
lnteger Dilation and Contraction for Quadtrees and Octrees

Leo Stocco & Gunther Schrack

Department of Electrical Engineering
The University of British Columbia

Vancouver, British Columbia, Canada V6T 1 W5

Abstract ~ Integer dilation and contraction are functions
used in conjunction with quadtree and octree mapping
systems. Dilation is the process of inserting a number of
zeros before each bit in a word and contraction is the
process of removing those zeros. Present methods of
dilation and contraction involve lookup tables which
consume considerable amounts of memory for mappings of
large or high resolution display devices but are very fast
under practical limits. A method is proposed which rivals
the speed of the tabular methods but eliminates the tables,
thereby eliminating the associated memory consumption.
The proposed method is applicable to both dilation and
contraction for both quadtrees and octrees.

1. Introduction

A quadtree is a mapping system which divides a
coordinate system into quadrants. Each quadrant is
repeatedly subdivided into quadrants until the desired
resolution of the coordinate system is achieved.
Location codes are assigned to each of the elements in a
hierarchical procedure similar to the segmentation
procedure. They are ordered from zero to three as
illustrated in Figure 1. The f i rs t segmentation
determines the most significant quaternary digit and
each subsequent segmentation determines the next
significant quaternary digit. An example location code
assignment is illustrated in Figure 1.

14 24 120,
Figure 1: Quadtree Location Codes

A by-product of assigning location codes in the order
prescribed by Figure 1 is that a location code can be
calculated by interleaving the bits of its associated x-y

coordinates. Once again consider the example location
code in Figure 1:

(x , y) = (4,2) = (loo,, 010,)
interleave (x , Y) = {Y,, x,, yl, xl, yo.xo1 = 120,

Interleaving can be achieved by “0R”ing the quadtree
dilation of “x” with the left shifted quadtree dilation of
“y” where quadtree dilation is the process of inserting
one zero before each bit in the word being dilated.

Tilad-location-code = quad-dilate(x) I
(quad-dilate (y) << 1) ;

Converting back to Cartesian coordinates is achieved by
the reverse procedure where the inverse operation of
dilation is contraction.

x = quad - contract(quad-location-code);
y = quad contract(quad location-code >> 1); - -

The octree mapping system is the same except that it
contains a third dimension. Just as quadtrees relate to a
square area that is recursively divided into four parts,
octrees relate to a cubic volume that is recursively
divided into eight parts. Conversion from Cartesian
coordinates to an octree location code requires an octree
dilation of each Cartesian coordinate. Octree dilation
inserts two zeros before each bit in the word being
dilated.

oct - location-code = oct-dilate (x) 1
(oct-dilate(y) << 1) j
(oct-dilate (z) << 2) ;

x = oct - contract(oct location-code);
y = oct - contract (oct-location-code - >> 1) ;
z = oct contract(oct location code >> 2);

Since quadtrees and octrees are used in graphics
applications, efficient dilation and contraction functions
are clearly a concem.

- - -

2. Present,Techniques

The fastest known methods of dilation and contraction
use linear look-up tables. For x-y coordinates of “n”
bits, the size of the required table for one-part quadtree
dilation is 2” and for one-part quadtree contraction is

- 426 - 0-7803-2553-2/95/$4.00 @ 1995 IEEE

qdil(2n - 1) which is on the order of 22n-1. Example
look-up tables for n = 3 are shown in Figure 2 and
Figure 3.

Figure 2: Quadtree Dilation Look-up Table

I - I I I I I I I I I I I I

Figure 3: Quadtree Contraction Look-up Table

Table sizes can, however, be reduced by performing the
operations in more than one part and then concatenating
the results. For example, a 16 bit integer can be dilated
in two parts as follows.
dil integer = dil-tablerinteger & GxFF];
dilIinteger I = (dil_table[integer >> 81) << 16;

3. Proposed Techniques

The proposed dilation and contraction techniques do not
use look-up tables. Instead, they use a loop which
systematically spreads out or compresses the bits. The
techniques are best described by a code segment and an
example. It is assumed that a long integer contains 32
bits and is, therefore, capable of storing the dilation of a
16 bit integer.

#define INT-LEN 16
#define LOG2-INT-LEN 4

unsigned long demo(unsigned long *qdil,
unsigned long *qctc) {

static long dilate-masks[] = {GxFFOOFF,
GxFGFGFGF,
0x33333333,
0x555555551;

static long contract-masks[] = {Gx33333333,
OxFGFOFGF,
GxFFOOFF,
OxFFFF } ;

int i:

for (i = 0; i < LOG2-INT-LEN; i++) [

*qdil =

*qctc =

(*qdil I
(*qdil << (INT-LEN >> (i + 1)))) &

dilatemasks [i] ;

(*qctc I
(*qctc >> (1 << i))) &
contract-masks [il ;

After each iteration of the loop, the value of “*qdil” will
be as follows where the final result is clearly the
quadtree dilation of the original “*qdil”.

Figure 4: Example Integer Dilation

The 16 bit integer is split into two groups of eight which
are then split into four groups of four, eight groups of
two, and finally 16 “groups” of one which is the
quadtree dilation. The algorithm is easily extended to
octree dilation by doubling the amount of left shifting
and adjusting the masks.

Quadtree contraction is the dual of quadtree dilation
since each step of the contraction process undoes one
step of the dilation process. The value of “*qctc” after
each iteration is exactly the same as in Figure 4 with the
order reversed. Quadtree contraction is also easily
extended to octree contraction.

4. Analysis

Due to hardware or compiler constraints, the arrays used
by the tabular methods could have size restrictions.
When table sizes are inadequate for direct look-up, the
operations must be performed in more than one part. For
any fixed table size, the number of parts can be adjusted
to accommodate any integer size. Fixing table sizes
results in execution times that are proportional to the
number of bits in the target integer. A relation derived
from performance tests involving the tabular methods is
as follows:

t = (14.6a)/ h (a) - 16
t = execution time in ticks
a zz number of array elements
dilation * a = n
contraction + a = 2n - 1
n number of bits in target integer

It should be noted that the number of array elements is
not linearly proportional to memory consumption. For
example, a quadtree dilation array with 16 elements
needs only 8 bits per element since the largest integer it
must store is 85. One with 32 elements, however, needs
16 bits per element since the largest integer it must store

- 427 -

is 341. Therefore a more representative indication of
memory consumption is as follows:

b = r log2(a)/41 a
b = memory consumption in bytes
a = number of array elements

The calculation methods use no tables and are
symmetric for both dilation and contraction. A relation
der ived from performance tes ts involving the
calculation methods is as follows:

t = 27.4111 (n) - 10
t I execution time in ticks
n z number of bits in target integer

Equating the two execution times yields the minimum
memory requirement for the tabular methods to execute
as fast as the calculation methods. Note that the ceiling
function in the memory utilization algorithm accounts
for the fact that memory is never allocated in fractions
of bytes. For analytical purposes, the ceiling function
can be omitted.

(0 .53a / (ln (n) +0.22)) 0.191~
b = x e

In (n) + 0.22
b = memory consumption in bytes
n number of bits in target integer
dilation - CL = n
contraction a = 2n - 1

5
I ’
I I1

Figure 5: Memory Consumption of Array vs. Number of Bits

Since the calculation methods are of Order(ln(n)) and
the tabular methods are of Order(n), the performance of
the calculation methods surpass those of the tabular
methods as the number of bits in the x-y coordinates
increases. A direct comparison is provided in Figure 5

13y fixing the table size at “a = 256” and plotting the
~wformance of the methods for varying integer lengths.
.A 256 element table is chosen since it consumes a
relatively small amount (512 bytes) of memory and
,Fully utilizes the integer values recorded in the table. It
is therefore a very efficient table size.

153 I
I

” 10 M 30 40 50
Numbet of Bits. n

Figure 6 : Execution 7ime vs. Number of Bits

5. Conclusion

‘The dilation and contraction techniques presented
provide a sound altemative to the tabular method that is
presently used. Due to their logarithmic order, the
proposed algorithms can provide both a savings in
memory utilization and a reduction in execution time of
Functions which encode and decode Cartesian
coordinates into location codes of large or high
resolution quadtree or octree mappings.

6. References

[l] G. Schrack, “Finding Neighbors of Equal
S ize in Linear Quadtrees a n d Octrees in
C o n s t a n t T i m e ” , C V G I P : Image
Understanding, 55 (3), May 1992,221 - 230.

I. Gargantini, “An effective way to represent
quadtrees”, Commun. ACM 25 (12), 1982,

[2]

905-910.

- 4213 -

