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Abstract

A new global isotropy index (GII) is proposed to quantify the configuration independent isotropy of a robot’s Jacobian or

mass matrix. A new discrete global optimization algorithm is also proposed to optimize either the GII or some local

measure without placing any conditions on the objective function. The algorithm is used to establish design guidelines

and a globally optimal architecture for a planar haptic interface from both a kinematic and dynamic perspective and to

choose the optimum geometry for a 6-DOF Stewart Platform. The algorithm demonstrates consistent effort reductions of

up to six orders of magnitude over global searching with low sensitivity to initial conditions.

1  Introduction
Modern robot applications such as haptic interfaces and surgical assistants make performance demands far beyond those

of the assembly and repetitive task devices of the past. Designing a robot to uphold a set of performance standards is

complicated by the fact that the relationship between the robot’s actuators and end-effector varies with position and

direction. Only after minimizing this variation, or in other words maximizing the mechanical isotropy, can one choose

suitable actuators and design a controller. The greatest opportunity for improving isotropy is through geometric parameter

selection but making the best choice is no small task. The search space can be made finite through discretization but the

order of the optimization problem is compounded by each geometric parameter and by each workspace dimension. Even

relatively low dimensional problems are impossible to complete in a reasonable amount of time if an all-inclusive search

is attempted. While many efficient search methods exist, most are incompatible with robot design problems which are of

the minimax form since an optimum parameter should produce the best worst-case behaviour throughout the robot’s

workspace, and also because the objective function is, in general, non-linear, non-differentiable, non-convex and may

even be discontinuous. Descent algorithms become trapped in local minima, stochastic approaches have uncertain

stopping criteria and the results of a global search become increasingly suspicious as the search resolution is decreased.

The kinematic and/or dynamic equations of a robot are often used to describe the relationship between a robot’s end-

effector and its actuators. The Jacobian matrix determines the required actuator force/torque from a desired end-effector

force/torque or the actuator velocity from a desired end-effector velocity. The mass matrix relates actuator force/torque to

end-effector acceleration of a device that is starting from rest. Directional independence is represented by a scalar

condition index derived from these matrices. Condition indices have been proposed to describe kinematic isotropy 14, 34

and manipulability 13, inertial isotropy 3, 18, 19 and manipulability 8, maximum joint velocity 21, kinematic

nonlinearity and redundancy 4, task completion time 25, accuracy 13 and stiffness 3. These condition indices are,

however, local measures (i.e. evaluated at a single position) and one is usually interested in behaviour throughout a range

of positions. Various methods have been proposed to remove configuration dependence from these measures. Some fix the

link lengths and search only for optimal poses 3, 4, 34 while others combine the geometry and pose variables and search

for optimal geometry/pose pairs 13, 18. One approach integrates the performance measure over the workspace 6, 19, 23
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while another simply reduces the workspace to a one dimensional trajectory 25. Similarly, in 21 the parameter set is pared

down using a set of predefined trajectories while in 19 the six trajectories along the primary translations and rotations

about a central operating point are considered. A coarse minimax optimization is attempted in 8 where the finely

discretized workspaces of a few hand-picked 2-DOF device parameters are compared and in 15 where a 3-DOF

manipulator is similarly optimized by fixing each degree of freedom individually. The local results of the Matlab

minimax routine are relied upon in 20 to choose optimum joint arrangements and the number of achievable isotropic

poses is analytically maximized in 14.

Many optimization procedures can be nested to solve minimax problems. Various descent methods exist (see for example

5) to handle constrained problems. They include gradient, direction, quasi-gradient/direction, penalty, feasible direction

and gradient projection methods. Attempts to make these local descent methods global include multi-start 24, clustering

24, 30, decomposition point identification 2, Rock and Roll 16, tunneling 33, transformation of the problem into its

concave dual 32 and linear and nonlinear programming 17, 22. Some global methods assume a natural model for the

objective function such as Bayesian 30, 31 and Monte-Carlo 30, 35 methods while others emulate natural processes such

as simulated annealing 24, 30, 35 and genetic algorithms 7, 27. These approaches offer a measure of confidence but no

guarantee of global optimality. Other methods such as branch-and-bound 12 guarantees a global optimum but it is not

always easy to bound a function and the method is inefficient if the bounds are too conservative. Proposals which address

minimax optimization directly include objective function integration over the workspace 10 and tree-searches such as

game theory 1.

A new measure of global isotropy, the “Global Isotropy Index” (GII), is proposed in Section 2 to measure the worst-case

consistency of a mechanism in all directions and at any position in its workspace. A new algorithm belonging to the

branch-and-bound family of optimization algorithms is presented in Section 3 which finds the globally optimum

parameter from a discretized parameter space within a discretized workspace. Unlike descent algorithms, it is unhampered

by non-differentiable, non-convex or discontinuous cost functions or those containing local minima. One version is

presented for optimizing the GII and another is presented to solve minimax problems in general. The new isotropy index

and optimization algorithm are used in Section 4 to design a 2-DOF pantograph robot and again in Section 5 to design a 6-

DOF Stewart Platform. The efficiency of the algorithm is discussed in Section 6 and conclusions are drawn in Section 7.

2  The Global Isotropy Index
The Jacobian matrix can be viewed as an effective transmission ratio between the actuators and the end-effector. It

transforms joint rates into end-effector velocity or the end-effector force/torque into actuator forces and/or torques. These

two uses are shown for a serial manipulator in (1) and (2) where  is end-effector velocity,  is joint velocity, τ is actuator

force/torque and f is end-effector force/torque.

Using the Jacobian to transform all end-effector forces of unit magnitude and arbitrary direction into actuator torques

produces an ellipsoid in the torque domain. Consider the planar elbow manipulator in Figure 1 with the parameter

 and which applies forces in all directions but whose workspace is constrained to the horizontal

trajectory  at y=2. A unit circle in the end-effector force domain and its corresponding ellipse in the
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actuator torque domain at x=5 are shown in Figure 2. The lengths of the major and minor axes of the actuator torque

ellipse are equal to the minimum and maximum singular values of the Jacobian, denoted by  and

respectively and the condition number  is defined as the ratio of the these two values as shown in (3). The closer

 is to unity, the more isotropic the device is at x. Note that while the Jacobian is used in this example, the same can

be said about any matrix transformation such as the mass matrix.

Because the Jacobian is a function of position, the condition number is a local measure and manipulators that are designed

to be isotropic at individual positions may not exhibit similar levels of isotropy throughout their workspaces. The

condition number only measures the roundness of an ellipse but does not measure its size. Both of these attributes are,

however, important in determining the overall consistency of a device’s behaviour since shape is a relative measurement

which represents directional isotropy whereas size is an absolute measurement which represents average capabilities.

Optimizing the condition number, therefore, does not address the possibility that average capabilities may change as the

workspace is navigated. Figure 3 shows the different sizes and shapes of torque ellipses that occur at three different

positions for the robot in Figure 1. The ellipses at x=0 and x= 5have similar shapes (  and ),

but the singular values at x= 5 are an average of 1.5 times larger than those at x=0 (  and

). In other words, even though the manipulator is comparably isotropic at these two positions, it has

over one and a half times the average force capabilities in the centre of its workspace than it does at the edges of its

workspace. This is hardly uniform behaviour.

σ
˜

J p x,( )( ) σ̃ J p x,( )( )

κ p x,( )

κ p x,( )

κ p x,( ) σ̃ J p x,( )( )
σ
˜

J p x,( )( )
--------------------------= (3)

Figure 1: Constrained Planar Elbow Manipulator
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Figure 2: Torque Ellipse at x=5
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In the past 8, configuration independence has been checked by comparing the products of minimum and maximum

singular values at different positions. Here, this secondary, local measure is averted by introducing a global isotropy index

called the GII which compares the smallest and largest singular values in the entire workspace (4). The GII is essentially a

global, workspace inclusive version of the condition number. Note that the GII is defined as a minimum over a maximum

rather than a maximum over a minimum like the condition number. This conveniently makes the GII a normalized

performance measure s(p) which assigns a value of 1 to perfect isotropy and a value of 0 rather than ∞ to singular

behaviour.

Consider again the elbow manipulator in Figure 1. Local actuator torque ellipses are computed at all values of x ranging

from -5 to +5 and are superimposed upon one another in Figure 4. The GII is the ratio of the radius of the largest circle

contained in all of these ellipses to the radius of the smallest circle containing all of these ellipses.

A GII value of 1 implies that a mechanism is not only isotropic (direction insensitive) at each position in its workspace,

but also that it behaves consistently at all positions within its workspace. An optimally isotropic robot design parameter

 is, therefore, one that maximizes the value of the GII as shown in (5).

3  Culling Algorithm
A new algorithm is proposed which is of the branch and bound variety but is specifically designed to solve GII or minimax

optimization problems. It identifies non-optimal parameters and culls them from the search space until only the optimum

remains. The algorithm optimizes the GII (4) which is defined between 0 and 1 corresponding to poor and ideal

performance respectively, over a workspace W which is a constrained set of configurations x for a parameter p. The

GII p( ) s p( ) min
x0 x1, W∈

σ
˜

J p x0,( )( )
σ̃ J p x1,( )( )
----------------------------

min
x0 W∈

σ
˜

J p x0,( )( )

max
x1 W∈

σ̃ J p x1,( )( )
--------------------------------------------------= = = (4)

Figure 4: Force/Torque Ellipses and GII

max
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σ
˜
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p∗ maxarg
p P∈

GII p( )= (5)
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optimization goal (5) is to find the parameter  with the best “worst-case” behavior throughout the constrained

workspace W. The algorithm is shown in (6) through (15) and uses the following notation.

The algorithm starts with a looping index and best known performance measure of zero (6), optimistic bounding functions

(7) and an initial p0 that is chosen from P0 (8). Minimum and maximum singular values are calculated for pi at each x in W

(9). If pi produces a better GII than the best known parameter , pi becomes the new best known parameter  and a

new best known performance measure  is calculated (10). Singular values are calculated for each p in Pi at  and

p∗

i looping index=

pi design parameter=

Pi set of all parameters in parameter space=

p̂i best known design parameter=

x end-effector position=

W set of all positions in workspace=

x
˜

position with the smallest singular value=

x̃ position with the largest singular value=

σ
˜

minimum singular value at a position=

σ̃ maximum singular value at a position=

Σ
˜ i : Pi ℜ→ minimum singular value upper bounding function=

s performance measure; either GII or= κ 1–
as defined in (3)

Σ̃i : Pi ℜ→ maximum singular value lower bounding function=

ŝ performance measure of best known design parameter=

List of Symbols

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

REPEAT
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---------------------∈
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--------------------- ŝi 1+>
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σ
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Σ
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Σ
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and the corresponding upper  and lower  bounds are updated (11). Note that since all singular values are known

for  and  from (9), bounding may be improved by replacing (11) with (16).

Although any improvement from using (16) can be primarily attributed to good fortune, it comes from a negligible

increment in computational effort and is a worthwhile investment. Also note that one or both updates in steps (11) and

(16) can be omitted for all p whose ratio of upper and lower bounds is already less (i.e. worse) than  since those p will

be culled from Pi in (12). The p with the largest ratio of upper and lower bounds is chosen as the next candidate pi+1 (13).

(9) through (14) are repeated until  is the only parameter left in Pi which conclusively identifies  as the global

optimum (15).

Since a parameter is only removed from the search space after it has produced singular values with a ratio worse than that

of another parameter  for which all singular values have been rigorously computed, the global optimum is guaranteed.

Computational savings result from strategically exploring configurations which are likely to simultaneously identify many

parameters as sub-optimal. Expected efficiency, however, relies on the presumption that within a continuous, bounded

range of parameters, many of them, particularly those in close proximity to each other, will exhibit similarly favourable or

poor behaviour at common configurations. This is a presumption that holds well in robot design problems. Consider, for

example, a robot that stretches to its reachable limit when visiting a position in the pre-defined workspace which produces

a minimum singular value of 0. A small adjustment to one geometric parameter will usually only slightly affect the robot’s

reachable limit and it will continue to produce very large and/or small singular values at that position. It and all other

neighbors of the original parameter are, therefore, likely candidates for being culled from the parameter space after being

evaluated at that position.

While the GII culling algorithm is specifically geared toward optimization of the GII, some worst-case design problems

are of the form shown in (17) and can be solved using a similar approach. An optimization criteria of this form is used, for

example, by Hayward et. al. 8 with  to optimize the mass matrix D(p, x) of a planar

pantograph haptic interface. Problems of this form can be solved by the minimax culling algorithm shown in (18) through

Σ
˜ i p( ) Σ̃i p( )

x
˜ i x̃i

Set
Σ
˜ i 1+ p( ) min Σ

˜ i p( ) σ
˜

p x
˜ i,( ) σ

˜
p x̃i,( ), ,{ }=

Σ̃i 1+ p( ) max Σ̃i p( ) σ̃ p x
˜ i,( ) σ̃ p x̃i,( ), ,{ }= 

 
 

p Pi∈∀; (16)

ŝi 1+

p̂i p̂i

p̂

s p x,( ) σ
˜

D p x,( )( ) σ̃ D p x,( )( )⁄=
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(27). Note that in the minimax version of the culling algorithm,  is an upper bound on the worst-case performance

function , and no longer contains singular values explicitly.

The minimax culling algorithm is illustrated by a step-by-step example using the planar elbow manipulator of Figure 1.

The performance index is the ratio of singular values of the Jacobian matrix  and the

parameter space is reduced to a single dimension by calculating the minimum forearm length l1 from (28) which ensures

that the boundaries of the usable and reachable workspaces shown in Figure 5 are separated by a minimum safety margin

of length K. In other words, l1 is chosen such that .

The performance index is non-linear, non-differentiable and contains local minima and maxima in both its operation and

parameter spaces which, in this case, can be verified by brute force since the problem has only three dimensions (x, l0, and

Σ
˜ i

s p x,( )

p∗ marg ax
p P0∈

min
x W∈

s p x,( )= (17)

Set Pi 1+ p Pi∈ Σ
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Find x
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otherwise ; p̂i 1+ p̂i= ŝi 1+ ŝi=,

Set Σ
˜ i 1+ p( ) min Σ
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2
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Figure 5: Planar Elbow Manipulator Workspaces

y l0
l1



8

). The performance index  is plotted against x and l0 in Figure 6 with xmax=5, y=2,

K = 0.4 and l0∈ {2, 8}.

A mid-range value of l0=6 is picked as the initial best known parameter  (20). The workspace of l0=6 is searched to find

that x0=0 minimizes s(l0, x) with a value of s(6, 0)=0.28 (21) and the condition index of the best known parameter is

updated (22). The parameter space at x0=0 is searched, the upper bound  is updated for each parameter (23) and all sub-

optimal parameters are culled (shaded regions in Figure 7) from the parameter space (24). l0=3.3has the largest upper

bound and is the next candidate  (25).

The workspace of l0=3.3 is searched to find that x1=−5 minimizes s(l0, x) with a value of s(3.3, -5)=0.16 (21) so l0=6 is

still the best known parameter (22). The parameter space  at x1=−5 is searched, the upper bound  is

s l0 x,( ) σ
˜

J l0 x,( )( ) σ̃ J l0 x,( )( )⁄= s l0 x,( )

Figure 6: Surface and Contour Plots of Dexterity
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Figure 7: First Culling of Non-Optimal Geometries
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updated for each parameter (23) and all sub-optimal parameters are culled from the parameter space (24). l0=4.5has the

largest upper bound and is the next candidate  (25) (see Figure 8).

The workspace of l0=4.5 is searched to find that x2=0 minimizes s(l0, x) with a value of s(4.5, 0)=0.4 (21) making it the

new best known parameter (22). All remaining parameters left in the parameter space  have upper bounds

that are below this value and are culled from the parameter space (23), (24). Only l0=4.5 remains and is, therefore, the

global optimum  (27). This is verified by performing an exhaustive search and plotting the worst-case performance of

each geometry. The optimum geometry is shown to be l0=4.5in Figure 9.

The culling algorithm belongs to the branch-and-bound family of optimization algorithms but is unconventional in that it

is only useful in solving minimax problems. It also performs all of its bounding through explicit function evaluations and,

therefore, does not require any worst-case estimates of the objective function. Each time the condition index of a

candidate parameter is rigorously computed, the value is used to push up the lower bound on the performance index of the

optimum parameter and each time the condition index is computed for a parameter at a new position, the value is used to

push down the upper bound on the performance index of that parameter. If the lower bound on the optimal performance

index exceeds the upper bound on the performance index of any parameter, that parameter is culled from the parameter

space. This is how the culling algorithm performs bounding. It performs branching by alternating between workspace-

inclusive searches for a single parameter and parameter-space inclusive searches for a single point, choosing which

parameter or position to search from the results of the previous iteration.

p2

Figure 8: Second Culling of Non-Optimal Geometries
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4  Design of a Five-Bar Linkage Based Planar Device
Karadis et. al 11 design a dynamically balanced five-bar linkage for micro-probing while Hayward et. al. 8 optimize a

five-bar linkage for use as a planar haptic interface. The culling algorithm and new definition of global isotropy are used to

re-examine the five-bar linkage based haptic interface for both kinematic and dynamic conditioning. A general

representation of a five-bar linkage with a square workspace is shown in Figure 10 and is used to establish symmetry and

positioning guidelines for the device.

The Jacobian matrix (29) of this device is concisely computed as a function of end-point location from equations (30)

through (36).

Figure 10: Five-Bar Linkage
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The kinematic GII is optimized with seven free design parameters (a, b0, b1, c0, c1, γ and η) and with r and w fixed to

avoid a trivial result since isotropy improves as r→∞ or as w→0. For r=w=10 and ∆w=0.1 (∆w is the discrete sample

spacing in the workspace) the search space and solution obtained by the GII culling algorithm are shown in Table I.

The global optimum has left/right symmetry of both the robot and workspace. Future optimizations, therefore, need only

consider three parameters (a, b=b0=b1 and c=c0=c1) and half of the workspace (x≥0). This simplifies the problem

sufficiently to allow further generalization. Varying r while constraining the elbow angles  shows the

optimum posture for a range of r values where a negative value of r corresponds to a workspace positioned below the line

connecting joints {q0, q1}. Figure 11 shows the optimum geometry, GII and posture for , γ=η=π/2 and the

parameter space shown in Table II. Note that the search space constrains the robot and workspace to a 30x30 square area.

The GII curve is non-smooth and the optimal parameter curves (a, b & c) are discontinuous in r. Parametric

discontinuities occur at the intersections of optimum GII curves for different postures. Consider the region around r=10.

The optimum GII of the “M” posture is relatively level while the optimum GII of the elbow-out posture increases with r.

When the curves intersect, the optimum posture switches from “M” to elbow-out and the parametric curves experience a

jump. There are clearly two viable ranges for r. Values of  are acceptable in which case the “M” posture is

best with the workspace positioned between the actuators. Magnitudes greater than 10 are also acceptable in which case

the elbow-out posture is preferred. While elbow-in achieves GIIs similar to elbow-out for similar magnitudes of r it

requires longer physical link lengths (b & c). The inertial implications of this distinguish elbow-out as the better posture.

Table I: Parameter Space & Optimum
Parameter Min. Val. Max. Val. Resolution Optimum

a 0 3 0.5 1.5

b0, b1 4 10 0.5 7.5

c0, c1 7 14 0.5 9.5

γ, η 0 π/2 π/20 π/2

Table II: Reduced Parameter Space
Parameter Min. Val. Max. Val. Resolution

a 0 15 0.2

b, c 5 30 0.2

λ0 λ1, 0…π{ }∈

r 25– …25{ }∈

Figure 11: Optimal Postures of Five-Bar Linkage
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For all other values (i.e. ), the optimal postures combine long link lengths with poor GIIs and

should be avoided.

For an inertial optimization, it is assumed that the device is held with a light fingertip grip so hand inertia is neglected. It is

also assumed that joint and rotor inertia is dominated by the inertia of the linkages which are made from circular cross-

section 2024-T4 aluminum tubing of thickness t. The mass matrix is obtained by computing the passive joint velocities

and  and treating the device like two elbow manipulators joined at the end-effector. The mass matrix of an elbow

manipulator as a function of position, geometry and the mass and centre of mass of each link is available in 26. For

uniform tubing, the centre of mass of each tube is its geometric centre and mass per unit length (37) is a function of wall

thickness t and diameter d. Keeping wall thickness constant, the natural frequency ω of the mechanism is conservatively

bounded by choosing the diameter (38) that results in the same natural frequency for a cantilever beam the length of all

four robot links arranged end to end as calculated in 9.

It is debatable whether it is preferable to optimize the mass matrix for isotropy or scale. Since isotropic mass is not

particularly important if the magnitude is small, maximum mass is minimized by considering the normalized performance

index involving only the maximum singular value of the mass matrix shown in (39). Since this measure can be computed

locally, the minimax culling algorithm is used.

It was observed that the culling algorithm becomes significantly less efficient when the value obtained from the objective

function does not change throughout large, connected portions of the workspace. This often occurs when the desired

workspace extends beyond the reachable workspace where  is equal to 0. Efficiency is restored by augmenting the

condition index with a separate function for unreachable points  which assigns a value of 0 to a position on the

boundary of the reachable workspace and a value of -1 to a position infinitely far from it (40). The augmented condition

index  (41) is still a normalized index since its magnitude is less than or equal to unity (42) with positive values

(39) for reachable positions and negative values (40) for unreachable positions.

Since  can have either a positive or a negative value, a modification must be made to the minimax culling

algorithm. The initialization step (18) must be replaced with (43) but the remainder of the algorithm is entirely

compatible.

r 12– … 3–{ } 1…10{ },{ }∈

λ̇0

λ̇1

d 2.55
6–×10 b0 b1 c0 c1+ + +( )2ω (cm)=

m 8.7td (g/cm)= (37)

(38)

s p x,( ) 1
1 σ̃ D p x,( )[ ]+
-------------------------------------= (39)

s p x,( )

s' p x,( )

s'' p x,( )

s'' p x,( ) 1…1–{ }∈

(40)

(41)

(42)

s' p x,( ) 1
1 distance from w/s+
---------------------------------------------------- 1–=

s'' p x,( )
s p x,( ) if position is reachable

s' p x,( ) otherwise



=

s'' p x,( )

(43)Set i 0= ŝ0 1–=,
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Two optimizations are performed, both with w=10, ∆w=0.1 and ω=200π (100 Hz) but searching two different parameter

spaces. The first optimization (parameter space “A”) attempts to find a design that is both dynamically and kinematically

favourable by picking the dynamic optimum from the geometric combinations that are the kinematic optima for different

values of r. There is only one free parameter r while all other geometric parameters (a, b and c) are chosen as a function of

r from Figure 11. Although this parameter space is very small, it ensures a kinematic GII that is no less that 0.3. The

second optimization (parameter space “B”) includes the full cross-section of geometric combinations searched during the

kinematic optimizations so all four geometric design parameters a, b, c and r are free. Although a trivial result is obtained

when r is free during kinematic optimization, this does not occur during dynamic optimization. The two parameter spaces

and optimum solutions are shown in Table III.

Parameter space “A” has a narrow scope but guarantees a kinematically favourable solution. Parameter space “B” ignores

kinematic conditioning but results in the dynamic global optimum. In order to decide which solution is most favourable

overall, the two are compared by a sensitivity analysis in Table IV. Since both solutions have similar dynamic

performance but solution “A” has significantly better kinematic performance, solution “A” (a=1.6, b=7.6, c=9.8, r=10.4)

is concluded to be the best overall design.

Special purpose robots such as haptic interfaces are hampered by large changes is singular values as well as by sudden

changes in singular values. Smoothness is checked as a secondary measure for the optimal design by plotting the

minimum and maximum singular values of the Jacobian and mass matrices over the workspace. As seen in Figure 12, they

Table III: Inertial Parameter Spaces & Optima
Parameter Min. Val. Max. Val. Resolution Optimum

Parameter Space A

a from table from table from table 1.6

b from table from table from table 7.6

c from table from table from table 9.8

r -25 25 0.2 10.4

Parameter Space B

a 0 15 0.2 0

b 5 30 0.2 7.2

c 5 30 0.2 8.8

r -25 25 0.2 9.2

Table IV: Sensitivity Analysis

Parameter
Space

Kinematic GII Maximum Inertia

Value % Change
From Mean

Value % Change
From Mean

Solution A 0.3657 +13.5% 0.9045 -1.2%

Solution B 0.2790 -13.5% 0.9271 +1.2%

Mean 0.3224 0% 0.9158 0%
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are both smooth and even have regions of perfect local isotropy where the minimum and maximum singular value curves

intersect (i.e. ).

Three optimal geometries have resulted from the preceding discussion, each satisfying different design criteria including

kinematic conditioning, dynamic conditioning and a combination of the two. Strictly speaking, a kinematic optimum does

not exist since isotropy can always be improved by moving the workspace away from the base and increasing the link

lengths. An optimum does exist for a fixed workspace position but this is not very helpful in practice since it is unclear

where the optimal workspace position is located. A more natural method of keeping device sizes reasonable is to penalize

large geometries by including dynamic criteria in the objective function. Unfortunately, a design optimization that relies

solely on dynamic conditioning can result in a device with poor static performance. To get the best overall behaviour from

a reasonably small device, one should consider both kinematic and dynamic criteria simultaneously. The difficulty of

creating a weighted performance function is avoided here by narrowing down the parameter space with one criteria and

finding the optimum with the other. It should, however, be noted that approaches such as this are quite computationally

expensive.

5  Design of a Stewart Platform Based 6-DOF Device
The GII culling algorithm is next used to attempt a higher dimensional design optimization involving the 6-DOF Stewart

Platform manipulator shown in Figure 13.

The manipulator is designed by exploring combinations of the design parameters a, L0, L1, η and the ratio L0/l0=L1/l1.

The workspace is a cubic volume with all sides of length 10 cm centred 25 cm above the centre of the base. The range of

orientations includes a solid angle of 30˚ traced by the  axis of the platform coordinate frame combined with all rotations

of up to 30˚ about that axis. Symmetry of the workspace about the  plane is used to reduce the number of geometric

robot parameters by imposing the same symmetry upon the robot. The distances between the centre of the platform and

the left and right pairs of actuators are equal (L1) and the platform is shaped similarly to the base but is scaled by the ratio

L0/l0=L1/l1. It is suggested in 29 that the physical units of the Jacobian of such a device can be normalized using a

σ
˜

J or D( ) σ̃ J or D( )=

Figure 12: Singular Values of Jacobian & Mass Matrix
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Characteristic Length of 12 cm if the device is to be used as a haptic interface. Using this value, the GII of the Jacobian

matrix is optimized given the discrete parameter space shown in Table V and the discrete workspace shown in Table VI.

The optimum parameters shown in Table V produce a GII value of 0.281. To see if the result is sensitive to sample

spacing, the discretization resolution is halved for all parameters and workspace dimensions and the optimization is

repeated. A GII of 0.285 results from the parameters a=17, L0=L1=10, η=120˚ and L0/l0=L1/l1=0.7. Since the GII

fluctuates by only 1.4% and the optimum parameters differ by a maximum of only 3%, it is concluded that the original

resolution is adequate and that little improvement can be expected in terms of a better (parameter space resolution) or

more trustworthy (workspace resolution) solution from reducing the sample spacing.

6  Efficiency of the Culling Algorithm
The Culling algorithm belongs to the branch and bound family of optimization algorithms where all bounds are

determined by explicit function evaluations. It avoids redundant evaluations by eliminating parameters that are shown to

be sub-optimal and, therefore, always converges to a global optimum within the discretized parameter space. Each loop

iteration removes at least one parameter from contention so the number of potential loop iterations is bounded by the

dimension of the parameter space and the stopping criterion is always satisfied in finite time. A worst case scenario of no

culling whatsoever results in an exhaustive global search. As with most optimization algorithms, efficiency depends on the

objective function and initial conditions. While the algorithm makes no efficiency guarantees, experience with robot

design problems has consistently shown dramatic improvement over a global search with low sensitivity to initial

Table V: Stewart Platform Parameter Space
Parameter Minimum Maximum Resolution Optimum

a 1 20 0.5 16.5

L0 1 20 0.5 10.0

L1 1 20 0.5 10.0

L0/l0, L1/l1 0.5 1.5 0.1 0.7

η 100° 130° 1° 118

Table VI: Stewart Platform Workspace
Dimension Minimum Maximum Resolution Total

Translation

i axis 0 5 0.625 9

j axis -5 5 0.625 17

k axis -5 5 0.625 17

Rotation

i, j axes Uniformly Sampled Solid Angle 168

k axis -30˚ 30˚ 5 13
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conditions. Table VII compares the number of objective function evaluations performed by the culling algorithm to those

required by a global search for the optimizations described in this paper.

The algorithm is demonstrated to be effective at solving both modest (i.e. few dimensions) and complex (i.e. many

dimensions) problems. An example involving the Stewart Platform with a workspace containing over 5 million elements

and a parameter space containing over 13 million elements resulted in an effort reduction of over 6 orders of magnitude

over a global search. This calculation which took just over 4 days to solve on a Sun Sparc 5 workstation using culling is

estimated to require over 20,000 years to solve by a global search using a similar machine. By looking at the severity of

culling during each loop iteration, we can identify where most of the computation effort takes place. The Stewart Platform

optimization described in Table V and Table VI was solved in 5 loop iterations. Table VIII shows for each loop iteration

the number of parameters initially present, the number of parameters culled, the maximum number of objective function

evaluations required to update the singular value upper and lower bounds of all remaining parameters and the number of

objective function evaluations required to search all workspace locations of the candidate parameter. Note that because the

GII culling algorithm was used, up to two parameter evaluations (two different workspace locations for each parameter)

can occur during each loop iteration.

A. Typical value for an optimization conducted for any one value of r
B. The parameter space was divided into 10 parts to overcome hardware

(memory) limitations so the reported ratio is an average. Partitioning
reduces the efficiency of the culling algorithm so the reported
improvement ratio is conservative.

Table VII: Culling/Global Search Effort Reduction

Optimization
Workspace

Size
Param Space

Size
Global Search :
Culling Ratio

Table I 1.02×104 2.66×107 3670 : 1

Table II 5151 1.21×106 1910 : 1A

Table III - #1 5151 251 82 : 1

Table III - #2 5151 3.03×108 3500 : 1B

Table V 5.68×106 1.37×107 1.79×106 : 1

Table VIII: Effort Breakdown of GII Culling
Loop

Iteration
Number of
Parameters

Parameters
Culled

Parameter
Evaluations

Workspace
Evaluations

0 13,702,689 12,498,014 27,405,378 5,680,584

1 1,204,675 1,204,049 2,409,350 5,680,584

2 626 353 1,252 5,680,584

3 273 271 546 5,680,584

4 2 1 4 5,680,584

5 1 0 0 0

TOTAL n/a 13,702,688 29,816,530 28,402,920
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It is, however, possible to skip one or both parts of steps (11) and (23) so the number of total parameter space evaluations

are bounded from below by the number of parameters in parameter space P0. The minimum, maximum and actual number

of calculations that took place are shown in Table IX.

Computational effort is split quite evenly between parameter space and workspace searches. Parameter space searches

leave little room for improvement since an average of only one or two positions are visited for each parameter but

workspace searches might benefit from a different, perhaps stochastic, searching strategy. For example, workspace

positions could be visited in steps (9) and (21) in a random order, stopping when  which identifies pi as

suboptimal. If, however, this condition is never met, the workspace search can only be terminate after an exhaustive search

has been completed so that the guarantee of global optimality is not compromised. Since the  and/or  produced from

a truncated search are not expected to be as good as those produced by an exhaustive search, culling is likely to be less

severe after the subsequent parameter space search but the net gain from truncating the workspace search could in many

cases exceed the net loss from the reduction in parameter culling.

To determine sensitivity to initial conditions, the Stewart Platform optimization was repeated two more times, once with

the initial condition set to the optimum solution from Table V and again with the initial condition set to the parameter

farthest from the optimal solution (i.e. a=1.0, L0=L1=20.0, η=130˚ and L0/l0=L1/l1=1.5). The number of function

evaluations resulting from each of the three trials is presented in Table X and shows that a good first guess can reduce

computational effort by up to 12.7% over the mean value. One way of obtaining a good first guess is to increase the

sample spacing and pre-optimize the device. The optimization of the Stewart Platform with double the original sample

spacing that was described earlier required 8.77×105 function evaluations to complete. Adding this initial investment to

the required computational effort when starting from the optimal solution reduces its 12.7% gross effort reduction to a

9.9% net effort reduction over the mean value. Since the effort reduction from having a good starting point is only

expected to be in the neighborhood of 10%, it is only practical to pursue when the problem is very large and is expected to

take a long time to complete. Otherwise, it is probably more practical to choose the starting point arbitrarily.

As a final note, due to the low computational overhead of the culling algorithm, almost all of the processing power is

consumed by objective function evaluations. The effort required to calculate a Jacobian and its singular values

overwhelms the few conditional checks and assignment statements associated with the algorithm itself, especially in the

case of a 6-DOF device. Since the culling algorithm performs blocks of function evaluations for large sets of parameters

Table IX: Function Evaluation Summary
Parameter

Evaluations
Workspace
Evaluations

Total
Evaluations

Minimum Possible 1.37×107 2.84×107 4.21×107

Maximum Possible 2.98×107 2.84×107 5.82×107

Actual 1.52×107 2.84×107 4.36×107

Table X: Sensitivity to Initial Conditions
Initial Conditions Number of

Evaluations
% Change

From Mean

Arbitrary 4.36×107 +4.6%

Optimum 3.64×107 -12.7%

Farthest from Optimum 4.52×107 +8.4%

Mean 4.17×107 0%

ŝi 1+ ŝi<

x̃i x
˜ i
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and positions where the order of evaluations is of no importance, the algorithm is easily adapted to machines with parallel

processing capabilities. One could reasonably expect a linear relationship between completion time and the number of

available processors.

7  Conclusions
A new global isotropy index (GII) was proposed which defines isotropy as the ratio between the minimum and maximum

singular values in the workspace. It summarizes the workspace inclusive performance of a mechanism by a scalar quantity

and can be applied to the Jacobian, mass matrix or any other linear transformation describing a robot’s performance. A

novel optimization procedure was also proposed which belongs to the branch-and-bound family of optimization

algorithms but is specifically designed for either GII or minimax optimization. It repeatedly uses the worst configuration

of one parameter to eliminate others from contention until only the optimum remains. The approach guarantees

convergence, finite time termination and a global result. The algorithm consistently displays drastic improvements over a

global search with demonstrated effort reductions of up to six orders of magnitude. One design example described here

took just over 4 days to solve on a Sparc 5 workstation using the culling algorithm. This same example is estimated to

require over 20,000 years to solve by a global search on a similar machine. The culling algorithm, therefore, allows one to

use unsophisticated computer hardware to solve high dimensional problems that are otherwise too computationally

demanding to attempt. When used on more sophisticated hardware, the culling algorithm allows one to solve more

complex or finely discretized problems within reasonable time frames and is also easily adapted to exploit the parallel

processing capabilities of multi-processor machines.

The culling algorithm is used to optimize the kinematic GII and maximum inertia of a five-bar linkage based planar haptic

interface. It is shown that the best overall architecture has left/right symmetry about the robot and workspace and that the

robot is best kept in either an “M” or an elbow-out posture. A sensitivity analysis is performed to trade-off kinematic and

dynamic performance for an overall optimum design. Another design example involving a 6-DOF Stewart Platform with 5

design parameters demonstrates that the culling algorithm is also very effective at solving large optimization problems

with low sensitivity to initial conditions.
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