case, conventional masses cannot be
used to model the effective mass of the system since they can-
not model the off-diagonal terms that describe inertial effects
resulting from relative motion of the actuators.

B. Serial 2-DOF Robots

Consider the 2-DOF serial robot shown in Fig. 22. The mass
matrix for this mechanism is approximated in [23] by two point
masses d1 and d2 , which are positioned at the distal actuator
and end-effector, as indicated shortly. The resulting mass matrix
(50), shown below, has the terms given in (51)–(53), also shown
below, where q1 and q2 are the joint angles, and l1 and l2 are the
link lengths. Similar to the previous example, actuator damping
coefficients b1 and b2 are taken to dominate the total system
damping

M(q) =
[

m1(q) m3(q)

m3(q) m2(q)

]
(50)

m1 = l22d2 + 2l1 l2d2 cos(q2) + l21 (d1 + d2) (51)

m2 = l22d2 (52)

m3 = l22d2 + l1 l2d2 cos(q2). (53)

The equivalent circuit of this system is shown in Fig. 23.
It is similar to Fig. 21, except that the capacitor values are
configuration-dependent, and a third capacitor c12 is included to
model the coupled mass terms that are present. Performing nodal
analysis results in (54), shown below, and the corresponding M ′

matrix in (55), also shown below, that can be rearranged to solve
for the mechanical model parameters in terms of the physical
mass values in (56), also shown below. Note that B′ is the same

Fig. 24. Mechanical model of 2-DOF serial robot.

diagonal matrix as in (47):[
i1 − i2

i2

]
=

[
g1 + g2 −g2

−g2 g2

] [
v1

v2

]

+
[

c1 + c12 −c12

−c12 c2 + c12

]
s

[
v1

v2

]
(54)

M ′(q) =
[

m′
1 + m′

12 −m′
12

−m′
12 m′

2 + m′
12

]

=
[

m1 + m2 m3 − m2

m3 − m2 m2

]
(55)




m′
1

m′
2

m′
12


 =




m1 + m3

m3

m2 − m3


 . (56)

Note from (55) that M ′ is only diagonal when m′
12 = 0, or,

in other words, when m2 = m3 . From (52) and (53), this is
merely the special case when q2 = ±π/2. Therefore, it is not
possible to model this system using only masses due to their
implicit ground reference, as described in Section II. The off-
diagonal terms can, however, be modeled using the differential
mass proposed in Section III. It results in a mechanical system
model that is topologically identical to the equivalent circuit
shown in Fig. 23, where each grounded capacitor (c1 and c2)
is replaced by a regular mass, and each ungrounded capacitor
(c12) is replaced by a differential mass that can accommodate a
nonzero reference velocity. The resulting mechanical system is
shown in Fig. 24.

Although m′
12 has a negative value when −π/2 < q2 < π/2,

the net mass perceived by each actuator is always positive be-
cause M is positive definite. When m′

12 is negative, it simply
means that the motion of actuator 1 reduces the net mass per-
ceived by actuator 2, but the net mass perceived by actuator 2 is
always greater than 0.

C. Parallel 2-DOF Robots

The same technique can be applied to parallel manipulators,
such as the 2-DOF planar manipulator shown in Fig. 25. In a par-
allel manipulator, each actuator is referenced to ground, but there
remains a coupling between the effective mass perceived by
each actuator which, like a serial manipulator, is configuration-
dependent. This coupling is modeled by c12 and m′

12 in the
equivalent electrical and mechanical models shown in Fig. 25.
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Fig. 25. 2-DOF parallel robot with electrical and mechanical equivalents.

Due to the existence of passive joints (represented by dark cir-
cles), parallel manipulators also have coupled, configuration-
dependent damping terms that cannot necessarily be neglected.
These are represented by g12 and b′12 , which are shown in Fig. 25.

Performing nodal analysis on the circuit shown in Fig. 25
results in (57), shown below, by inspection. For a parallel robot,
currents and voltages correspond directly to joint forces and
joint rates, and therefore, B′ = B, and M ′ = M . For a mass
matrix of the form given in (50), the elements of the M ′ matrix
are given in (59), shown below. For a damping matrix of the
same form, the parameter values are computed similarly:[

i1

i2

]
=

[
g1 + g12 −g12

−g12 g2 + g12

] [
v1

v2

]

+
[

c1 + c12 −c12

−c12 c2 + c12

]
s

[
v1

v2

]
(57)

[
f1

f2

]
=

[
b′1 + b′12 −b′12

−b′12 b′2 + b′12

] [
r1

r2

]

=

[
m′

1 + m′
12 −m′

12

−m′
12 m′

2 + m′
12

]
s

[
r1

r2

]
(58)




m′
1

m′
2

m′
12


 =




m1 + m3

m2 + m3

−m3


 . (59)

D. Multiple DOF Robots

This technique is easily extended to devices with any num-
ber of DOFs n. With serial manipulators, the compliance and

Fig. 26. Model of a 3-DOF serial robot.

damping are often dominated by the actuators, and therefore,
the damping B and stiffness K matrices are diagonal [see (60)
and (61), shown below]. With parallel manipulators, the B and
K matrices typically contain off-diagonal terms, but they are
easily modeled using conventional elements since springs and
dampers have two terminals and no connectivity constraints:

B = diag ([ b1 b2 . . . bn ]) (60)

K = diag
([ 1/k1

1/k2
. . . 1/kn

])
. (61)

To account for inertial cross-coupling, the model must contain
a capacitor and/or a differential mass between every pair of actu-
ators. For example, the electric circuit model and corresponding
mechanical system model of a serial 3-DOF manipulator are
shown in Fig. 26. The capacitance matrix C, which results from
the nodal analysis (62), shown below, of the circuit shown in
Fig. 26, is shown below in (63):




i1 − i2

i2 − i3

i3


 = G(q)




v1

v2

v3


 + C(q)s




v1

v2

v3


 (62)

C(q) =




c1 + c12 + c13 −c12 −c13

−c12 c2 + c12 + c23 −c23

−c13 −c23 c3 + c23 + c13


 .

(63)

Similar to previous examples, the 3 × 3 mass matrix M ′

(65), shown at the bottom of the next page, is rearranged into the
form shown in (64), shown below, to parallel the current/voltage
relationship of (62). For a mass matrix M of the form shown in
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Fig. 27. 3-DOF parallel robot with electrical and mechanical equivalents.

(66), shown below, the entries of the M ′ matrix are solved in
(67), also shown below.

Similarly, for a parallel 3-DOF robot, the electric circuit
model and corresponding mechanical system model are shown
in Fig. 27. For a mass matrix of the form shown in (66), the ele-
ments of M ′ are given in (68), shown below, and just like with
the parallel 2-DOF example, a similar result is easily obtained
for the damping matrix:




f1 − f2

f2 − f3

f3


 = B′




r1

r1 + r2

r1 + r2 + r3


 + M ′s




r1

r1 + r2

r1 + r2 + r3




(64)

M(q) =




m1(q) m4(q) m5(q)

m4(q) m2(q) m6(q)

m5(q) m6(q) m3(q)


 (66)




m′
1

m′
2

m′
3

m′
12

m′
23

m′
13




=




m1 − m4

m4 − m5

m5

m2 + m5 − m4 − m6

m3 − m6

m6 − m5




(67)




m′
1

m′
2

m′
3

m′
12

m′
23

m′
13




=




m1 + m4 + m6

m2 + m4 + m6

m3 + m5 + m6

−m4

−m5

−m6




(68)

V. CONCLUSION

A pulley-based differential transmission model is proposed
as a mechanical analog of an isolation transformer that has a
number of practical applications. First, when combined with
a mass, it results in a system, which is completely analo-
gous to a capacitor without any of the connectivity constraints
of the mass on its own. This allows any electrical circuit to
be converted into a mechanical dual and enables mechanical
modeling of complex mechanical systems with coupled mass
terms, such as robot manipulators. Second, it can be added to
any mechanical network to provide a floating reference when
required.

Finally, this proposal has a further application in MEMS fil-
ter design [24]. Due to limitations in CMOS technology asso-
ciated with implementing inductors, higher quality factors may
be possible by using mechanically oscillating structures. The
challenge that arises is that many favorable filter circuits contain
ungrounded capacitors, such as Chebyshev bandpass filters, and
implementing these filters using MEMS technology requires the
mechanical equivalent of an ungrounded capacitor. As shown
here, a MEMS implementation of a differential transmission
coupled with a mass would provide just that and enable any
electrical filter to be implemented as a micro electromechanical
system.

M ′(q) =




m′
1 + m′

12 + m′
13 −m′

12 −m′
13

−m′
12 m′

2 + m′
12 + m′

23 −m′
23

−m′
13 −m′

23 m′
3 + m′

13 + m′
23


 (65)
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