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Abstract

Good robot performance often relies upon the selection of
design parameters that lead to a well conditioned
Jacobian or impedance “design” matrix. In this paper, a
new design matrix normalization technique is presented to
cope with the problem of non-homogeneous physical units.
The technique pre and post-multiplies a design matrix by
diagonal scaling matrices corresponding to the range of
joint and task space variables. In the case of the Jacobian,
normalization leads to a practical interpretation of a
robot’s “Characteristic Length” as the desired ratio
between maximum linear and angular force or velocity.
The scale factors can also be used to set relative required
strength or speed along any axes of end-point motion
and/or can be treated as free design parameters to
improve isotropy through asymmetric actuation. The effect
of scaling on actual designs is illustrated by a number of
design examples using a global search method previously
developed by the authors.

1  Introduction
Many robot design variables such as structure (serial vs.
parallel), geometry, actuators (rotary vs. prismatic) and
reduction ratios contribute to the way a robot behaves.
Unfortunately, any change that enhances one performance
attribute will almost always detract from another.
Stiffness, for example, is improved by using a parallel
robot instead of a serial robot but workspace size suffers.
This trade-off that occurs with virtually every design
variable suggests that a universally optimum device does
not exist. Optimality only exists in the context of a specific
application since different applications make different
performance demands. This paper describes how a robot
can be designed for a particular application by integrating
application specific performance requirements into the
performance function. It shows how to specify desired
relative capabilities with respect to individual workspace
dimensions and how to improve the solution through
asymmetric actuation. The technique also normalizes
physical units to ensure a meaningful result.

Methods for handling non-uniform workspace dimensions
have been suggested by Gosselin [4], Tandirci et. al. [10],
Angeles [1], Ma and Angeles [8] and Angeles et. al. [2].
They address the problem pointed out by Lipkin and
Duffy [7] that a measure such as the condition number of
the Jacobian matrix is of little practical significance in the
presence of non-uniform physical units which appear

when a robot can both translate and rotate its end-effector.
To accommodate this, Gosselin [4] defines a new Jacobian
that transforms actuator velocities into the linear velocities
of two points on the end-effector. He does not, however,
indicate how one should choose these points. Tandirci et.
a l .  [10]  normal ize  the  Jacob ian  by  d iv id ing  a
“Characteristic Length” (CL) out of all translational
elements. The CL that produces the best performance
measure is dubbed the “Natural Length” (NL) by Ma and
Angeles [8] and is used for design optimization. When the
NL of a platform manipulator is not derivable, it is
approximated by the average platform radius. Angeles [1]
calculates the NL for a serial manipulator by averaging the
distances between the operating point and all active joint
axes while Angeles et. al. [2] find a serial manipulator’s
NL by making it a free design parameter.

It is shown here that the CL, in fact, represents a robot’s
relative capability to translate and rotate its end-effector. It
should be chosen to best satisfy the demands of the
application and should not be a free design parameter. The
CL is extended to a more general diagonal matrix which
scales all workspace dimensions, not just those with
dissimilar physical units. A similar type of scaling is also
applied to joint-space to simultaneously remove mixed
physical units that appear when dissimilar types of
actuators are used (e.g. the Stanford Arm) and improve
isotropy through asymmetric actuation.

Section 2 of this paper discusses the definition of isotropy
and the optimization algorithm used in subsequent design
examples. Section 3 describes the proposed scaling
matrices that are the focus of this paper. The task-space
scaling matrix and its relationship with the CL is described
in Section 4 while the joint-space scaling matrix is
described in Section 5 with a summary and conclusions in
Section 6.

2  Isotropy and Optimization
Many different relationships are used to quantify robot
performance. They include, but are not limited to, the
Jacobian J(x) (1) that relates actuator velocity  to end-
effector velocity , its transpose (2) which relates end-
effector force/torque f to actuator force/torque τ and the
equivalent impedance ZE (3) presented by the robot to its
environment where robot impedance ZR(x) contains mass,
stiffness and damping terms.
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Relationships (1) to (3) are matrix transformations that are
functions of x (i.e. position dependent) and are non-
diagonal (i.e. direction dependent) in general. Minimizing
the non-uniformity associated with these dependencies is
often the primary goal in robot design optimizations. For
example, one would like the velocity of a welding robot to
be accurate and consistent. It should, therefore, have an
isotropic (direction independent) Jacobian (1) that does
not change much at any position in its workspace.

While there are many ways to measure isotropy, a number
of which are discussed in [6], the most common is the
condition number which describes worst-case behaviour at
a position. The condition number is the ratio between the
largest and smallest singular values which, in the case of
the Jacobian, are the highest and lowest effective
transmission ratios occurring in all directions. For
consistency, accuracy, and direction independence, this
ratio should be as close as possible to unity. When the
condition number has a value of zero, the robot is
uncontrollable and is said to be in a singular position.
When it has a value of one, the robot is considered to be
perfectly isotropic.

For all design examples in this paper, the goal is an
optimally isotropic Jacobian matrix J(x) with task-space
requirements specified in terms of forces and torques (2).
To obtain a position independent worst-case optimum, the
computational intensity of global searching and the
difficulty of integrating over the workspace [5] are avoided
by using the “Global Isotropy Index” or GII (4) and
Culling algorithm proposed in [9]. The GII, evaluated for a
robot design parameter p, is the ratio between the smallest
and largest singular values in the workspace W and is
defined between 0 and 1 corresponding to singular
behaviour and perfect isotropy, respectively. Due to its
workspace-inclusive nature, the GII is a more stringent
measure than the condition number.

The Culling algorithm is a discrete minimax optimization
algorithm that requires no prior knowledge or estimation
of function values. It finds the parameter  (5) that
produces the best GII within a discrete parameter space P.
A simpler version also exists and is presented in [9] to
optimize the more common minimax problem (6) for an
arbitrary function F(p,x) bounded by 0 and 1.

It starts by placing a conservative lower bound on the
optimum function value ( ) and a non-conservative
upper bound on the function value of each parameter
( ) where the underscore represents a lower
bound, the overbar represents an upper bound and  is the
position that minimizes the function value for a parameter
p. It then iteratively pulls up on  by searching one
parameter for all positions and pushes down on each
element of  by searching one position for all
parameters .  When the upper  bound  of  a
parameter p drops below the optimum lower bound ,
that parameter is eliminated from the parameter space P.
Consider the example search space in Figure 1 where each
discrete workspace location is assigned a row and each
discrete parameter value is assigned a column.

The Culling algorithm searches all positions of an
arbitrarily chosen initial parameter p4 (i) to find that its
worst case value  occurs at x16. All parameters
are searched at x16 (ii) to find that  for p6 and
p7 and that a maximum is obtained at p18. Parameters p6
and p7 are eliminated from P (iii) and all positions of p18
are searched (iv) to find that its worst case value of 0.7
occurs at x9.  is updated to 0.7 and parameters p4 and
p10 → p14 are eliminated from P (v). All parameters are
searched at x9 (vi) and so on until all but one parameter is
eliminated. The remaining parameter  is the global
optimum which produces the value . The
Culling algorithm guarantees a global optimum with
significantly less computational effort than a global search
since many function evaluations are avoided (e.g.
darkened areas in Figure 1). It can be used with any
performance function, places no limitation on the number
of free variables, is insensitive to initial conditions and has
been found to be extremely efficient at solving robot
optimization problems [9].

f J x( )T τ=

(1)

(2)

(3)ZE J x( )T
ZR x( )J x( )=

q̇ J x( ) ẋ=
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σmin J p x,( )( )
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-----------------------------------= (4)

p∗

(5)

(6)F∗ max
p P∈

min
x W∈

F p x,( )=

p∗ maxarg
p P∈

GII p( )=

F∗ 0=

F p x∗,( ) 1=
x∗

F∗

F p x∗,( )
F p x∗,( )

F∗

Figure 1: Culling Example
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3  Physical Unit Normalization
Lipkin and Duffy [7] point out that the condition number
of the Jacobian is of little practical significance when its
elements have non-uniform physical units. This occurs
when the robot can both translate and rotate its end-
effector or when the robot is comprised of both rotary and
prismatic actuators. For a homogeneous Jacobian, the
physical units must be removed from both sides of the
equation. This can be accomplished by separating each
force/torque vector (f and τ) into a diagonal scaling matrix
with positive maximum force/torque values on the
diagonal and a vector of unity bounded percentages. This
is shown in (7) where SJ is the joint-space scaling matrix,
ST is the task-space scaling matrix, ∆τ  is the actuator
force/torque percentage vector and ∆f is the end-effector
force/torque percentage vector. Substituting (7) into (2)
produces (8) which contains no physical units.

The homogeneous Jacobian  (9) relates the percentage of
maximum actuator capabilities ∆τ to the percentage of
maximum end-effector requirements ∆f, both of which are
unity bounded. Because  transforms percentages into
percentages, it is dimensionless and its condition number
is meaningful regardless of the actuators used or the
workspace dimensions involved.  bears a strong
similarity to structured singular values which are used in
controller design to measure stability and robustness of
systems with structured uncertainties. Doyle [3] shows
that a non-conservative estimate of stability can be made
for a compensated system containing various uncorrelated
disturbances of known bound by the structured singular
value which is the solution to the minimax problem shown
in (10) where D is a diagonal matrix of positive real
values.

There is, however, a fundamental difference between the
D matrix used in structured singular values and the ST and
SJ matrices used here to model robot performance. In
robot design, ST is a diagonal matrix of maximum end-
effector force/torque while SJ is a diagonal matrix of
max imum ac tua to r  fo rce / to rque .  End-e f f ec to r
requirements are dictated by the application so ST partially
describes the goal whereas actuators can be chosen to best
satisfy the requirements so SJ partially describes the
solution. Because of this intrinsic dissimilarity, the two
matrices must be handled differently. In control, a
common D matrix multiplies both sides of the system
matrix (Q)  and i ts  elements are assigned by the
optimization algorithm.

Although ST and SJ are shown in (7) through (9) to
normalize the force/torque Jacobian (2), they can be used
to normalize and scale any transformation matrix such as
(1) or (3). Since different transformations involve different
physical quantities, ST and SJ will not always contain
forces and torques. For example, ZE (3) transforms end-
effector velocity  into end-effector force/torque f (11). To
normalize ZE (12), SJ should contain maximum end-
effector velocities and ST should contain maximum end-
effector forces/torques (13). Note that with ZE, SJ contains
task-space quantities and is really a second ST matrix
(ST2). The original notation (SJ) is maintained purely for
the sake of convenience. Similarly, it is easily shown that
J(x) from (1) is normalized and scaled with an SJ
containing maximum joint velocities and an ST containing
maximum end-effector velocities.

Note that scalar multiples do not affect ratios of singular
values so one element of ST and SJ can be assigned to
unity with the remaining elements representing relative
values. Also note that these matrices are easily adapted to
serial manipulators by rearranging the order (16) to
account for the way the Jacobian is normally defined for a
serial mechanism (14).

4  The Task-Space Scaling Matrix: ST

The task-space scaling matrix ST  is a generalized
extension of the CL. It is shown in (17) that the two are
analogous if maximum desired forces along all axes are
identical and equal to , maximum desired torques
about all axes are identical and equal to  and the CL is
taken to represent . Multiplication by a CL is,
therefore, a special case of the ST matrix.

In the past, the value of the CL has not been associated
with any physical meaning. Common practice has been to
choose it freely for optimum conditioning and then discard
it. In (17) it is shown that the CL does have physical
meaning and, in particular, that it represents the robot’s
relative ability to apply forces and torques with its end-
effector. Adjusting the CL to improve isotropy alters the
goal to fit the solution. While this approach may be
reasonable if the application is poorly defined, it is not
practical in general. Consider, for example, the three
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degree-of-freedom (3-DOF) parallel planar manipulator
shown in Figure 2. The geometry of the device is
described here by five design parameters a, b, c, d, and θ0.

While additional geometric parameters exist for this robot,
they are fixed (i.e. 120˚ separation between actuators on
the platform and the base) for the sake of simplicity since
the five parameters are adequate to illustrate the
relationship between the CL and corresponding optimum
geometries. Since isotropy always improves when d is
increased, it is fixed at 20cm. The robot parameters a, b, c
and θ0 are found to optimize the GII inside a square
workspace (∆x, ∆y = ±5cm, ∆θ = ±30˚) for CLs ranging
between 0.1cm and 10.0cm. The optimum geometries and
GIIs are shown in Figure 3.

The optimum platform is nearly equilateral and the
optimum θ0 is approximately 90˚ in all cases. Platform
size increases linearly with the CL which is, on average,

1.27 times the mean platform radius. The NL is 0.7cm,
however the GII only fluctuates by 12% (0.505 @
CL=0.1cm → 0.567 @ CL=0.7cm) even though the
platform radius changes by over a factor of 80 (0.1 @
CL=0.1cm → 8.1 @ CL=10.0cm). Note that many highly
dissimilar geometries are shown to have identical GIIs in
Figure 3. For example, platform radii of 0.4cm and 5.3cm
both produce a GII of 0.554. The reason why two devices
whose platform sizes differ by a factor of 14 are evaluated
as equals is because they are evaluated against two
different specifications. The CL sets the physical property

 so larger CL values suggest higher torque
capabilities and result in a larger platform radius. A larger
platform does not affect linear force capabilities much but
provides the actuators with additional leverage for
inducing torques. A relatively constant level of isotropy is,
therefore, maintained over a wide range of relative
force/torque requirements provided that the appropriate
geometry is chosen.

Assigning desired force ratios clearly does more than
remove physical units and is, therefore, applicable to all
dimensions. Consider, for example, an assembly robot that
places a part on a shaft and turns it to lock it in place.
Linear force requirements are not identical since vertical
positioning forces must overcome the additional burden of
gravity. The robot in Figure 2 can be optimized for this
purpose by assuming a maximum horizontal force  of
5N, a maximum vertical force  of 15N and a maximum
torque  of 25Ncm. The corresponding ST matrix is
shown in (19) after factoring out a 5N scalar.

After normalizing J (2) with ST (19), the optimum robot
geometry is a=2.0, b=4.2, c=4.0 and θ=103˚ with a GII of
0.247. Notice that the resulting optimum geometry is
different from those in Figure 3 since its platform is not
equilateral.

5  The Joint-Space Scaling Matrix: SJ

Unlike the task-space scaling matrix ST which specifies
relative end-effector capabilities, the joint-space scaling
matrix SJ specifies relative actuator capabilities. Usually,
actuators are chosen to satisfy the needs of the application
so SJ can contain free design parameters with constraints
that reflect practical limitations. Actuator scaling is
particularly beneficial to serial manipulators which
typically have diminishing torque requirements for
actuators more distal to the base. Consequently, they will
often produce dismal condition numbers since not
including SJ is the same as setting it to the identity which
implies symmetric actuation. Consider, for example, the 3-

Figure 2: 3-DOF Planar Parallel Manipulator
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DOF planar serial manipulator shown in Figure 4 which
has three design parameters a, b, and c.

The workspace position y0 is fixed at 5cm and the robot
parameters a, b and c are found to optimize the GII inside
a square workspace (∆x, ∆y = ±5cm) at any angle (∆θ =
±180˚). Linear force requirements are made equal but
many  ratios are explored to see how well the
device is suited to different angular requirements. The
results are shown in Figure 5.

The GII in Figure 5 peaks at 0.163 and drops to 0.006 at
low  ratios. The device appears to be extremely
unsuitable for applications with high force and low torque
requirements. These poor results, however, are largely due
to inappropriate actuation and are significantly improved
by including the SJ matrix with free variables along the
diagonal as shown in (20) where  is the maximum
torque capability of actuator .

Optimizing the serial robot again with the two additional
free parameters in (20) produces the geometries and GIIs
shown in Figure 6. Notice the improvement in GII values
which now vary between 0.17 and 0.28 with stronger
actuators at the q0 and q1 joints. The asymmetrically
actuated device actually turns in its best results at low

 ratios with as much as a 46 fold improvement
over its symmetrically actuated counterpart.

However, actuator scaling can make a and b grow without
bound since this is similar to positioning the workspace
further from the base which improves isotropy. To avoid
this, physical dimensions are constrained to 10cm so that a
fair comparison can be made with Figure 5. In practice,
one might instead fix the actuator ratios due to practical
constraints such as availability, size or weight. For
example, using an elbow actuator that is twice as large as
the wrist actuator, a shoulder actuator that is twice as large
as the elbow actuator and the task-space requirements in
(18), the optimum geometry is found using the ST and SJ
matrices shown in (21). The optimum geometry is
a=9.6cm, b=6.6cm and c=0cm with a GII of 0.104.

It also makes sense to fix SJ when it holds task-space
quantities such as when it is used to normalize an
impedance matrix (11). In cases such as this, SJ should be
treated as a second ST matrix and be fixed to reflect the
demands of the application. For example, if the goal is to
design a haptic interface to present impedance ZE to its
environment (a human hand), ST should contain the ratios
of maximum forces and SJ should contain the ratio of
maximum velocities that could be expected of a human
hand when acting in different directions.

Figure 4: 3-DOF Planar Serial Manipulator

a

b
c

q0

q2

q1

∆x

∆y

y0

Waist

Elbow

Wrist

Joint

Joint

Joint

∆θ

f ang f lin⁄

Figure 5: Optimum Serial Manipulator

Global Isotropy Index
Link Length (cm)

a( )
GII( )

b( )

c( )

f ang f lin⁄  (cm)

f ang f lin⁄

τqn
n 0 1 2, ,{ }∈

SJ

τq0
τq2

⁄ 0 0

0 τq1
τq2

⁄ 0

0 0 1

= (20)

f ang f lin⁄

Figure 6: Optimum Scaled Serial Manipulator

Global Isotropy Index
Torque Ratio
Link Length (cm)

a( )

GII( )

τq1

τq2

-------
τq0

τq2

------- ( )( ),

b( )

c( )

f ang f lin⁄  (cm)

ST

1 0 0

0 3 0

0 0 5

= (21)SJ

4 0 0

0 2 0

0 0 1

=



6

Neither task-space nor joint-space units remain in the
dimensionless, normalized Jacobian , so there are never
dissimilar units, even if the manipulator has both rotary
and prismatic actuators. Consider, for example, the 3-DOF
serial manipulator shown in Figure 7 which has only one
geometric design parameter b.

For ∆x,∆y=±5cm, ∆θ=±180˚, y0=5cm and the force/
torque requirements in (18), the optimum robot has
b=0cm, =3.6 and =0.9cm-1 with a GII of
0.203. This robot uses a similar shoulder:wrist actuator
ratio (3.6:1) as the rotary serial arm (4:1) but produces a
significantly (95%) better GII. In practice, however, it may
suffer from added inertia due to its prismatic upper-arm.

While actuator scaling produces substantial improvements
with serial manipulators, it is also effective with parallel
manipulators, especially those that are geometrically
asymmetric. The actuator scaling matrix in (20) used with
the parallel manipulator in Figure 2 and the force/torque
requirements in (18) produces the geometry a=1.25cm,
b=4.0cm, c=3.25cm, θ0=96˚, =2.1, =1.0
with a GII of 0.378. This is a 53% improvement over the
GII of 0.247 obtained using identical actuators even
though the geometries of the two devices are very similar.

6  Summary and Conclusions
By converting explicit joint and task-space values into
diagonal scaling matrices of maximum values and vectors
of percentages, a meaningful and dimensionless condition
number is derived from the singular values of the
normalized Jacobian or other (i.e. mass, impedance)
performance matrix. It is shown that multiplication by a
“Characteristic Length” which has been done in the past to
eliminate dissimilar physical units from task-space is a
special case of the task-space scaling matrix ST. The more
general scaling matrices, ST and SJ, remove physical units
from both task-space and joint-space and make it possible
to specify requirements for all task-space dimensions and
scale actuators for improved isotropy. Optimization of the
scaled, unitless performance matrix (i.e. J or D) ensures
that the robot actuators are fully utilized in satisfying the
task-space requirements defined.

It is shown that although task-space scale factors greatly
affect the optimum geometry, their effect on isotropy is
less pronounced. This occurs because a device can often
maintain consistent performance levels for a wide range of
requirements as long as the geometry is adjusted
accordingly. The elements of ST should, therefore, be
assigned to reflect the demands of the application.

The joint-space scaling matrix SJ is similar in nature to the
task-space matrix ST but describes relative actuator
capabilities. It improves isotropy through asymmetric
actuation which has been shown to be particularly
effective with serial devices. Improvements in the isotropy
index of up to two orders of magnitude have been
observed as a direct result of actuator scaling.
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