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Abstract—Spatial orders such as the Morton (Z) order, U-order, or X-order have
applications in matrix manipulation, graphic rendering, and data encryption. It is
shown that these spatial orders are single examples of entire classes of spatial
orders that can be defined in arbitrary numbers of dimensions and base values.
Second, an algorithm is proposed that can be used to transform between these
spatial orders and Cartesian coordinates. It is shown that the efficiency of the
algorithm improves with a larger base value. By choosing a base value that
corresponds to the available memory page size, the computational effort required
to perform operations such as matrix multiplication can be optimized.
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1 INTRODUCTION

COMPUTER memory is sequential and, therefore, one-dimensional.
To store a matrix that has two or more dimensions, the cells are
ordered and stored sequentially, effectively transforming the
matrix into a vector. Accessing a particular matrix cell involves
computing the location code of that cell, which is the correspond-
ing index into the vector that contains the matrix cell data. The
default indexing scheme used by C and C++ compilers, among
others, is to store each row sequentially. For this method, the
location code i is computed in the following equation for a matrix
with R elements per row and Cartesian coordinates specified by a
row r and column c:

i ¼ R� rþ c: ð1Þ

This method of indexing is often inefficient when performing
operations on large matrices. When rows are stored sequentially,
each cell in a column is separated by an entire row of data. Therefore,
accessing columns of data when performing matrix multiplication,
for example, may result in a great deal of memory paging.

This is a problem often encountered in computer graphics.
Manipulating (i.e. translating, rotating, rendering, etc.) a graphic
object on a large high-resolution screen requires one to index
neighboring pixels of the extremely large array that comprises the
screen buffer. Under the conventional indexing method (1), pixels
that are neighbors vertically are stored an entire horizontal scan
line apart from one another in memory.

The discrepancy between matrix and memory locality is
overcome by combining a nonconventional algorithm such as
matrix multiplication [1] and location code arithmetic [2] with a
spatial order. Consider an n�m domain of integer coordinates.
A curve that visits every coordinate point exactly once is called a
space-filling curve. Peano [3] proposed such a curve in 1890, as did
Hilbert [4] a year later and, more recently, Morton [5] and Schrack
and Liu [6]. Usually, a square domain of dimension 2n � 2n with
nonnegative coordinates is chosen with the space-filling curve
starting at the origin and ending in one of the coordinates
ð2n � 1; 0Þ, ð2n � 1; 2n � 1Þ, and ð0; 2n � 1Þ. An integer label is

attached to each coordinate, called the location code, starting with
0 and advancing by one for each step, the last one being 22n � 1.

Such a domain with location codes generated by a space-filling
curve is called a spatial order. A space-filling curve or spatial order
can be interpreted as a mapping that linearizes a 2D or higher
dimensional space. Many spatial orders have been proposed, in
particular the Hilbert order and the Morton or Z-order, both of
which have specific properties that makes them useful in different
applications in computing.

In Section 2, variations on three existing spatial orders are
described, and they are extended in Section 3 to encompass orders
with arbitrary and nonsquare dimensions but have easy-to-compute
location codes. Section 4 presents a fast algorithm for interleaving
integers that does not rely on table lookup. Interleaving is a
necessary function for converting between Cartesian coordinates
and a location code. Section 5 compares execution times for the
computations presented in Section 4 for different orders of different
base values. Last, concluding remarks are made in Section 6.

2 EXISTING SPATIAL ORDERS

When a spatial indexing strategy is used to store a matrix,
neighboring cells are stored in close proximity to one another,
thereby reducing the amount of memory paging that is required as
an operation such as multiplication is carried out. For a 2 � 2
matrix, such as in Fig. 1, there are three possible orders in which
one could traverse all four cells.

Starting from the reference cell, the second sequential cell can
either be an adjacent cell or the opposite cell. If it is an adjacent cell,
the third sequential cell can either be the other adjacent cell or the
opposite cell. If the third cell is the other adjacent cell, the resulting
order resembles a “Z” and is called the OZ-order (see Fig. 2). On
the other hand, if the third cell is the opposite cell, the OU-order
results. Finally, if the second cell is the opposite cell, the next two
cells must be the two adjacent cells, and the OX-order results [7].
Although other orders are possible, they can be obtained by
reflecting one of the orders in Fig. 2 through a vertical, horizontal,
and/or diagonal axis. For the 1-bit coordinate systems (i.e.,
X;Y 2 f0; 1g) shown in Fig. 2, the Cartesian coordinates and
corresponding location codes are shown in Table 1.

Separating each 2-bit location code into its most significant bit
(MSB) and least significant bit (LSB), the location codes of the
three orders are computed in the following equations, where �
represents the XOR operation, “� n” represents a left shift by
n bits, an overbar represents the two’s complement, and the
subscript Xb is used to denote that variable X contains b bits:

OZðX1; Y1Þ ¼ ½Y1 X1� ¼ Y1 � 1þX1; ð2Þ

OUðX1; Y1Þ ¼ ½Y1 X1 � Y1� ¼ Y1 � 1þX1 � Y1; ð3Þ

OXðX1; Y1Þ ¼ ½X1 � Y1 X1� ¼ ðX1 � Y1Þ � 1þX1: ð4Þ

Since left-shift operations commute, it can be shown that for any
function F ðXb; YbÞ that uses only left-shift, OR and XOR operations,
such as (2)-(4), the following equation holds for any integer n and
for variables that comprise any number of bits b:

F ðXb � n; Yb � nÞ ¼ F ðXb; YbÞ � n: ð5Þ

Note, however, that (5) does not hold if F ðXb; YbÞ contains right-
shift operations.

Consequently, shifting X1 and Y1 to the left by 2 bits is
equivalent to shifting OZðX1; Y1Þ, OU ðX1; Y1Þ, and OXðX1; Y1Þ to the
left by 2 bits and results in orders that are similar to those in Fig. 2
but where each subsequent cell is the reference of a corresponding
2 � 2 block of cells, as shown in Fig. 3.
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Finally, ORing each of the 1-bit orders F ðX1; Y1Þ with its left-
shifted counterpart

F ðX2; Y2Þ ¼ F ðX1; Y1Þ � 2þ F ðX1; Y1Þ ð6Þ

results in the 2-bit orders F ðX2; Y2Þ shown in Fig. 4. In Fig. 4,
each of the original 2 � 2 1-bit orders from Fig. 2 is repeated
in each of the 2 � 2 blocks visited by the left-shifted location
codes from Fig. 3.

This order repeats in a fractallike manner each time the
Cartesian coordinates are increased by 1 bit. Therefore, OZ , OU ,
and OX (2)-(4) can be extended to any 2n � 2n Cartesian coordinate
system, with an arbitrarily large n, by substituting the left-shift and
addition operations with the interleave function INT ðarg1; arg2Þ,
as shown in the following:

OZðX;Y Þ ¼ INT ðY ;XÞ; ð7Þ

OUðX;Y Þ ¼ INT ðY ;X � Y Þ; ð8Þ

OXðX; Y Þ ¼ INT ðX � Y ;XÞ: ð9Þ

The 2D interleave function INT ðarg1; arg2Þ accepts two integer
arguments and returns an integer that is twice as long as the
maximum bit length of its arguments. For example, the function
INT ðY8; X8Þ returns a 16-bit result when used to interleave two
8-bit integers X8 and Y8 whose individual bits are expressed in
lowercase:

X8 ¼ x7x6x5x4x3x2x1x0; ð10Þ

Y8 ¼ y7y6y5y4y3y2y1y0; ð11Þ

INT ðY8; X8Þ ¼ y7x7y6x6y5x5y4x4y3x3y2x2y1x1y0x0: ð12Þ

The interleave function is easily extended to any number of

dimensions. In general, it returns an integer whose bit length is

equal to the dimension multiplied by the maximum bit length of its

arguments. For example, the 3D INT ðZ; Y ;XÞ function returns a

12-bit result when used to interleave three 4-bit integers X4, Y4,

and Z4:

INT ðZ4; Y4; X4Þ ¼ z3y3x3z2y2x2z1y1x1z0y0x0: ð13Þ

3 GENERALIZED SPATIAL ORDERS

There are eight possible versions of each 2D order since each can

be reflected through the vertical, horizontal, and diagonal axes.

These reflections are accomplished by inverting the first or second

argument or by interchanging the order of arguments. For example,

all eight versions of the OZ-order class are shown in Fig. 5, where

the reference node is indicated by a dot. Since there are three classes

of orders (OZ, OU, and OX), there is a total of 24 possible 2D orders.

Each 2D order is derived from a bit operation that results in a

unique ordering of the integers 0 to 3, of which there are 4! ¼ 24

possibilities, as expected. All 24 can be obtained by combining

either column from any two of the three sections shown in Table 2

(Sections A, B, or C).

In three dimensions, there are three variables (X, Y , and Z),

and the fundamental spatial element is a cube that has eight

vertices. Therefore, all possible 3D orders can be derived from

bit operations that result in a unique ordering of the integers 0 to 7,
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TABLE 1
Location Codes of Three 1-Bit Orders

Fig. 1. 2 � 2 matrix.

Fig. 2. Spatial orders with 1-bit coordinates.

Fig. 3. One-bit spatial orders shifted left by 2 bits.

Fig. 4. Two-bit spatial orders.

Fig. 5. Eight possible versions of the OZ-order class.
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of which there are 8! ¼ 40;320 possibilities. Any one of these orders

may be obtained by an interleaving operation performed on a

combination of functions of the three Cartesian coordinates: X, Y ,

and Z. For example, INT ðZ; Y ;XÞ results in the 3D order shown

in Fig. 6. Although Fig. 6 is clearly composed of two Z patterns,

many 3D orders are not so easily identifiable. Therefore, the order

in Fig. 6 is classified as O01234567, where the subscript refers to the

eight-digit octal number that corresponds to the sequence in which

the vertices of the spatial cube are visited. Each vertex is indexed

by concatenating its binary Cartesian coordinates ðZ; Y ;XÞ, where

the associated octal number is shown as a superscript.
Similarly, it can be shown that the U/X order ðO02315674Þ

shown in Fig. 7 can be obtained by the location code formula,

INT ðZ;X � Y ; �ZðY Þ þ Zð �XÞÞ.

To determine a location code formula that produces a particular
spatial order, the following steps are taken. First, the desired order
is determined. For example, the order shown in Fig. 7 is O02315674.

Next, the octal vertex indices are entered into a table and

converted to binary, and the decimal integer corresponding to each

column is calculated, as shown in Fig. 8.
Note that since the vertex table starts from an ordering of

the integers 0 through 7, each column will always produce an

8-bit integer with exactly four ones and four zeros. There are

only 70 8-bit integers that satisfy these criteria, all of which
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TABLE 2
Variables for Computing a Location Code

Fig. 6. O01234567 ¼ INT ðZ; Y ;XÞ.

Fig. 7. O02315674 ¼ INT ðZ;X � Y ; �ZðY Þ þ Zð �XÞÞ.

Fig. 8. Vertex table of O02315674.

TABLE 3
Bit Functions for 3D Location Codes
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appear in Table 3. Each integer in the table is displayed next to

a binary function that will produce the associated bit pattern as

a function of the Cartesian coordinates X, Y , and Z. In this

example, the MSB is 15, which corresponds to Z, the middle bit

is 102, which corresponds to X � Y , and the LSB is 58, which

corresponds to �ZðY Þ þ Zð �XÞ.
Finally, the three bit pattern functions are interleaved to

produce a formula for computing the location code, which is

INT ðZ;X � Y ; �ZðY Þ þ Zð �XÞÞ in this example.
Alternatively, if a computationally simple location code for-

mula is preferred, one may be derived by choosing three bit

patterns directly from Table 3. Note, however, that combining any

three of the patterns from Table 3 will not necessarily produce a

valid order. Since any pattern cannot be used more than once in a

location code formula, the 70 patterns could be combined to

produce 70� 69� 68 ¼ 328;440 unique formulas. However, as

stated earlier, there are only 40,320 possible 3D spatial orders. Take

formula A, for example:

A ¼ INT ðZ; Y ; Y � ZÞ: ð14Þ

It does not result in an ordering of the integers 0 through 7 (see

Table 4) because one of the Cartesian coordinates (X) does not

appear anywhere in the formula. This is a necessary condition for a

valid location code formula, but it is not a sufficient condition.

Although formula B does produce a valid order (see Table 4)

B ¼ INT ðZ; Y ;X � Y Þ; ð15Þ

formula C does not, even though formula C does include all three

Cartesian coordinates, X, Y , and Z:

C ¼ INT ðY � Z;X � Y ;X � ZÞ: ð16Þ

Consequently, a location code formula that is developed in this

way must be verified to ensure that it results in a valid spatial order

before it can be used.
For the sake of consistency, a similar procedure can be used to

develop 2D orders by consulting Table 5, which is a 2D version of

Table 3 that provides functions for all six possible 4-bit integers

that contain exactly two ones and two zeros.
The preceding two methods allow one to develop a spatial

order that is tailored to the specific requirements of an application.

When performance is the primary concern such as in a 3D graphics

application, one of the easy-to-compute examples on the top row of

Fig. 9 might be a good choice. They include a Z/Z order, A, an X/X

order, B, and a U/U order, C:

AÞ O01452367 ¼ INT ðY ; Z;XÞ; ð17Þ

BÞ O05412763 ¼ INT ðX � Y ; Z;XÞ; ð18Þ

CÞ O02641375 ¼ INT ðY ;X � Y ; ZÞ: ð19Þ

If, on the other hand, it is more important that particular elements

be neighbors such as in a matrix computation application, one of

the orders from the middle row of Fig. 9 may be a better choice.

They include an order that always goes to a nearest neighbor in a

clockwise direction, D, and a counterclockwise direction, E, and

one which always goes to a diagonal neighbor, F :

DÞ O01326457 ¼ INT Z;ZðY Þ þ ZðX � Y Þ;
�

�ZðX � Y Þ þ ZðY ÞÞ;
ð20Þ

EÞ O02315467 ¼ INT Z; �ZðX � Y Þ þ ZðY Þ;ð
ZðY Þ þ ZðX � Y Þ

�
;

ð21Þ
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TABLE 4
Valid and Invalid 3D Location Code Formulas

Fig. 9. Example spatial orders.

TABLE 5
Bit Functions for 2D Location Codes
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F Þ O06534721 ¼ INT �ZðX � Y Þ þ ZðY Þ; ZðXÞ
�
þZðX � Y Þ; ZðY Þ þ ZðXÞ

�
:

ð22Þ

Finally, if a more arbitrary pattern is preferred such as in a data

encryption application, one of the examples from the bottom row

(G through I) of Fig. 9 may be the best choice:

GÞ O04315267 ¼ INT Y ðX � ZÞ þ Y ðZÞ; XðY Þ þXðZÞ;
�
ZðY Þ þ ZðX � Y Þ

�
;

ð23Þ

HÞ O62753401 ¼ INT Y ðX � ZÞ þ Y ðZÞ; X � Y ðXÞ
�
þX � Y ðZÞ; ZðY Þ þ ZðX � Y Þ

�
;

ð24Þ

IÞ O54320167 ¼ INT ðY � Z; Y ;X � ZÞ: ð25Þ

Voxel ordering is a good way to scramble and descramble 3D data

since the data is completely rearranged based on a key that

identifies one of 40,320 possible orders.
All preceding 2D and 3D orders were all computed using

base-1 interleaving functions (12), (13). These functions interleave

individual bits of the operands. Other orders can be derived by

using higher order interleaving functions. For example a base-2

interleave function interleaves the bits of its operands 2 bits at a

time. For example, INT2 is used to interleave X8 (10) and Y8 (11)

as follows:

INT2ðY8; X8Þ ¼ y7y6x7x6y5y4x5x4y3y2x3x2y1y0x1x0: ð26Þ

Substituting the INT2 function for the INT function in (7)-(9)

results in the orders shown in Fig. 10.
Of course, the 2-bit 2D orders shown in Fig. 10 are easily

extended to any number of bits and any number of dimensions.

For example, 3-bit 2D interleaving results in the OZ3-, OU3-, and

OX3-orders shown in Fig. 11, and generating the X-order using

4-bit interleaving results in the OX4-order shown in Fig. 12.
As with the 1-bit orders, the orders generated using higher

order interleaving functions also repeat in a fractallike manner. For
example, if any of the three-bit orders shown in Fig. 11 are used to
map a 64 � 64 matrix, each 8 � 8 submatrix will be arranged in a
sequence similar to that shown in Fig. 11 for the individual cells.

These orders are also easily extended to higher dimensions,

nonsquare matrices, or any combination of the two, as shown

respectively by the following equations:

INT2ðZ4; Y4; X4Þ ¼ z3z2y3y2x3x2z1z0y1y0x1x0; ð27Þ

INT12ðY3; X6Þ ¼ y2x5x4y1x3x2y0x1x0; ð28Þ

INT213ðZ4; Y2; X6Þ ¼ z3z2y1x5x4x3z1z0y0x2x1x0: ð29Þ

Although nonsquare spatial orders have unique location codes,

they do not repeat in the same fractallike manner that is observed

with square matrices.
For example, the OZ12-, OU12-, and OX12-orders are shown in

Fig. 13. When these orders are used to map a 4 � 16 matrix, only

the OZ12-order repeats in a fractallike manner (see Fig. 14). In the

case of the OU12- and OX12-orders, the 2 � 4 submatrices are not

even exact duplicates of those shown in Fig. 13.
Similarly, nonsquare orders are easily extended to any number

of dimensions and/or interleaving bit order. For example, the

order computed by (29) is shown in Fig. 15. This order is referred

to as O213-01234567 since it is obtained by a 2-1-3 interleaving of the

01234567 order.
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Fig. 10. Two-bit interleaved 2D orders.

Fig. 11. Three-bit interleaved 2D orders.

Fig. 12. Four-bit interleaved OX4-order.

Fig. 13. Nonsquare 2D orders.
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As suggested earlier, 3D orders can be difficult to display, such
as O213-01764532, which is shown in Fig. 16.

4 INTERLEAVING ALGORITHMS

The orders discussed in Section 3 require an interleaving of the bits
of the Cartesian coordinates to arrive at a location code for the
selected pattern. Interleaving is the process of dilating two or more
integers (inserting groups of zeros between the significant bits),
shifting them so the significant bits of each integer align with the
inserted zeros in the other integers, and then ORing them together.
For example the function INT1ðX4Y4Þ is computed in the following
equations, where DIL represents the dilate function:

DILðX4Þ ¼ x30x20x10x0; ð30Þ

DILðY4Þ ¼ y30y20y10y0; ð31Þ

INT1ðY4; X4Þ ¼DILðY4Þ � 1þDILðX4Þ
¼ y3x3y2x2y1x1y0x0:

ð32Þ

Similarly, converting from a location code to Cartesian coordinates
requires integer contraction, the inverse of dilation. For example, a
dilated 4-bit integer is converted back to a 4-bit integer in the
following equation, where CTC represents the contract function,
and tu represents a bit that may contain any value (i.e., don’t care):

X4 ¼ CTCðx3tux2tux1tux0Þ: ð33Þ

Historically, the preferred method of dilation has been by
table lookup to avoid a cumbersome series of mask and shift
operations that would be required to insert a zero between
each bit. This, however, requires a large lookup table when the
Cartesian coordinates are large. An integer with n bits has 2n

possible values and its associated dilated value is 2n� 1 bits
long. The size of the required dilation table is given as follows:

Dilate table size ¼ 2nð2n� 1Þ bits: ð34Þ

A contraction table is even larger than a dilation table because it
must contain 22n�1 entries for undilated integers with n bits, most of
which are duplicates of one another due to the abundance of “don’t
care” bits. The size of a contraction table for a dilated n-bit integer is
given as follows:

Contract table size ¼ 22n�1n bits: ð35Þ

These table sizes grow exponentially with n, as shown in Fig. 17.
Note that in Fig. 17, the y-axis is in units of 1 Kbyte for the
dilation table and in units of 10 Mbytes for the contraction table.
Also, note that the contract table can be reduced in size to that of a
dilate table by performing a preoperation that interleaves the bits,
thereby eliminating the “don’t care” bits and halving the length of
the integer to contract [8].
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Fig. 14. OX12 order in a 4 � 16 matrix.

Fig. 15. O213-01234567 ¼ INT213ðZ; Y ;XÞ.

Fig. 16. O213-01764532 ¼ INT213ðY � Z; Y ;X � Y Þ.

Fig. 17. Dilate and contract table sizes versus integer length.
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Although memory is becoming an increasingly cheap commod-
ity, it can be computationally expensive to access. As described in
Section 1, one of the primary reasons spatial orders are used is to
reduce memory paging. If a lookup table is used to calculate
location codes, that table must occupy memory that could
otherwise be used to store matrix cells. When the table is large,
the table itself may have to be paged in and out of memory as
different elements are accessed.

Another method for dilating integers, originally proposed by the
authors in [9], does not use lookup tables. Instead, the bits are spread
out efficiently using a series of left-shift, OR, and AND (mask)
operations. The following equations demonstrate the step-by-step
dilation of the 8-bit integer X8:

X08 ¼ ðX8 þ ðX8 � 4ÞÞ & F0F ¼ x7x6x5x40000x3x2x1x0; ð36Þ

X008 ¼ðX08 þ ðX08 � 2ÞÞ & 3333

¼x7x600x5x400x3x200x1x0;
ð37Þ

X0008 ¼ðX008 þ ðX008 � 1ÞÞ & 5555

¼x70x60x50x40x30x20x10x0:
ð38Þ

First, X8 is divided into two groups of 4 bits that are separated by

four zeros, X08 (36). Next, each of the two 4-bit groups is separated

into two 2-bit groups X008 (37), and last, each 2-bit group is

separated into two 1-bit groups X0008 (38), which is the dilation of

X8. Note that all masks are shown in hexadecimal format.
This procedure for dilating an integer is easily extended to

integers with any number of bits n, where the number of required

iterations is log2ðnÞ. For example, dilating a 16-bit integer would

require one additional step, which would split the original integer

into two 8-bit groups, separated by eight zeros, prior to continuing

with (36)-(38). Since the preceding function dilates the integer into

a repeating pattern of one zero followed by 1 bit, it is referred to as

the DIL11 function. Consequently, DIL22 is identical to DIL11 but

stops after (37) as is DIL44, which stops after (36). Clearly, higher

order dilation functions require fewer steps and, thus, reduced

computational effort.
A similar method can be used for nonuniform dilations, as

long as the number of zeros is greater than the number of bits.

For example, DIL32ðX8Þ is accomplished by adjusting the shift

operations and masks as follows:

X08 ¼ ðX8 þ ðX8 � 6ÞÞ & 3C0F

¼ x7x6x5x4000000x3x2x1x0;
ð39Þ

X008 ¼ðX08 þ ðX08 � 3ÞÞ & 18C63

¼x7x6000x5x4000x3x2000x1x0

¼DIL32ðX8Þ:
ð40Þ

When the number of zeros is less than the number of bits, a less

efficient dilation function must be used that first ORs together the

most and least significant group of bits in its first iteration

X08 ¼ ðX8 þ ðX8 � 3ÞÞ & 603 ¼ x7x60000000x1x0 ð41Þ

and then fills in an intermediate group of bits with each

subsequent iteration:

X008 ¼ X08 þ ðX8 & CÞ � 1 ¼ x7x60000x3x20x1x0; ð42Þ

X0008 ¼X008 þ ðX8 & 03Þ � 2

¼x7x60x5x40x3x20x1x0

¼DIL12ðX8Þ:
ð43Þ

The computational effort required by this version of the dilate
function grows linearly with the bit length of the operand, as
opposed to logarithmically with the previous version.

A similar algorithm is used to implement the contract operation
which reverses the procedure described above. For example, the
three integers that were dilated in (36)-(43) are contracted as
follows:

X8 ¼CTC11ðX0008 Þ;
X0008 ¼x70x60x50x40x30x20x10x0;

ð44Þ

X008 ¼ðX0008 þ ðX0008 � 1ÞÞ & 3333

¼x7x600x5x400x3x200x1x0;
ð45Þ

X08 ¼ðX008 þ ðX008 � 2ÞÞ & F0F

¼x7x6x5x40000x3x2x1x0;
ð46Þ

X8 ¼ ðX08 þ ðX08 � 4ÞÞ & FF

¼ x7x6x5x4x3x2x1x0;
ð47Þ

X8 ¼CTC32ðX008 Þ;
X008 ¼x7x6000x5x4000x3x2000x1x0;

ð48Þ

X08 ¼ðX008 þ ðX008 � 3ÞÞ & 3C0F

¼x7x6x5x4000000x3x2x1x0;
ð49Þ

X8 ¼ ðX08 þ ðX08 � 6ÞÞ & FF ¼ x7x6x5x4x3x2x1x0; ð50Þ

X8 ¼CTC12ðX0008 Þ;
X0008 ¼x7x60x5x40x3x20x1x0;

ð51Þ

X008 ¼ ðX0008 & 03Þ þ ðX0008 & 18Þ � 1 ¼ x3x2x1x0; ð52Þ

X08 ¼ X008 þ ðX0008 & C0Þ � 2 ¼ x5x4x3x2x1x0; ð53Þ

X8 ¼ X08 þ ðX0008 & 600Þ � 3 ¼ x7x60000000x1x0: ð54Þ

The dilate operation can be used by the interleave functions that
compute location codes for the spatial orders described in Section 3.
For example, the interleave operations referred to by (12), (13), and
(26)-(29) are computed by the following equations:

INT1ðY8; X8Þ ¼ DIL11ðY8Þ � 1þDIL11ðX8Þ; ð55Þ

INT1ðZ4; Y4; X4Þ ¼DIL21ðZ4Þ � 2

þDIL21ðY4Þ � 1þDIL21ðX4Þ;
ð56Þ

INT2ðY8; X8Þ ¼ DIL22ðY8Þ � 2þDIL22ðX8Þ; ð57Þ

INT2ðZ4; Y4; X4Þ ¼DIL42ðZ4Þ � 4

þDIL42ðY4Þ � 2þDIL42ðX4Þ;
ð58Þ

INT12ðY3; X6Þ ¼ DIL21ðY3Þ � 2þDIL12ðX6Þ; ð59Þ
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INT213ðZ4; Y2; X6Þ ¼DIL42ðZ4Þ � 4

þDIL51ðY2Þ � 2þDIL33ðX6Þ:
ð60Þ

Note that the interleave functions shown in (55)-(60) hold
regardless of which dilation algorithm is chosen, the one proposed
here or the more classic table lookup version.

The contract operation can be used in a similar fashion to
convert from location codes back to Cartesian coordinates. For
example, the Cartesian coordinates are recovered from the dilated
integer computed in (60) by the following equations:

X6 ¼ CTC33 INT213ðZ4; Y2; X6Þð Þ; ð61Þ

Y2 ¼ CTC51 INT213 ðZ4; Y2; X6Þ � 3ð Þð Þ; ð62Þ

Z4 ¼ CTC42 INT213 ðZ4; Y2; X6Þ � 4ð Þð Þ: ð63Þ

5 PERFORMANCE

Each iteration of the dilate operation involves three binary
operations: a left shift, an OR, and an AND. Since the number of
iterations must be an integer value, it can be shown that the
number of binary operations to dilate an n-bit integer can be
computed by the following equations:

#OpðDILabÞ ¼ 3� ceil log2ðn=bÞð Þ; a � b; ð64Þ

#OpðDILabÞ ¼ 3� ceilðn=bÞ � 1ð Þ; a < b: ð65Þ

Equations (64) and (65) are plotted for integers of up to n ¼ 32
and bit groups of up to b ¼ 16 in Fig. 18. Note that contraction
requires the same number of binary operations as dilation except
that one additional AND operation is required in the first iterations
when a < b (see (52)).

Computing a location code for a square 2 � 2 matrix that is
mapped using a OZb-order requires two dilation operations, one
left-shift operation, and one OR operation. Therefore, the total
number of binary operations required is given by the following
equation, which is plotted for an n ¼ 32 integer in Fig. 19:

#OpðINTbðYn;XnÞÞ ¼ 6� ceil log2ðn=bÞð Þ þ 2: ð66Þ

It is clear from Fig. 19 that the computational effort required to
compute a location code depends heavily on the interleaving
order b. For a 32-bit operand, it ranges from 8 to 32 binary operations
for 16-bit and 1-bit interleaving, respectively. Therefore, there is a
substantial performance incentive for choosing the spatial order
that uses the highest order interleaving possible, achieved by
selecting the spatial order that consumes as near as possible to one

page of memory. For a spatial order with k dimensions where each
cell stores m-bytes of data, the amount of memory M used by the
smallest complete submatrix is calculated as follows:

Memory Consumption ðOd1 ;d2 ;...;dkÞ; M ¼ m
Yk
i¼1

2di : ð67Þ

The memory consumption is independent of whether a Z-, U-, or
X-order is chosen. The particular choice of order depends more on
whether it is more important to have adjacent or diagonal entries
in close proximity to one another.

For a square matrix where all di values are equal, (67) can be
rearranged to solve for in terms of k, M , and m:

di ¼
1

k
log2

M

m

� �
: ð68Þ

For example, for a system with a 256,000-page size, multiplying
a 2D matrix of 4-byte values with 32-bit Cartesian coordinates, the
optimum value of di is eight (from (68)). Therefore, the OZ88-order
would be a good choice since the associated 256 � 256 submatrices
could be accommodated by a single page of memory and each
location code would only require 14 binary operations to compute
(from Fig. 19).

6 CONCLUSION

This paper investigates, in depth, the spatial orders of 2n � 2n

domains in two and three dimensions. If the operations involved
with the generation of the orders are restricted to logical operations,
three spatial order classes, OZ, OU, and OX, emerge with eight orders
each for each class of 2D spaces and 40,320 orders each for each class
of 3D spaces.

Additional orders resulting from extending the interleaving
operations to groups of more than 1 bit are also considered,
including their ability to map nonsquare domains.

Underlying the definition and generation of spatial orders is the
operation of interleaving coordinates, which in turn requires the
dilation and contraction (undilation) of integers. Memory-preser-
ving algorithms are also proposed to perform these operations for
all of the spatial orders previously mentioned.

Finally, the computational burden of dilation and interleaving
algorithms are compared, and it is described how performance
can be maximized by choosing the optimal spatial order for a
particular memory page size.

The contributions of this paper include a generalization of
existing square spatial orders, a proposal for a new class of spatial
orders that involves partially dilated Cartesian coordinates, a
proposal for a set of algorithms to dilate and contract integers to
compute the spatial orders previously mentioned, an analysis of
the performance of said algorithms, and a proposal for a method of
optimizing the choice of spatial order to a particular application.
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Fig. 18. Number of binary operations per integer dilation.

Fig. 19. Number of binary operations per location code.
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