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Abstract ~ Integer dilation and contraction are functions 
used in conjunction with quadtree and octree mapping 
systems. Dilation is the process of inserting a number of 
zeros before each bit in a word and contraction is the 
process of removing those zeros. Present methods of 
dilation and contraction involve lookup tables which 
consume considerable amounts of memory for mappings of 
large or high resolution display devices but are very fast 
under practical limits. A method is proposed which rivals 
the speed of the tabular methods but eliminates the tables, 
thereby eliminating the associated memory consumption. 
The proposed method is applicable to both dilation and 
contraction for both quadtrees and octrees. 

1. Introduction 

A quadtree is a mapping system which divides a 
coordinate system into quadrants. Each quadrant is 
repeatedly subdivided into quadrants until the desired 
resolution of the coordinate system is achieved. 
Location codes are assigned to each of the elements in a 
hierarchical procedure similar to the segmentation 
procedure. They are ordered from zero to three as 
illustrated in Figure 1. The f i rs t  segmentation 
determines the most significant quaternary digit and 
each subsequent segmentation determines the next 
significant quaternary digit. An example location code 
assignment is illustrated in Figure 1. 

14  24 120, 
Figure 1: Quadtree Location Codes 

A by-product of assigning location codes in the order 
prescribed by Figure 1 is that a location code can be 
calculated by interleaving the bits of its associated x-y 

coordinates. Once again consider the example location 
code in Figure 1: 

( x ,  y )  = (4,2) = (loo,, 010,) 
interleave ( x ,  Y)  = {Y,, x,, yl, xl, yo.xo1 = 120, 

Interleaving can be achieved by “0R”ing the quadtree 
dilation of “x” with the left shifted quadtree dilation of 
“y” where quadtree dilation is the process of inserting 
one zero before each bit in the word being dilated. 

Tilad-location-code = quad-dilate(x) I 
(quad-dilate ( y )  << 1) ; 

Converting back to Cartesian coordinates is achieved by 
the reverse procedure where the inverse operation of 
dilation is contraction. 

x = quad - contract(quad-location-code); 
y = quad contract(quad location-code >> 1); - - 

The octree mapping system is the same except that it 
contains a third dimension. Just as quadtrees relate to a 
square area that is recursively divided into four parts, 
octrees relate to a cubic volume that is recursively 
divided into eight parts. Conversion from Cartesian 
coordinates to an octree location code requires an octree 
dilation of each Cartesian coordinate. Octree dilation 
inserts two zeros before each bit in the word being 
dilated. 

oct - location-code = oct-dilate (x) 1 
(oct-dilate(y) << 1) j 
(oct-dilate ( z )  << 2) ; 

x = oct - contract(oct location-code); 
y = oct - contract (oct-location-code - >> 1) ; 
z = oct contract(oct location code >> 2); 

Since quadtrees and octrees are used in graphics 
applications, efficient dilation and contraction functions 
are clearly a concem. 

- - - 

2. Present,Techniques 

The fastest known methods of dilation and contraction 
use linear look-up tables. For x-y coordinates of “n” 
bits, the size of the required table for one-part quadtree 
dilation is 2” and for one-part quadtree contraction is 
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qdil(2n - 1) which is on the order of 22n-1. Example 
look-up tables for n = 3 are shown in Figure 2 and 
Figure 3. 

Figure 2: Quadtree Dilation Look-up Table 
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Figure 3: Quadtree Contraction Look-up Table 

Table sizes can, however, be reduced by performing the 
operations in more than one part and then concatenating 
the results. For example, a 16 bit integer can be dilated 
in two parts as follows. 
dil integer = dil-tablerinteger & GxFF]; 
dilIinteger I =  (dil_table[integer >> 81) << 16; 

3. Proposed Techniques 

The proposed dilation and contraction techniques do not 
use look-up tables. Instead, they use a loop which 
systematically spreads out or compresses the bits. The 
techniques are best described by a code segment and an 
example. It is assumed that a long integer contains 32 
bits and is, therefore, capable of storing the dilation of a 
16 bit integer. 

#define INT-LEN 16 
#define LOG2-INT-LEN 4 

unsigned long demo(unsigned long *qdil, 
unsigned long *qctc) { 

static long dilate-masks[] = {GxFFOOFF, 
GxFGFGFGF, 
0x33333333, 
0x555555551; 

static long contract-masks[] = {Gx33333333, 
OxFGFOFGF, 
GxFFOOFF, 
OxFFFF } ; 

int i: 

for (i = 0; i < LOG2-INT-LEN; i++) [ 

*qdil = 

*qctc = 

(*qdil I 
(*qdil << (INT-LEN >> (i + 1)))) & 

dilatemasks [i] ; 

(*qctc I 
(*qctc >> (1 << i))) & 
contract-masks [il ; 

After each iteration of the loop, the value of “*qdil” will 
be as follows where the final result is clearly the 
quadtree dilation of the original “*qdil”. 

Figure 4: Example Integer Dilation 

The 16 bit integer is split into two groups of eight which 
are then split into four groups of four, eight groups of 
two, and finally 16 “groups” of one which is the 
quadtree dilation. The algorithm is easily extended to 
octree dilation by doubling the amount of left shifting 
and adjusting the masks. 

Quadtree contraction is the dual of quadtree dilation 
since each step of the contraction process undoes one 
step of the dilation process. The value of “*qctc” after 
each iteration is exactly the same as in Figure 4 with the 
order reversed. Quadtree contraction is also easily 
extended to octree contraction. 

4. Analysis 

Due to hardware or compiler constraints, the arrays used 
by the tabular methods could have size restrictions. 
When table sizes are inadequate for direct look-up, the 
operations must be performed in more than one part. For 
any fixed table size, the number of parts can be adjusted 
to accommodate any integer size. Fixing table sizes 
results in execution times that are proportional to the 
number of bits in the target integer. A relation derived 
from performance tests involving the tabular methods is 
as follows: 

t = (14.6a)/ h ( a )  - 16 
t = execution time in ticks 
a zz number of array elements 
dilation * a  = n 
contraction + a = 2n - 1 
n number of bits in target integer 

It should be noted that the number of array elements is 
not linearly proportional to memory consumption. For 
example, a quadtree dilation array with 16 elements 
needs only 8 bits per element since the largest integer it 
must store is 85. One with 32 elements, however, needs 
16 bits per element since the largest integer it must store 
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is 341. Therefore a more representative indication of 
memory consumption is as follows: 

b = r log2(a)/41 a 
b = memory consumption in bytes 
a = number of array elements 

The  calculation methods use  no tables and are  
symmetric for both dilation and contraction. A relation 
der ived from performance tes ts  involving the  
calculation methods is as follows: 

t = 27.4111 (n) - 10 
t I execution time in ticks 
n z number of bits in target integer 

Equating the two execution times yields the minimum 
memory requirement for the tabular methods to execute 
as fast as the calculation methods. Note that the ceiling 
function in the memory utilization algorithm accounts 
for the fact that memory is never allocated in fractions 
of bytes. For analytical purposes, the ceiling function 
can be omitted. 

(0 .53a / ( ln (n )  +0.22)) 0.191~ 
b =  x e  

In (n) + 0.22 
b = memory consumption in bytes 
n number of bits in target integer 
dilation - CL = n 
contraction a = 2n - 1 
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Figure 5: Memory Consumption of Array vs. Number of Bits 

Since the calculation methods are of Order(ln(n)) and 
the tabular methods are of Order(n), the performance of 
the calculation methods surpass those of the tabular 
methods as the number of bits in the x-y coordinates 
increases. A direct comparison is provided in Figure 5 

13y fixing the table size at “a = 256” and plotting the 
~wformance of the methods for varying integer lengths. 
.A 256 element table is chosen since it consumes a 
relatively small amount (512 bytes) of memory and 
,Fully utilizes the integer values recorded in the table. It 
is therefore a very efficient table size. 
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Figure 6 :  Execution 7ime vs. Number of Bits 

5. Conclusion 

‘The dilation and contraction techniques presented 
provide a sound altemative to the tabular method that is 
presently used. Due to their logarithmic order, the 
proposed algorithms can provide both a savings in 
memory utilization and a reduction in execution time of 
Functions which encode and decode  Cartesian 
coordinates into location codes of large or high 
resolution quadtree or octree mappings. 
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